
http://wrap.warwick.ac.uk

Original citation:
Miles, S., Joy, Mike and Luck, M. (2001) Designing agent-oriented systems by analysing
agent interactions. In: Ciancarini, P. and Wooldridge, M., (eds.) Agent-Oriented Software
Engineering : First International Workshop, AOSE 2000. Lecture Notes in Computer
Science (Volume 1957). Springer, pp. 171-183. ISBN 9783540415947

Permanent WRAP url:
http://wrap.warwick.ac.uk/61165

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"The final publication is available at Springer via http://dx.doi.org/10.1007/3-540-44564-
1_11 "

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61165
http://dx.doi.org/10.1007/3-540-44564-1_11
http://dx.doi.org/10.1007/3-540-44564-1_11
mailto:publications@warwick.ac.uk

Designing Agent-Oriented Systems by
Analysing Agent Interactions

Simon Miles Mike Joy Michael Luck

Department of Computer Science, University of Warwick
Coventry, CV4 7AL, United Kingdom

smiles@dcs.warwick.ac.uk

Abstract. We propose a preliminary methodology for agent-oriented software
engineering based on the idea of agent interaction analysis. This approach uses
interactions between undetermined agents as the primary component of analysis
and design. Agents as a basis for software engineering are useful because they
provide a powerful and intuitive abstraction which can increase the comprehen-
siblity of a complex design. The paper describes a process by which the designer
can derive the interactions that can occur in a system satisfying the given require-
ments and use them to design the structure of an agent-based system, including
the identification of the agents themselves. We suggest that this approach has the
flexibility necessary to provide agent-oriented designs for open and complex ap-
plications, and has value for future maintenance and extension of these systems.

1 Introduction

The agent paradigm has, over recent years, given rise to a large amount of research on
the internal structure of agents as general problem-solvers capable of effective intelli-
gent behaviour in dynamic environments. This concentration of work on the develop-
ment of agent architectureshas been just one side of the many aspects illuminated by
the agent metaphor. More recently, however, agents have been used as an abstraction for
general software engineering. This paper explores the rôle of agent-oriented methods
for just such a purpose, and introduces a preliminary methodology that may be used as
a basis for designing agent-based systems.

The full potential of agent-based systems in solving problems in complex domains
depends upon the systems themselves, and the designs from which they are constructed,
being tailored to the conditions that vary across the domain. They also need to be suffi-
ciently adaptable and fault tolerant to cope with changes in the domain that arise due to
maintenance, extension and so on [12, 24]. To achieve this, a methodology that produces
agent-based designs must be flexible enough to describe these varying requirements and
their interconnections. In particular, the significant area of open systems should be ad-
dressed [26].

An abstraction of the social aspects of an agent can be given as a system r ôle, and
this concept is used in many of the emerging agent-oriented methodologies [13, 17, 27].
Rôles are useful as they provide a way to describe a multi-agent system as analogous to
an organisation without placing heavy restrictions on the behaviour of concrete agents at

runtime. The usefulness of this approach can be extended by identifying organisational
patterns using rôle modeling [16] which can then be used repeatedly as the basis for
new systems.

However, the choice of organisation or rôle models will effect the performance of
the system [7, 23, 29]. The applicability of the organisation to the domain and the ef-
fects of changes in connected systems over time must be accounted for. One way of
doing this is to analyse and tailor the behaviour of groups of agents to the domain
either by providing coordination mediato societies of agents [23] or organisational
rules to the system which influence the dynamic form of the organisation [29]. While
these approaches provide appropriately constrained flexibility to the organisations, the
constraints and infrastructures which are appropriate to the particular domain must be
identified.

We explore a different approach, named agent interaction analysis, based on us-
ing the interactions between agents as a primary component of analysis. As with the
MaSE methodology [7, 25], this approach does not constrain the organisation or rôle
model until late in the analysis, after domain-specific requirements have been iden-
tified. Agent interaction analysis, by translating requirements into agent interactions
rather than rôles, also allows for the system behaviour to be flexibly distributed between
the designed system and connected systems. The product of the steps described in this
paper is an organisational structure and justifications for that structure. This allows for
other rôle-based methodologies to continue the design process from that organisation
to an implementation.

The next section provides detail on some of the terms used in, and sets the scene
for, the rest of this paper. Section 3 provides an overview of agent interaction analysis.
Later sections then look at each step of this process in turn. Section 4 examines the
initial analysis of the system requirements and explains what information is necessary
for agent interaction analysis. Next, Section 5 describes how the system aims can be
decomposed into a structure which represents the system functionality in a modularised
way. Section 6 describes the concept of an interactionbetween agents and details the
part it plays in the design process. The next stage, described in Section 7, derives useful
design information from the interactions and system requirements. Finally, Section 8
shows how the design is reduced to a form which is implementable and more com-
prehensible as a whole. The final two sections describe how the process is useful for
maintenance and extension, and then mention the other work done on this project.

2 Agents and Goals

The term agentis used in a variety of related ways in the literature surrounding agent-
based systems[10]. On the one hand, it is used to describe software artefacts that satisfy
certain architectural requirements in order to achieve particular functionality. On the
other, as in this paper, agents are used as a software engineering abstraction that en-
ables complex software to be decomposed into a collection of sophisticated interacting
components (that may also share the qualities of the previous view). In developing a
methodology for agent-oriented design, we aim for it to be sufficiently flexible and
general to apply to designs using a wide range of entities, but there are certain proper-

ties that we assume system components will have or can be thought of as having. These
assumptions enable the designer to develop systems with those properties implicit, thus
making the rest of the design easier to comprehend.

The properties are fairly standard (e.g., see [15]): the agents are considered to be
autonomous, decision making, social, flexibleand reactiveentities. Agent interaction
analysisis concerned with the social aspects of agents and, therefore, doesn’t directly
address the analysis of reaction to a non-autonomous environment in the system design.

These properties describe the broad expectations we have in all the agents in systems
resulting from our design approach. We do not require any further particular architec-
tural implementation constraints; indeed it should not impose any further constraints
since we cannot know in advance the form agents will take in an open system.

In this paper we describe the direction agents have in their autonomy in terms of
declarative goalspossessed by the agents. To increase the flexibility and range of sys-
tems which the methodology can produce, we also allow that goals can have a variety
of solutions with different quantative worths[6].

3 Overview of Agent Interaction Analysis

The primary building blocks used by our approach are interactionsbetween agents. The
approach of agent interaction analysisis as follows.

– We assume the system contains an arbitrary number of flexible agents with the
properties described in the next section (and no other details known as yet).

– We interpret the system requirements as goals and preferences for their achieve-
ment.

– We decompose the system goals into independent hierarchies of goals, comparable
to hierarchical plans, and actions which achieve the lowest level goals.

– We treat the successful engagementof one or more agents to pursue a goal as an
interaction.

– From the particular requirements of each interaction and the system preferences
we derive the forms of architecture and particular coordination mechanism to make
agents taking part in the interaction behave in a way that fits the preferences well.

The overall structure of the agent interaction analysis process is shown in Figure 1,
in which the primary entities are written in larger letters. The arrows indicate the trans-
formations between entities which make up the design process.

Requirements The requirements must be analysed to extract the structure of a multi-
agent system which will usefully implement them.

Goals As described above, goals describe desired states of the system.
PreferencesPreferences denote an encompassing concept that includes different con-

straints relating to the other significant information in the requirements aside from
goals. Particular types of preferences are recognised in agent interaction analysis,
such as quality of goals, but they can also represent other domain restrictions and
desired system properties that require taking account of.

Requirements

Goals Preferences

Interactions

Agents

Goal

Preferences
Analysis

Requirements
Analysis

Decomposition

Fig. 1. The transformations involved in agent interaction analysis

Interactions Agreements on coordination between agents (or place-holdersfor where
agents will exist) are known as interactions. Section 6 expands further on the mean-
ing of interactions.

Agents Agents, or rôles which agents can take, are derived from the other entities and
implemented.

While this process is not a fully defined or mature methodology, it does describe
a part of such a methodology with beneficial properties for agent-oriented design. The
remainder of this paper describes the details of how such a process works and contains
arguments for why it is useful.

4 Agent Interaction Analysis Requirements

As with every development methodology, an early stage of the design process is to
derive the needed information, in a useful form, from the given requirements. This
stage is the first of relevance to agent interaction analysisand, in this case, what we
want are goalsand preferences. The goals may be continuous over the system lifetime
or dependent on context, e.g., at regular intervals or invoked by a user. The preferences
may take different forms determining, for instance, the measures of success for goals or
restrictions on resources. Examples of preferences are given below.

Now, traditional requirements analysisattempts to decompose systems into objects,
functions and states so as to understand the problem [5]. Agent interaction analysis,
however, is concerned with design, i.e., reaching an implementable solution. Therefore,
the technique and end product of the artefacts derived from the requirements may be
very different. Nevertheless, regardless of the way in which agent interaction analysis
produces a useful decomposition, the requirements analysis should at least indicate the
highest level of system goals, the contexts in which they can occur, and the preferences
attached to them. In terms of requirements analysis, this means clarification of definite
states which functions should achieve. Importantly, because of the attention to the high-
level and the goal-orientation, this stage of the design process can usefully borrow from
requirements analysis ideas.

A range of requirements analysis techniques are available (with several being de-
scribed in [5], and one aimed at agent-based systems described in [1]). It is interesting to
note that these techniques derive relations between agents both internal and external to
the system being designed and, because we are concerned primarily with interactions,
there is no explicit distinction between these different classes of agent.

As an example of the products of the analysis, the following simplistic translations
could be made.

– “When a user clicks on a button in the graphical interface the document being edited
should be saved” translates to an interaction in which agents cooperate on the goal
to save the document. It also states a fact about the interface, i.e., that pressing the
button is one way of causing this interaction. This is the context-basedappearance
of goals.

– “The temperature should not go above 100 degrees” places a restriction on the sys-
tem and describes a system goal to keep the temperature below 100. The goal is
considered to be part of an interaction (as they all are) but is likely to be imple-
mented by a single agent repeatedly cooperating with itself. This concept of an
agent cooperating with itself reduces to the internal processing of the agent and,
while a valuable way to provide an overarching framework for design, is only co-
operation in the broadest sense.
The 100 degrees part describes the measure of quality for the goal, which is high
when the temperature is below 100 degrees and low when it is above. A different
application might have a wider range of qualities, e.g., “the cooler the better.” This
is is the continuousappearance of goals.

– Aside from context-based and continuous appearance of goals, another possibility
is regularappearance, e.g., “Back up the system at midnight every night.” This sort
of interaction is described by the (very simple) cooperation between a clock and
another agent.

– “The transferred file should contain the least amount of corruption as possible given
other preferences, such as sufficient rapidity” describes a set of preferences con-
cerning the result of a process, which are the quality measures of the goal to transfer
the file.

5 Goal Decomposition

Once the system goals are known, we need to examine how the system could be broken
up to enable the designer to identify agents and their properties, as well as allowing
a division of labour in designing the system [18]. Decomposing goals means finding
states that allow the goal state to be achieved more easily or finding independent parts
of the goal state such that when the parts are achieved the whole is achieved.

An example of a graphically represented goal decomposition is given in Figure 2.
In this diagram, Goal 1 has been decomposed into three independent goals which, if
achieved in some specified order, will cause the achievement of Goal 1. Similarly, Goal
4 has also been decomposed. A real world example which would follow this structure
is if the goals were representing the following environment states. Goal 1 is the state
in which a table has been moved to another location, Goal 2 is the state where one end

has been lifted in the air, Goal 3 is the state where the other end has been lifted, Goal
4 is the state where the lifted table has been moved to another location, Goal 5 is the
state where one end has been moved along, and Goal 6 is the state where the other
end has been moved. Some of these decomposed goals must be done in parallel, some
sequentially.

Goal 1 Goal 2

Goal 3

Goal 4 Goal 5

Goal 6

Fig. 2. An example of goal decomposition

This task of decomposition is similar to the production of hierarchical plans. Goals
reduce to a series, or some other combination, of subgoals. Unlike a hierarchical plan,
this structure is not necessarily possessed by an individual or a group of agents, and
it does not require the decomposed system goal to be achieved in this way when the
system is running. At this stage, the decomposition only allows us to state that the en-
actment of that decomposition couldoccur in the system if circumstances were correct.
The weakness of the implications of the decompositions is essential to retain the system
and agent flexibility as far as possible, with the tightening of the design coming at later
stages. Importantly, multiple decompositions can be developed for the same goal. Now,
although it may appear that the decomposition produces a full design itself, this may
lose the benefits of the agent-oriented approach. In particular, if the fully decomposed
subgoals can be translated into actions, then that series of actions achieves the system
goal. However, without the agent-based system, or another form of system, to execute
them in a flexible manner, we could lose the benefits of such systems such as loss of
robustness, decisions on the use of one connecting system or another, reactions to the
state of the domain and scope for extension. It could also leave the system as a whole
harder to comprehend.

In a full object-oriented design, for instance, we would construct entities and de-
scribe message passing between them. What is needed in such a design and not in goal
decomposition is the specification of both how to achieve aims at a high level and the
mechanisms to allow those functions to happen (and happen robustly in a well designed
system). In goal decomposition we have ignored all description of underlying structure
and decision-making, leaving that to the agent-based system.

6 Interactions

At this stage of the process we have:

– an assumed multi-agent system with an arbitrary number of minimally defined
agents;

– a set of goal hierarchies suggesting ways to decompose the goals in the system
requirements so as to hopefully be able to implement them; and

– a set of preferences or restrictions derived from the requirements.

The next step is to combine the first two of the above, i.e., state how a multi-agent
system would enact the goal decompositions. In doing this, it is important to retain the
whole tree of subgoals from the decompositions. This allows agents to share sections
of a problem so that the system remains efficient, robust and conforms to other system
preferences. It also allows for high level goals to be delegated to externally connected
systems where we may not need to be concerned with how they are further decomposed
or otherwise achieved. The notion of goal decomposition in this way means that we
wish goals to be passed around the multi-agent system involving cooperation between
agents. The agreed cooperation between agents on a goal is called an interaction. How-
ever, this cooperation is not between particular agents as they have not yet been defined,
regardless, we do not necessarily know which agents will cooperate to achieve a goal.
Therefore, to define interactions without agents we use place-holdersfor agents. Fig-
ure 3 illustrates the structure of an interaction with three rôles for cooperating agents to
take in achieving the labeling goal.

 Interaction
 Role

 A

 Interaction
 Role

 Interaction
 Role

 B

 C

Goal 2

Labelling goal

Place-holders

Fig. 3. The structure of an example interaction

Each interaction is labeled by a goal. There is more complexity to interaction than
message passing between objects but it has a similar eventual effect in that control is
transferred between system components in a limited and meaningful way. Before coop-
eration can take place for a goal, one of the agents involved must possess that goal, so
that interactions have originatorsof the labeling goal which is one of the place-holders
involved. The other place-holding agents in an interaction also have rôles within that
interaction such as being delegated goals, acting in parallel, monitoring the appropriate
execution of the goal, and so on, with the exact roles depending on the goal. Part of the
flexibility achieved by not specifying the agents involved in an interaction can mean
that the agents filling the interaction rôles may be inside or outside of the designed sys-
tem or may, in fact, be the same agent. It is important to note that, due to the fact that
agents may refuse to cooperate, an interaction only illustrates the successful case where

the originator has eventually found a cooperator. It could also represent a chain of dele-
gations where only the last agent in the chain knows how to continue its decomposition
or completion [20].

At this point we can start to refine the design of the system. We have a possible,
but not mandatory or inflexible, way of decomposing system goals so as to achieve
them. The interactions specify what must be possible and the preferences specify what
it means for them to be achieved well. From these we can derive a form of multi-agent
system which will behave in a way that is both flexible and consistent with require-
ments.

The other important aim of a methodology is to make the design comprehensible
at the implementation level. As a result of the potential division into several pieces
developed by separate people and consisting of complex hierarchies, at this stage the
design may be hard to comprehend as a whole or implement efficiently. This will be
addressed later: for now the different areas of functionality described by goals can be
understood and developed separately.

7 Preference Analysis

Continuing the process of agent interaction analysis, we now develop the design of
agents, or system rôles which agents can hold, from the interactions we would like to
be possible. There are several aspects of these interactions we can take into account.

1. Which agents should be developed from the analysis of an interaction?
2. How can the agents coordinate so as to best achieve the goal?
3. How can we ensure a system goal will always be achieved?
4. How can preferences be accounted for in the design?

Each of these is discussed in the subsections below.

7.1 Classes of Agents

The first aspect above concerns the set of agents to which the results of the other three
aspects are to be applied; different sets of agents may be applicable to different rôles in
an interaction. The sets can be restricted by a number of factors as follows.

Comprehensibility Restricting the set of agents designed to take part in an interaction
could aid the understanding of the resulting system.

Preferences on available resourcesRestricting or expanding the sets of agents may
be desirable to reduce complexity or the number of agents in the system.

Preferences on the monitoring of conflicting goalsThe best way to resolve conflicts
between goals may be to have single agents with multiple goals able to decide
actions based on their combination of goals. This requires overlapping sets between
interactions.

Preferences on limiting function availability For efficiency or security reasons the
designer may wish to limit the number of agents with the ability to achieve a goal.

Restrictions from external systemsOnly some external agents may be able to com-
plete the goal.

Preferences on state of agentsThe state of an agent may restrict which classes it can
belong to. For example, local mobile agents may be suitable for an interaction while
non-local ones aren’t.

Likelihood of high load If the goal is going to be required to be achieved repeatedly
or requires a lot of resources to complete, the designer may want to expand the set
of agents available to distribute the task more widely.

We can also distinguish between those agents designed to achieve success in a par-
ticular interaction and those which maybe able to do so. In some systems it may be
preferable for most or all agents to be able to adopt a goal even if they will not achieve
it as effectively or efficiently as those specifically designed to. This may be the case
when these latter agents already have other goals to achieve so that the system is better
balanced by others adopting the goal. Similarly, a further distinction can be made be-
tween agents designed for an interaction and those compelledto adopt such goals. This
is discussed further below in Section 7.3.

7.2 Assurance Analysis

Much work has gone into the development of coordination mechanisms. In the broad-
est sense we can include commitments [14], trust [21], contracts, system roles [3, 28],
social laws [11] and so on. Different mechanisms are suitable for different preferences
on coordination; some are more rapid while others are more secure or robust. Different
goals in a system may be best served by different mechanisms.

In agent interaction analysiswe need to find suitable mechanisms for agents without
knowing in all cases which agents are taking part. For this reason, we need a set of
design tools for examining, from the point of view of a single agent in an interaction,
how best to fulfill the goal and system preferences. We call this assurance analysisas
it examines how an agent can measure or alter the likelihood of success for a particular
interaction, e.g., if A delegates to B what assurancedoes A have that B will achieve
the goal as A would prefer it to be achieved?

Due to space limitations we will not discuss assurance analysis further here, except
to list below some of the things that it should address.

– The priority at which the cooperators place a goal, relative to other goals.
– The methods used to complete goals and their side-effects.
– Use of resources, allocated for one goal, in pursuit of other goals.
– Errors in communication.
– Quality of the solution of a goal (as measured by preferences).

7.3 Satisfaction

There is one preference which will generally be implicit in the requirements: that the
system goals always will be achieved when they should. Of course, the designer can’t
decide how external systems will behave but it should be possible, in a lot of cases, to
restrict the design so that the system will always achieve the goals, even if to minimal
standards in certain circumstances.

If a goal is possessed by an agent it will act towards it at some stage because it
is pro-active and continuous. However, if an agent cannot complete a goal by itself it
will need to cooperate. Unfortunately, a request for cooperation may be rejected by all
possible cooperators so that the goal is never achieved.

To address this, the designer may want to make it mandatory for particular agents
to take on particular goals if no other agent is doing so. This is an extreme form of as-
surance where the minimum standards are guaranteed. Such a restriction is comparable
to servicesin other methodologies [9, 19, 26] but we note that, while these agents must
take on the goals if required, they might not be the agents that actually do so at run-time.
It is also one reason why agents should often be able to possess and deal with multiple
goals.

7.4 Preferences

While it appears that a vast amount of analysis would be done for the system because
of all the interactions within it, many interactions will have a similar form and suggest
a certain structure for the agents and overall system [2]. For example, certain things
can be assumed about an interaction which we restrict to occurring within the designed
system, such as honest communication of information; or a goal which requires rapidity
over all else, which may require low communication costs.

8 Design Collation

Agent interaction analysiscan provide a justified structure for a flexible multi-agent
system. The result of the above design methods is a set of designs leading from the goals
and preferences of requirements to the desirable properties of sets of agents involved
in particular interactions. The final stage is to reach a design which is coherent and
comprehensible enough to implement.

The preference analysis produces descriptions of agents with restrictions on their
architecture and the system in which they exist, possibly including physical location in
a highly distributed system. This collection of agents needs to be reduced to a set that is
useful to implement. We identify some criteria for situations in which agents or systems
may be most suitable for being merged, as follows.

– Where the assurance analysis suggests that two agents in an interaction must have
such high assurance that it would be best to make them the same agent, the interac-
tion will become an internal processing of the goal (perhaps implicit).

– Where functionality of, and requirements on, agents are similar or the same.
– Where assurance analysis suggests similar coordination mechanisms for agents in

different interactions, it may be suitable to merge those place-holders. For instance,
a single agent may act as a gateway to less reliable connected systems to provide
especially secure coordination.

– Where the low level goals place-holders are dealing with require similar actions to
be performed.

After this iterative collation we should be left with a multi-agent system which
is implementable and justified in its design. The latter property refers to the fact that
the designer can indicate where the system has been tailored to the likely demand the
application will place on it to improve its efficiency and has maintained flexibility to
increase robustness.

9 Maintenance and Extension

One obvious use of the flexibility of agent-based systems is to ease the incorporation of
changes. This helps both in repairing faulty software and in extending the requirements
of the system. There are two aspects to this robustness: within the design and during
use.

The methodology used affects how easily the design can be altered. Object-oriented
designs provide highly cohesive, separated entities which can be altered individually so
changes that fall in the bounds of a single object will be relatively simple to make. Agent
interaction analysis offers a comparable division in terms of goals. Changes are applied
to the design early in its documentation, usually at the goal decomposition stage. At this
point the functionality is divided allowing targeting of changes, and there are only very
few assumptions or restrictions making it unlikely for features of the system to conflict.
After these changes have been made we can follow the documentation from the early
to late stages, examining design decisions and replacing them where necessary. Finally
the alterations will be merged into the final version of the design with minimal effect
on the rest of the system.

At execution time multi-agent systems have an advantage over most other forms of
system in adapting to change [12]. By having multiple independently running, decision-
making, reactive, communicating and balancing entities, changes can be adapted to
by being treated as differences in options available and then taken advantage of. To
provide most scope for this adaptation the agents should remain as flexible as the system
requirements permit. By emphasizing the interactions between agents and not limiting
the interactions too much, agents within the system are free to choose good coordination
strategies that the current form of the system allows.

10 Summary and Conclusion

In this paper we have proposed the idea of a form for agent-oriented software engi-
neering methodologies, agent interaction analysis, which takes abstract interactions
between agents as its primary components of analysis. By decomposing the system
requirements into interactions, based around the exchange of goals, we suggest that a
more robust design, and one that is well tailored to maintenance and changes in the
domain, can be produced.

We have shown how the interactions can be examined to determine efficient forms
for the participating agents, and have used the idea of assuranceto examine the re-
quirements of individual roles in interactions, particularly in terms of extracting helpful
information to allow designers to choose effective coordination mechanisms.

Clearly, this work only introduces the general principles of the approach, and there
are many issues remaining to be tackled. One is creation of techniques for assurance
analysis, so that coordination can be described and judged with respect to the rest of
the design. We have done work on a range of specific techniques for assurance analysis
in BDI agents. One such technique uses a generalised agent architecture which can be
used to express and compare a variety of coordination mechanisms such as trust and
basic commitments. Another technique measures the cost, as given by preferences, of
using mechanisms between many agents such as brokers, references to agents to static
rôles and commitments with or without reference to the committing agents. This work
is left for discussion elsewhere due to space limitations.

As this paper only describes a framework, a full methodology can only be produced
together with detailed techniques for suitably documenting these designs. The approach
presented in this paper is deliberately distinguished from any notation that it may use.
As a foundation, some of the concepts may be best illustrated in the recent work on
agent-oriented extensions to UML [4, 8, 22].

In future work, we aim to develop a fully usable methodology which uses agent
interaction analysis, and test it in the production of suitable applications. We are also
working on using assurance analysis to describe and assess coordination mechanisms
to help in the development of other such mechanisms tailored to particular domains.

The approach of agent interaction analysis, as suggested in this paper, clears the way
for general effective methodologies targeted at the design of multi-agent systems for
complex and open applications flexible enough to cope with a wide range of uncertainty
and dynamism.

References

1. D. Amyot, L. Logrippo, R. J. A. Buhr, and T. Gray. Use Case Maps for the capture and
validation of distributed systems requirements. In Fourth International Symposium on Re-
quirements Engineering (RE-99), 1999.

2. Y. Aridor and D. B. Lange. Agent design patterns: Elements of agent application design.
In Proceedings of the Second International Conference on Autonomous Agents (Agents-98),
Minneapolis, USA, 1998.

3. M. Barbuceanu. Coordinating agents by role based social constraints and conversion plans.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97),
pages 16–21, 1997.

4. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying multiagent
software systems. In this volume.

5. A. M. Davis. Software Requirements: Objects, States and Functions. Prentice Hall, 1993.
6. K. S. Decker and V. R. Lesser. Designing a family of coordination algorithms. In Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS-95), pages 73–80,
1995.

7. S. A. DeLoach and M. Wood. Developing multiagent systems with agentTool. In Proceed-
ings of the Seventh International Workshop on Agent Theories, Architectures and Languages
(ATAL-00), 2000.

8. R. Depke, R. Heckel, and J. M. Küster. Requirement specification and design of agent-based
systems with graph transformation, roles and UML. In this volume.

9. Elammari, M. and Lalonde, W. An agent-oriented methodology: High-level and intermediate
models. In Proceedings of Agent-Oriented Information Systems 1999 (AOIS-99), 1999.

10. S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for autonomous
agents. In J.P. Müller, M.J. Wooldridge, and N.R. Jennings, editors, Intelligent Agents III:
Proceedings of the Third International Workshop on Agent Theories, Architectures and Lan-
guages (ATAL-96), pages 21–35. Springer-Verlag, 1997.

11. C. V. Goldman and J. S. Rosenschein. Mutual adaptation enhanced by social laws. Technical
Report CS98-5, The Hebrew University, Israel, 1998.

12. M. N. Huhns. Interaction-oriented programming. In this volume.
13. C. A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of agent-oriented methodologies.

In J. P. Müller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents V: Proceedings of the
Fifth International Workshop on Agent Theories, Architectures and Languages (ATAL-98),
1998.

14. N. R. Jennings. Commitments and conventions: The foundation of coordination in multi-
agent systems. Knowledge Engineering Review, 8(3):223–250, 1993.

15. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and develop-
ment. Autonomous Agents and Multi-Agent Systems, 1(1):275–306, 1998.

16. E. A. Kendall. Agent software engineering with role modelling. In this volume.
17. E. A. Kendall. Role modelling for agent system analysis and design. In Proceedings of the

First International Symposium on Agent Systems and Applications (ASA/MA’99), November
1999.

18. D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for systems of
BDI agents. In Walter Van de Velde and J.W. Perram, editors, Agents Breaking Away: Pro-
ceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-96), January 1996.

19. C. Landauer and K. Bellman. Agent-based information infrastructure. In Proceedings of
Agent-Oriented Information Systems 1999 (AOIS-99), 1999.

20. M. Luck and M. d’Inverno. Engagement and cooperation in motivated agent modelling. In
C. Zhang and D. Lukose, editors, Distributed Artificial Intelligence Architecture and Mod-
elling: Proceedings of the First Australian DAI Workshop, pages 70–84. Springer-Verlag,
1996.

21. S. P. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Department of
Computing Science and Mathematics, University of Stirling, 1994.

22. J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent interaction protocols in UML.
In this volume.

23. A. Omicini. SODA: Societies and infrastructures in the analysis and design of agent-based
systems. In this volume.

24. I. Sommerville. Software Engineering. Addison-Wesley, fifth edition edition, 1995.
25. M. Wood and S. A. DeLoach. An overview of the multiagent system engineering methodol-

ogy. In this volume.
26. M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented analysis

and design. In Proceedings of the Third International Conference on Autonomous Agents
(Agents-99), Seattle, USA, 1999.

27. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3, 2000.

28. L. Yu and B. F. Schmid. A conceptual framework for agent oriented and role based workflow
modeling. In Proceedings of Agent-Oriented Information Systems 1999 (AOIS-99), 1999.

29. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational abstractions for the anal-
ysis and design of multi-agent systems. In this volume.

