On the ldentification of Agents
in the Design of Production Control Systems

Stefan Bussmann', Nicholas R. Jennings?, and Michael Wooldridge®

DaimlerChryder AG, Research and Technology 3
Alt-Moabit 96A, 10559 Berlin, Germany.
St ef an. Bussmann@ai ml er chrysler. com
Dept. of Electronics and Computer Science, University of Southampton
Southampton SO17 1BJ, United Kingdom.
nrj @cs. sot on. ac. uk
3Dept. of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom.
M J. Whol dri dge@sc. | iv. ac. uk

Abstract. This paper describes a methodology that is being developed for
designing and building agent-based systems for the domain of production
control. In particular, this paper deals with the steps that are involved in
identifying the agents and in specifying their responsibilities. The methodology
ams to be useable by engineers who have a background in production control
but who have no prior experience in agent technology. For this reason, the
methodology needs to be very prescriptive with respect to the agent-related
aspects of the design.

1 Introduction

Software agents are on the verge of becoming a key control technology for large-
series production control systems. With ever shorter product lifecycles decreasing
product launch times, and increesing product variety, manufacturing processes must
provide more product flexibility and higher volume scaability while maintaining high
product qudity and low manufacturing costs. Agent technology is well suited to
addressng the control aspects of these new manufacturing requirements [2]. As
autonomous decisonmakers, agents ae ale to dynamicdly react to unforeseen
events, exploit different capabilities of components, and adapt flexibly to changes in
their environment. The ability of agents to adgpt their behaviour a runtime reduces
the need for the designer to foresee dl possble scenarios and changes that the system
will encounter: agents automatically adapt to changing products or varying volumes.

After more than a decade of research, the potentia of agent technology has been
demongrated in the context of large-series production. The DamlerChryder
prototype for manufacturing cylinder heads is controlled by a completely
decentrdised agent-based system, which provides unprecedented flexibility and
scaability [3]. The system has been ingtdled as a bypass to an exiging transfer line
and was evauated through exhaustive performance tests. The performance tests, as

well as the on-going operation of the prototype, proved the industrid feasibility and
underlined the competitive advantage of agent-based control. The technology is now
ready to be exploited in industria production.

The widespread use of agent-based control, however, will require software
engineering methods and tools that support the devdopment of indudrid-strength
control systems. Although we have some experience in the application of agent
technology to cylinder head production, the application of agent technology to
different production processes (such as engine assambly or car painting) will il
require a mgor engineering effort. Such an engineering effort has to move agents out
of the laboratory and into the planning teams designing manufacturing systems.
Panning engineers, however, usudly have no degree in agent technology or atificid
intdligence. Therefore to meke the technology accessble to them, agent-based
control must provide a methodology that includes dl the agent-rdated design
rationdes necessxy to apply an agent-based approach to a manufacturing system.
These design rationdes tdl a software engineer with no prior experience in agent
development how to meke agent-related design decisons. To this end, many software
design methodologies have been developed, including object-oriented and even agent-
oriented approaches (see [6,9] for an overview). But none of these methodologies is
goplicable to the desgn of agent-based production control systems, they either
provide analyss models that are inappropriate for production control or ese they lack
comprehensvedesignraiondes.

The am of our research work is therefore to extend the dated-the-art by
proposing a methodology for the desgn of agent-based production control systems
that can be successfully gpplied by an engineer with no prior experience in agent
technology. To this end, the methodology should provide: (i) a modd of the decison
making necessary in production control in order to enable the designer to directly
move from the doman to the agent-oriented design aspects, and (ii) a set of criteria
for the desgn of the agent-related aspects which guide the designer with no prior
agentrelated experience. In this paper, we take the first significant step towards this
goad by proposng a design method for identifying the agents of a production control
system. The identification of agents is centrd to the methodology. It dlows the
desgner to move from pure domain concepts (such as production processes), to
agent-oriented concepts (such as agents and decision responsibilities). In addition, the
identificstion of agents provides the basis for al other subsequent design steps, such
asinteraction design or agent programming.

The presentation of the design method for agent identification is organised as
follows. The remainder of this section introduces the rotion of a methodology and the
basc concepts of production control. Section 2 briefly discusses why existing
methodologies are not sufficient for the desgn of agent-oriented production control
systems. Section 3 then gives an overview of the design method proposed, and
sections 4 and 5, respectively, describe the andysis and design steps of the method.
Section 6, findly, draws some conclusions.

1.1 What isamethodology?

A methodology is a recipe that enables an engineer to find a solution to a specified set
of problems. It should be sufficiently precise to enable any engineer with a standard
education to successfully apply the recipe to a suitable problem, while a the same
time it should leave enough room for crestivity. A methodology aways consists d the
following components [8].

A definition of the problem space to which the methodology is applicable.

A st of modds that represent different aspects of the problem domain or the
solution &t different stages.

A set of methodsthat transform instances of one mode into another mode.

A st of procedura guiddines that define an order for the systematic application of
the methodological steps.

The application of a methodology starts with a problem statement and ends with a
solution to the problem. Methods and guiddines tell the designer how to go from the
problen satement to the solution. An aget-oriented desgn methodology for
production control is consequently a methodology that explans how to go from a
specification of a production control problem to an agent-oriented design of a control
system. However, for such a methodology to be widey used, the methodology must
provide all necessary methods and guidelines such that an engineer with only minima
training and experience in agent development is adle to successfully derive an agent-
oriented desgn. This is achieved if the concepts of the methodology are intuitively
rdated to the relevant concepts of the problem domain and if the methodology
incdudes all the (agent-related) rationales necessary to daive the agent-oriented
design. In terms of the above definition of a methodology, this trandaes into the
following requirements.

Modd appropriateness. The models of a methodology should be easily reaed to the
relevant concepts of the problem domain. The initid mode should be based on
domain concepts and any new concepts should be put into relation to concepts
dready introduced. This applies in particular to the introduction of agent-oriented
concepts.

Method prescriptiveness. The methods of the nethodology should be prescriptive in
the sense that they define eech ep the designer has to go through, and for each
sep cdearly identify what the task of the designer is and — a leest for any agent-
oriented aspect — explain how the task should be performed. The methods must
therefore clearly distinguish between domain and agent-oriented design ressoning.

As will be discussed in subsequent sections, the method for agent identification
presented in this paper fulfils the above requirements and can therefore be seen as a
first step towards an industrialy relevant methodology for production control.

1.2 Production control

Production sysems for discrete manufacturing usudly consst of processng
components, such as machining or assembly oations, which are connected by a

trangportation system conggting of conveyor bets and switches (see Figure 1).
During the operation of the production system, work pieces associated with specific
jobs are fed into the production system, transported to the next station, pocessed by
the station, moved to the next station, processed again and so on until the work pieces
arefinished and leave the system.

machining steps assembly steps

entrance =)?HIHI =1 exit
(— -.—\ —)

switch machine conveyor belt
Fig. 1. Example production system.

For such a production system, the task of the control system is to assgn jobs to
dations (resource dlocation) and to manage the materid flow (transportation
dlocation). To date, the predominant approaches to peforming these tasks in
practice have been to creste a schedule beforehand, which is then smply executed &
rurttime by the locd controllers of the production components. This approach works
well if actions are executed as planned, but fals completdy otherwise. In case of a
disturbance, a controller is unable to execute its actions or has to postpone them.
Since production operations are optimised in order to maximise productivity and
minimise cods, resource capacities are fully utilised and buffer szes are reduced to a
minimum. As a consequence, any deviation from the schedule quickly affects
neighbouring units rexulting in a caxcading effect of the disturbance. Since the
scheduledriven control does not support re-scheduling, the impact of a disurbance
on production cannot be congtrained. As every real production system is regulaly
affected by disturbances, production operations soon deviate from the production
schedule. It is even "proverbid among shop foremen tha the schedules produced by
the front office are out of date the moment they hit the floor" [19, p. 303].

To overcome this limitation of the current approach, it is necessary to interleave
scheduling and execution, i.e, to engble the locd controllers to autonomoudy
peform the resource and transportation alocation. With more autonomy, the loca
contraller is able to choose the right action in its current Stuation. As before, the
controller is triggered by a sensor sgnd indicating thet an action is required. But in
contrast to the schedule-driven approach, the controller now has to first choose an
appropriate action. To achieve this, the controller must first determine the st of
possible actions that can be performed in this stuation (referred to as the decision
spaced. The controller then collects dl decison-rdevant informetion (the decison
input), and findly chooses an action according to a decison rule that evauates the
different aternatives with respect to their goad achievement (see Figure 2). During
this decision process, the controller may interact with other controllers if necessary.
Once the decison has been made, the contraller can initiate the action and monitor the
execution just asin the schedule-driven approach.

decisionrule

v

decision input—p> fgggoie;?\gg) <4 interaction

sense trigger T i initiateaction

production process

Fig. 2. Abstract model of control decisions.

This abdract model of a control decison is an obvious starting point of any design
methoddogy for production control, since it describes the basic task of the controller
and how it interfaces with the production process.

2 Related Work

With the shift from laboratory to industrial applications, it has become incressingly
goparent that existing methodologies, such as purely object-oriented approaches, are
insufficient to capture the key features of agent-based systems [1,14]. This experience
has led to the deveopment of didinctivdly agent-oriented design methodologies over
the last few years. Mogt agent-oriented methodologies have been extensons of
exiging mehodologies, in paticular knowledge-oriented and object -oriented
goproaches. Only recently have methodologies based on purdy agent-oriented
concepts been proposed.

The knowledge-oriented methodologies proposed for desgning agent-based
systems are extensons of the knowledge-engineering methodology CommonKADS
[22], to which agent-oriented concepts are added. The CoMOMAS methodology [7]
extends CommonKADS by adding a socid andyss modd, identifying socid
competencies of agents in terms of gods, intentions, and roles, and a co-operative
andyss modd, modding cooperation and conflict resolution methods. MAS
CommonKADS [10] dso extends CommonKADS by adding an agent, a co-
ordinaion, and an organistion modd. Because of the undelying knowledge-
engineering gpproach, however, both methodologies view an agent sysem & a
problem solving system decomposing the system task into subtasks. In this way they
identify agents on the basis of tesk hierarchies and knowledge requirements. This
model isinappropriate for the decision-centric view of production control.

Seved aget-oriented goproaches have been inspired by object-oriented
goproaches, such as OMT [21] and OOSE [11]. The methodology of Kendal,
Makoun and Jang [12] for manufecturing applications, for instance, creates first an
object-oriented and a manufacturing model of the sysem to be designed, and then
identifies agents in these two models. However, even though Kenddl et d. view an
agent as an autonomous decison meker, their methodology identifies agents (in both

models) on the basis of ther activeness that is, whether a component pro-actively
performs or initiates an operation. Activeness, though, is aso a property of conveyor
belts or lifts, which actively move work pieces, but which do not decide whether or
not to act. The activeness criterion can therefore identify as agents some entities that
are not autonomous decison makers. This critique adso applies to the methodology of
Burmeigter [1], which solely relies on object-oriented techniquesto identify agents.

The limitations of methodologies that are based on concepts from other fields have
led to the development of methodologies that are purely (or mostly) based on agent-
oriented concepts. The dominant agent-oriented concept used is that of a role. Kendall
[13] defines a role as an abdraction of agent behaviour modeled in terms of
responsbilities, possble collaborators, required expertiss, and co-operation
mechanisms used. The most important advantage of the concept of a role is that it can
be fredy asign and reasigned to agents, as long as the agent assigned to the role
fulfils the roles requirements. Role-based methodologies, eg., [5,14,1517,18,23], use
this abgraction to creste a mode of system behaviour, and then identify agents by
mapping the roles to agent ingtances. The Gaia methodology [23], for instance,
aggregates roles into agent types and indtatiates as many agents as necessary in a
given scenario.

Most rolebased methodologies, however, require tha the designer is able to
directly identify the roles in an application. However, this is not possble in
production control. A requirements specification of a production control system
consists only of a description of the physical components of a production system and
the production gods to be achieved. The specification of the physicad components, in
turn, only describes a sensor and actuator interface to each component. To identify
roles in a spedific production application, it is therefore necessary to derive an
understanding of the required control process firs. None of the methodologies,
however, explain how the decison meking should be modeled or combined to form
roles. For production control, it is therefore necessxry to extend these methodologies
by apreceding analysis step that derives roles from the production control problem.

Parunak, Sauter, and Clak [20] teke a different gpproach to building multi-agent
sysems. They view a multi-agent system as consiging of many simple, interacting
agents which exhibit socid coherence. In their methodology, Parunak et d. base the
identification of agents on a linguidic case andysis of the problem description. As
with the criterion of activeness, a linguistic case andyss may identify agents that
have no decisons to make, such as conveyor bdts or lifts Even the levd of
abstraction is predetermined by the system description. If the description spesks of
spindle, machining space, positioning and tools to describe the processing of work
pieces, a machine agent canot be identified, even though such a levd of abdtraction
iS more appropriate in many cases. Parunak et d. try to reduce the risk of identifying
inappropriate agents by providing a set of predefined agent types, such as unit,
resource, manager, pat, cusomer and supplier agents. However, it is not clear
whether this pre-defined set is appropriate for al manufacturing gpplications or which
subtypes should be identified in one category. An agent-based production control
system will certainly have resource agents, but the pre-defined set of agent types does
not prescribe how the different resources should be assigned to agents Findly,
Parunak e d. discuss principles for vdidaing candidate agents that are useful and
rdevant. Such principles include identifying things not functions, identifying small

agents, and determining where there is decentraisation. Given our experience in this
aea, however, thee principles are not sufficiently prescriptive to guide a designer in
identifying agents.

To summarise, there is currently no methodology for the design of an agent-besed
production control system that satisfies the requirements stated in section 1.1. First of
adl, most methodologies piovide andyss modds unsuitéble for representing the
problem domain, i.e, to mode the decison making necessary to control a production
process. Second, nearly al methodologies provide criteria for agent identification thet
lead to an ingppropriate set of agents for production contral. It is therefore necessary
to extend exising design methodologies by developing a desgn method that captures
decisorHmaking in its modds and provides a comprehendve lig of criteria for
identifying agents. Such a desgn method could be used, for example to identify
(decisiontbased) roles of a production control gpplication as required by the role-
based methodologies.

3 Overview of the Design Method

The design method proposed in this paper identifies the agents necessay to control a
given production process. The design method conssts of two man steps an analyss
sep and an idettification step. The analysis step creates a decison-based moded of the
control task that contains all the decisons necessary to control the production process.
On the bass of this modd, the identification step assesses the suitability of an agent-
based approach and identifies the agents of the system. The result of the method is a
list of agentsand their associated decision responsihilities.

This section gives an overview of the design method. It specifies the design input,
as wel as the design output, and outlines the two main steps of the method. The
subsequent sections then present each step of the method. This section dso defines a
simple production system, which will be used to illustrate the design method.

3.1 Designinput

The input to the design method is a requirements specification of the production
control problem. It must consist of two parts:.

1. A specification of the (physical) production system to be controlled.
2. A specification of the production operation conditions and production goals.

The first pat specifies the (mechanicad) components of the production system and
their arrangement on the factory floor. Furthermore, the spedification defines for each
component its physica behaviour and, optiondly, its control interface. The contral
interface provides information about the status of the production component to the
control system (through sensors) and alows actions to be executed by the component
(through actuators). Examples of components are machines, assembly gations,
conveyor bets, lifts, transportation switches, and buffers.

Example. Throughout this paper, the following smple production system will be
used to illudtrate the design method. This simple production system consists of
one loading unit, severd transportation switches, two flexible machining setions,
one unloading unit, and severd conveyor bdts (see Figure 3). The flexible
machines are able to process a wide range of products. Ther cgpabilities are
overlapping, but not identical.

S S

loading
unit

unloading
unit

machining
station
Fig. 3. Simple production system example.

The loading unit puts work pieces on the first conveyor belt as prescribed by the
order input stream. The trangportaion switches distribute the work pieces onto the
two machines. The machines process the work pieces if they have the requested
cgpabilities. A work piece may only enter a machine if operations requested by the
work piece are a subset of the machings capabilities. After processing, the work
pieces are moved to the unloading unit.

The second pat of the problem specification defines conditions and gods for the
production process. The operation conditions specify the order mix fed into the
production system and the spectrum of possble changes and disturbances to the
production system during operation. Disturbances are unanticipated breskdowns of
components, while changes are induced by the production management and may
affect components or the input of the production system. The specification of the
production goals describes the expected behaviour of the production system under the
specified conditions. Examples of production gods are maxima throughput, minima
investment cogts, flexibility with respect to component or order changes, robustness
with respect to mechanicd or control falures, volume scaability, and
reconfigurability of components.

Example. The input gream of the smple production example is an abitrary mix of
different products to be produced. Changes to the production process are not
expected and the only possble disturbances are sudden breskdowns of machining
dations. The goa of the smple production system is to maximise the throughput
and to be robust againgt gtation failures.

3.2 Designoutput

The output of the design method is a lig of the agents necessary to control the
production system specified. Each agent is defined by the decision tasks for which it
is responsble. Furthermore, the method specifies any dependencies between any
decision tasks of different agents.

The list of agents defines the globa sructure of the agent-based control system. It
saves as the basis for further design seps specifying the interactions or the agent
reasoning (these subsequent steps are not dedt with in this paper).

3.3 Dedignsteps

The design method prescribes two major steps in order to go from the design input to
the desired design outpui.

1. Analysis of decison making — The decisons necessary during the control process
are identified and aalysed. The result of this step specifies the congtraints that any
control system supposed to achieve the production goals must satisfy.

2. ldetification of agents — The overdl dgructure of the agent-based system is
designed. In particular, this gtep identifies the agents of the system, the decisons
for which they are responsible, and the need for interactions between the agents.

Each dsep of the design method is described in the following sections, section 4
describes the andlyss of the decison making, and section 5 presents the agent
identification method.

4 Analysisof the Decision Making

The am of the andyss phase is to develop a mode of the control task that can be
used as a bass for the identification of the control agents. To achieve this, the andyss
step must model the decison making of the control process. A control system controls
a production system by monitoring the production process through sensors and by
commanding actions to be executed by the actuaors of the production components.
Because of the discrete nature of most production systems, the operation to be
executed by a component can be chosen from a discrete set of possble operations (cf.
sction 12). The andyds dep therefore derives decison tesks and decision
congtraints from the specification of the production control problem and creates a
decison modd conssting of a set of decison tasks and dependency reations between
them. The resulting decison modd then serves as a bass for the subsequent design
steps.

However, the decison modd should only include those decison tasks and
condraints that al solutions to the control problem must make or satisfy. Imposing
tasks or congtraints that do not apply to dl potential solutions would limit the space of
possihilities in the subsequent design seps and could lead to suboptima design
decisons. Tasks and condraints tha apply to al solutions, though, do not fully
determine the control process. The decison modd therefore has to be completed in a
later desgn dep in order to represent a full control gSrategy that is capable of
achieving the production gods.

The andysis is peformed in three steps. Firg, dl decisons a the control interface
which any control system has to make in order for the production process b advance
ae oolected. These decisons ae cdled effectoric because of thar immediae

execution by an actuator. Although a control system can make (preparatory) decisons
tha are not immediady executed by a component, any decison must eventualy
influence an effectoric decison in order to become effective in the production
process. It is therefore appropriate to start the andysis with the effectoric decisions.
Second, the possble dependencies between control decisons are identified and
moddled in a dependency diagram. Third, the decison dependencies are cdlassfied
with respect to their importance for the production goals and their intensity during
operation.

4.1 Identification of effectoric decisons

Effectoric decisons can be identified by looking a the possible choices a component

has for its behaviour. There must be more than one dterndive in order to require a

red decison.

Example. Transportation switch S has two dternatives for any work piece reaching
it; move the work piece to machine M or to the switch @ Transportation switch
S has no choice. Theoreticaly, the switch could delay transportetion, but there is
no reason to do so. Practicaly, therefore, switch S has no choice but to dlow the
work pieceto proceed immediately.

Each identified decison tesk is characterised according to the following pre-defined
schema (Table 1). The parameters of a decison task characterise the subject and
object of the decison, i.e, who is deciding aout whom; in other words who
performs the action and who is affected by the action. The trigger dot specifies the
stuation in which the decison becomes necessary. The decison space represents the
set of posshle choices the component has in that particular Stuation. Findly, a unique
identifier for the decision task facilitates later reference.

Slot Description
id unique identifier
params subject and object of decision
trigger Situation that triggers decision
decision space | set of possible choices

Table 1. Schema for effectoric decisions.

Example. In the case of switch S, a decison is required every time a work piece
reaches the switch (the switch is the subject and the work piece the object) (see
table 2). The switch must then choose one of the two possible exits ard transfer
the work piece to this exit. This decision has to be made immediately in order not
to block the entry. Note that in this particular case, the switch can make its
decison ealier if it anticipaes a work piece. The trigger is dmply the latest
possible moment to make the decision.

Slot Description

id #2
params switch S, work piece
trigger work piece at entry

decision space | {l€ft, right}

Table 2. Example effectoric decision at switch S .

The st of decison tasks can be represented in a trigger diagram where arows
indicate the tempora sequence of the decisons. An arrow expresses the fact that the
physicd action enacted because of the first decison eventudly or necessxily leads to
a dtuation triggering the second decision. The arrows thus identify al possible causa
relationships between decision tasks.

Example. Any decison taken a switch $ leads to a decison sbout how to process
the work piece a one of the two succeeding machines (because the work piece
will either arrive a machine My or (via switch $ a machine M). In the decison
diagram there is therefore one arrow from the decison task of the switch S to the
decison task of machine M; and one to the decison task of machine M, (see
Fgure4).

proceed at processat
load wp switchS; machine M,

O—>

O

process at
machine M,

(O decision task
— physica flow

Fig. 4. Thetrigger diagram for the simple production system.

The trigger diagram illustrates the tempord sequence of decisons (as they are
triggered by the physicd process) and it can be used as a visud ad in the following
andysis (and design) steps.

4.2 |dentification of decision dependencies

As dated, the decison modd only covers the purely locad aspects of a decison. It
specifies the stuaion at the component that triggers the decision and ligts the possible
reactions of which the omponent is cgpable. But it does not specify how to react, i.e,
which action to choose. How to decide in a particular situation is determined by the
decison rule (cf. section 1.2).

Example. Transportation switch S has to choose one of the exits for each work piece
a its entry. Which exit it chooses is irrdevant to the switch. It can move a work
piece equaly well to either of the exits (as long as they are both free). From the
point of view of system performance, however, it is by no means irrdevant aoito
which exit a work piece is moved. Firg of dl, a work piece may only be moved to
a machine tha is ale to process it. Secondly, the switch determines the
digribution of work pieces onto the machines and thus influences the workload on
eachmachine.

A decison task is caled dependent on another decison if the former cannot be made
(optimally) without some kind of interaction with the latter. Two (or more) decison
tasks are cdled dependent (on each other) if one decison task depends on the other
and vice vasa Sevard ressarchers have looked a different types of dependencies
between tasks in order to derive necessary interactions (eg., [4,1625]). For the
following andysis, though, it is sufficient to detect that there is some kind of
dependency between two decision tasks.

In this domain, the identification of dependencies is usudly sraightforward (as in
the previous example). Many dependencies can be identified smply by studying the
trigger diagram dnce this represents (most of) the effects of the decisons in the
production process. Other dependencies can be identified by studying the related
decison parameters of the decision tasks. If two tasks refer to the same parameters, it
is likely that their decisions will be dependent. In the working example, for instance,
the trangportation switch and the machine both make decisons about the same work
piece and are consequently linked in some way. In some cases, however, it can be
quite difficult to identify and prove the dependence between decision tasks.
Nevertheless, it is assumed that the designer is able (with acceptable effort) to identify
dl reevant dependenciesin the given production system.

The st of dependencies can aso be represented in a diagram. A dependency arrow
spans from one decison task to ancther if and only if the former is dependent on the
latter. A dependency arrow is double-headed if and only if the decison tasks are
mutualy dependent. Dependencies between more than two decison tasks ae
represented by an arrow with more than one head (on each Sde).

Example. The decison of a trangportation switch to move a work piece onto a
specific exit is highly dependent on the decision with respect to how to process a
work piece a a machine. As dready pointed out, a work piece should only
proceed to a machine a which it can be processed. It is therefore necessary to
decide which machine is able and willing to process this work piece before the
work piece can proceed to the switch. The decison about which operations to
apply b the work piece can be ddayed until the entry of the work piece into the
maching, but the choice of a suitdble machine must be made beforenand.
Consequently, the decison a switch S, is dependent on the decison whether to
processthework piece either & machineM ; or machine M , (see Figure 5).

proceedat processat
loadwp switchS; machine M,

O decision task

physical flow
processat
machine M, +— dependency

Fig. 5. The dependency diagram for the simple production system.

4.3 Classfication of decision dependencies

Each dependency identified in the decison modd is characterised quantitatively
according to its intendgty and its importance. This dlows subsequent design steps to
uniformly assess the required interactions between decison tasks. The intensty of a
dependency indicates how intense an interaction has to be in order to cope with a
dependency. The importance of a dependency tdls the desgner whether it is
necessary to cope with the dependency at dl.

Intensity: The intendty of a dependency is uniformly characterised by the degree of
the required interaction. The degree of a dependency messures the percentage of a
decison space that is affected by the dependency. A choice taken from the affected
decison space without interaction with the other decison tasks will affect the system
performance.

Example. The transportation switch is fully affected by the dependencies. It can only
choose an exit, if the next machine has aso been determined. The machines, on
the other hand, are only patly affected. They can Hill decide how to process the
work piece once it hes reeched the machine entry. However, a machine must
decide whether or not to process a work piece before the work piece leaves a
switch.

Importance The importance of a dependency can be rated from O to 1 by the
conseguences on the system performance if the dependency is ignored during the
control process. If the consegquences lead to the non-performance of the production
system, the importance is set to 1. If no consegquences can be detected, the importance
is 0. In between, it is up to the designer to assign an appropriate vaue. Idedly, the
importance measure should be directly linked to a sgnificant performance vdue (eg.,
throughput).

Example. All dependencies are important because ignoring any of them would lead to
non-performance as soon as awork piece reaches amachine that cannot processiit.

4.4 Output of analysisphase

The result of the andyss is a decison mode of the production control tasks. The
decison model consists of four parts:

alist of al decison tasks;

atrigger diagram;

adependency diagram; and
aclassification of each dependency.

The decison mode contains dl the decisons that any control sysem must make in
order to solve the control problem. However this modd is incomplete in the sense that
it fals to represent a full control srategy. The missing information has to be
completed in subsequent design steps.

5 ldentification of the Agents

After analysing the decison making, it is possble to dat the design process by
identifying the agents of the control system. The agents have to be identified first as
they are the badc building blocks of an agent-based control system; they define the
overdl architecture of the system. Interactions can only be defined by specifying
which agent is interacting with which other. At the same time, however, the system
architecture dso redtricts the set of possble interactions, since it specifies the st of
agents exiging in the control system. It is therefore crucid to identify a set of agents
that optimally supports the task of achieving the production goals.

Here an agent is viewed as an interacting decison maker that is able to pro-actively
achieve its gods while it is adapting to its dynamic environment. Consequently, it is
sraightforward to identify an agent by assigning it a set of tasks from the decision
maode for which it will be solely responsble. Unfortunately, not every assgnment of
agents to decison tasks will lead to a well-defined agent-based system. For example,
if two agents are each responsible for controlling the same actuator, the agents are rot
fully autonomous (in their behaviour). Only one agent may have full control over the
actuator, while the other must request the controlling agent to execute the desired
action. Moreover, not every decison network is equaly suitable for agent
identification. The andysis focused on the decison aspects and ddiberately did not
take into account any criteria for dructuring an agent-based system. It must therefore
be possble to reorganise the decison network isomorphicadly (i.e, without changing
the semantics of the decison process) such tha it becomes more suiteble for agent
identification. To this end, section 5.2 describes dlowable operations on the decision
network.

But even after a subdtantid reorganisation of the decison network according to
agent-oriented criteria, it may ill be impossble to identify agents smply because an
agent-based gpproach is inappropriate for the given control problem. Section 5.3
therefore lists necessary criteria on the decison network that helps assess the
suitability of an agent-based gpproach. If a decision network fails to meet (most of)
the criteriaz an agent-based gpproach is not appropriate and the (agent-oriented)

design process should terminate. If, on the other hand, the gpplicability of the agent-
based approach is confirmed, the assgnment of decision tasks to agents can begin.
This assgnment processis described in section 5.4.

The very firs sep, however, is to complete the decison network. The andyss
only includes those decison tasks in the dedson modd that al solutions to the
control problem must make (cf. section 4). As a consegquence, though, the decision
modd is incomplete. Section 5.1 therefore adds the missing decision aspects such that
the completed decison modd represents a full control drategy cgpable of achieving
the production gods.

5.1 Completion of the decison network

The decison network is incomplete if any of the decision tasks are not fully specified.
According to the decison maeking mode described in section 1.2, a decison task
consigts of

1. atrigger, specifying the situation that activates the decison;

2. thedecision space, specifying the set of possible choices;

3. the decision input, specifying the information necessary to make adecison; and
4. thedecision rule, specifying how to make a decision (based on the decison input).

During the analysis process, the designer is only obliged to specify the trigger and the
decison space of a decison task. All other dots may be left unspecified. At this point
of the desgn process, however, the decison mode must be completed such that al
mandatory dots are fully specified. It is therefore necessary to fill in the decision
input and decison rule dots (if they have not been specified so far). This can be done
intwo ways:

1. The decison input only refers to information that can be provided by the sensors of
the production system, and the decison rule specifies how to make the decison
based on thisinformation.

2. The decison input refers to sensory informeation and to the results of other
decisonsthat will be used as a basisfor the decison rule to make its decision.

The second option dlows additiona decison tasks to be introduced that prepare
effectoric decisons. The effectoric decison tasks use the non-effectoric decisons to
smplify their own computation. Usually, these decisons cover decison aspects that
ae common to severd decison tasks and thus they increase the overal modularity of
the decision process.

Example. The decison task of transportation switch § cn be grestly smplified if
the next machine is chosen before the work piece reaches the switch $(see Figure
6). Based on this abdtract decision, the switch can immediately decide whether the
work piece must be moved onto the left or right exit. The corresponding
dependency diagram is shown in Figure 7.

Non-effectoric decisons can themsdves use other decisons to prepare their own
decison, leading to an ahbitrary hierarchy of decisons. The depth of this hierarchy
depends on the complexity of the decision process. The introduction of new decison

tasks, of course, requires that the dependency diagram is updated, and is eventudly
extended by any new dependencies.

choose
next machine
AN process at
loadwp “ “ machine M,
proceed at .
switchS, O O decision task
process at — physica flow
machine M, ---P information flow

Fig. 6. Introduction of abstract decision Choose next machine.

It should be noted that the process of completing the decison mode is nonHrivia.
The decison modd must be completed in such a way that the resulting decison
making process achieves the production gods In particular, the decison tasks must
take into account the different dependencies that were identified in the analyss phase.
The deveopment of a control srategy, however, depends strongly on the kind of
production process to be controlled and is therefore applicationdependent. It is
assumed that the designer is able to find a control dtrategy that is capable of achieving
the production goa's under the specified operation conditions.

choose
next machine
loadw <p> 01 process at O decision task
roceed at machineM { physical flow
F;Witch S, process at ---p information flow

machineM, e—e dependency

Fig. 7. The extended dependency diagram.

5.2 Operationson the decision network

The decison network is developed in the analyss phase without any consderation of
criteria for sructuring an agent-based system. It may therefore be difficult to identify
agents on the basis of this representation of the decision process. This section presents
a set of alowable operations on the decison network that improve the representation
of the decison process, but leave its semantics unchanged. That is, the modified
decison network executes the same control command as the origind one and

consequently achieves the same god stidaction as the firg. In this regad, the
origina and the modified decison models areisomorphic.

A decison network is unsuitable for the identification of agents if — according to
the criteria for a wel-formed agentt-based system — a decison tak must be assigned
to different agents. Such a gtuaion is not permissble because it violaes the
autonomy and integrity of an agent. In such cases the decison task must be split into
different agpects of the origind decison that of course share a srong dependency.
The different aspects may then be assigned to different agents. There are two ways to
split adecision task:

di vi de splits a decison task into independent aspects of the decison tha are
conddered in pardld (see Fgure 8). Each new decison tak has the same decison
space, but different criteriafor making the decision.

SR,

Fig. 8. The di vi de operation.

expand splits a sngle decison task into subsequent decison (sub)tasks. The
result of one decison is the input to another decision task (see Figure 9). Except
for the lest, every decison subtask formaly requires a new decison space and a
new decison rule.

/ —

A : N

5> ©oO
Fig. 9. The expand operation.

After each operation, the dependency links must be adjusted accordingly. After a
slit, a new decison task mugt inherit any dependency link if the dependency applies
to its (sub)task. Each dependency link must be inherited by at least one (sub)task.
Additionaly, any dependencies between the newly introduced decison tasks must be
identified and characterised according to the schema described in section 4.3.

The operations described above may be applied in subsequent design steps in order
to make the decision network more suitable for agent identification.

5.3 Assessment of the suitability of an agent-oriented approach

Before the actud identification of the agents can dart, it is necessry to assess
whether an agent-based approach is appropriate to the specific production control
problem. Not every control problem is gppropriate for an agent-bessd, or even a
digtributed, approach. A control problem mugt fulfil severd criteria in order to be

gopropriate. These criteria do not guarantee that an agent-based approach will be
successful, or that it is better than other gpproaches. However the criteria do rule out
applications that are obvioudy inappropriate.

For an agent-oriented approach to be adequate, the decison network must fulfil
three conditions:

1. Thereare multiple decision tasks
An agent-based system is dways digtributed (at least logicaly). If there is only one
decison task, the decison process cannot be didributed. This condition is
therefore mandatory.

2. Thedecison processis dynamic.
A control system that has to make al decisions & once cannot make use of the full
power of agent technology. However, this does not rule out the use of agents. The
condition istherefore optiond. If it isfulfilled, it supports the agent case.

3. Thedecisonsareat least partly independent.
If the decisons are dl highly dependent on each other, it is difficult to see how the
decison process could be distributed. Every decison tak would communicate
heavily with every other decison task. This condition is therefore mandatory.
However, the condition is not "black and white". No application has purely
dependent or purely independent decison tasks. How much dependence is
acceptable depends on the particular agent techniques used and is therefore
ultimately left to the designer.

If the decison network scores low on the above conditions, the designer may dill be
ale to transform the decison network into a more suitable form by using the
dlowable operations described in section 5.2, If, dfter extensve improvements, the
decison network ill scores low on the above conditions, the control system should
not be devdoped as a (pure) agent-based system. This does not imply that it is
impossble to use an agent-based approach. Rather it only suggests that the designer
should reflect very carefully about wha other (possibly gpplication-dependent)
reasons are in favour of agent technology and why it is not more appropriate to use
other gpproaches.

Example. Despite its smplicity, the smple production example scores high on the
necessary conditions. Firdt, the decison network has more than one decison task.
Second, the decison process is dynamic. There is a congtant flow of (different)
work pieces into the system that must be digtributed to the machines depending on
their current availability. Third, the decison tasks are patly independent, even
though they dl relae to the same task: distributing work pieces onto two
machines.

5.4 Clustering of decision tasks

After confirming the applicability of agent technology to the given control problem,
the agents of the production control system can findly be identified. Here an agent is
identified by creating a cluster of decison tasks for which the agent is soley
reonsble. Since every decison task should be asdgned to an agent, the
identification of agents is essntidly a problem of partitioning the decison network.

However, in order to create a wel-formed agent-based system, the resulting clusters
should fulfil the following two modularity criteria (cf. so [24]):

1. The decision tasks of acluster should be coherent.
2. There should be no strong coupling (dependence) between any two clusters.

Srrong coheson and low coupling for clugters of decison tasks can be achieved in
threeways:

interface cohesion

All decison tasks in one cluster access the same sensors and effectors, whereas
decision tasksin different clusters do not access the same physical interface.

responsibility cohesion

The responghbility for a locd date of a production object (eg., a machine or work
piece) is asdgned to et most one cluster. Decision tasks in another cluster may not
directly dter this sate.

low interactive coupling

There is no strong coupling (i.e, dependence) between the decison tasks of
different clusters.

Note that the above criteria can be in conflict. It is a design decision to resolve a
conflict by preferring one particular criterion. Moreover, it may not be possble to
cluser the decison network crested in the andyss phase according to any of the
above criteria. In such cases, the network firgt has to be transformed by the operations
described in section 5.2 before the clugtering can be performed successfully.

Once the decison network has a suitéble form for clugtering, the following
Srategies can be employed to dluster the decison modd:

Interface clustering

Cluster decison tasks that access the same physicd intefaces Severd interfaces
may end up in one cluger, but an interfface should never belong to more than one
cluster. In case of a conflict, a decison task can be split and the sub-decisons
assigned to different clusters.

Data/ Stateclustering

Cluster decison tasks which access and change the same logicd data or datus of
the production system (e.g., the work piece status).

Dependence clustering

Cluster decision tasks which have astrong dependence.

No bottleneck clustering

Didgtribute decision tasks such that the system has no bottlenecks.

Example. In the decison mode of the smple production system, agents can be
identified in a draightforward fashion. Frgt of dl, a switch agent and a machine
agent are associated with each switch or machine respectivdly and they become
responsble for the decison task associsted with the particular component.
Likewise, a loading agent is assigned to the loader and its decison task. All these
agents are stdtic.

The decision task choose next mechine, though, is not directly associated with a
sngle component. It involves dl possble machines and the work piece that is

supposed to be processed. This decision task is therefore divided into severd
agpects: A decison aspect for each machine and one for the work piece. The work
piece agent responsble for this decison task is crested by the loading agent when
the corresponding work piece is put on the first conveyor bdt. This work piece
agent then interacts with the machine agents in order to choose the next machine
and informs the switch agent of switch S about the next god machine.

As with the modularity criterig, the above drategies can be in conflict too. Agan it is
adesign decison about which strategy should be preferred when thereis a conflict.

Clugtering drategies (in combination with the dlowable operations) are applied to
the decison network until a satisfactory partitioning has been found. Even though the
modularity criteria indicate the qudity of the partitioning, it is ultimately left to the
designer to decide whether the achieved qudity is sufficient.

5.5 Output of theagent identification phase

The results of the first design step are twofold. First of al, an assessment of the
decison modd crested in the andyss phase indicates the suitability of an agent-
oriented gpproach to the particular production control problem. Secondly, in cases
where the suitability is confirmed, the design step identifies a lig of agents, each
associated with a subset of the decison tasks. The agents are soldly responsible for
the execution of their decison tasks, but depend on cther agents whenever decison
dependencies exist between decision tasks that are assgned to different agents.

6 Conclusions and Future Work

This paper has presented a design method for the identification of agents in
production control systems. The design method consists of two main steps. Firdt, the
decison making necessary to control the given production system is andysed. This
dep identifies the decisons necessary to achieve the production gods and the
dependencies between these decisons. Second, the necessary agents to control the
production system are identified. This step transforms the decison network into a
more suitadle form for an agent-oriented approach, assesses the gppropriateness of an
agent-oriented gpproach and identifies the agents as well as the required interactions.
The result of the method is a set of agents associated with control responsibilities and
dependencies.

The proposed design method fulfils the requirements put forward in section 1.1.
Firg of al, the design process is based on models tha are appropriate for production
control. The andyss modd is centered on the concept of control decisions tret are
centrd to the problem of controlling a production process Likewise, decison
dependencies are derived by relating this notion to the effects on the production
performance. Findly, agents are identified by cugtering decison tasks. Second, the
design method is prescriptive with respect to its agent-related aspects. The andyss
sep cdearly defines which information to provide in the anadysis modd. The design

step provides criteria for re-organising and cugering the decison network in order to
identify agents. Findly, the design method provides criteria for assessing the
suitability of an agent-oriented gpproach for the given production control problem. In
summary, the design method fulfils both requirements put forward in section 1.1.
Thus it dlows an engineer with no prior experience in agent technology to
successfully apply the design method to a production control problem.

The next stage of this work is to complete the design method by deding with the
interactions that occur between the agents These interactions stem from the
dependencies that exist between the agents decison meking responshbilities To this
end, many interaction formaisms and design gpproaches have been proposed to date.
However none of these approaches addresses the question of how protocols are
derived from a problem description.

References

1. B. Burmeister: “Models and Methodology for Agent-Oriented Analysis and Design”. In K.
Fischer (ed.): Working Notes of the KI'9%6 Workshop on Agent-Oriented Programming and
Distributed Systems pages 7 — 17. Document D96-06. DFKI: Saarbriicken, Germany,
1996.

2. S Bussmann, D.C. McFarlane: "Rationdes for Holonic Manufacturing Control”. In Proc.
of Second Int. Workshop on Intelligent Manufacturing Systems pages 177 — 184, Leuven,
Belgium, 1999.

3. S Busman, K. Schild "Sdf-Organizing Manufacturing Control: An Industria
Application of Agent Technology". In Proc. of the Fourth Int. Conf. on Multi-Agent
Systems pages 87 —94, Boston, MA, USA, 2000.

4. K.S. Decker: Environmental Centered Analysis and Design of Coordination Mechanisms
PhD Thesis, University of Massachusetts, MA, USA, 1992.

5. M. Wood, SA. DelLoach: "An Overview of the Multiagent Systems Engineering
Methodology". In this volume.

6. R.G. Fichman, CF. Kemerer: "ORect-Oriented and conventional analysis and design
methodologies — comparison and critique”. In IEEE Computer, Vol. 25, No. 10, pages 22 —
39, 1992.

7. N. Glaser: “The CoMoMAS Methodology and Environment for Multi-Agent System
Development”. In C. Zhang, D. Lukose (eds), Multi-Agent Systems — Methodologies and
Applications LNAI 1286, pages 1 — 16. Springer-Verlag: Berlin, Germany, 1997.

8. H. HuBmann: Formal Foundations for Software Engineering Methods. LNCS 1322,
Springer-Verlag: Berlin, Germany, 1997.

9. CA. Iglesias, M. Garrijo, JC. Gonzdez: "A survey of agent-oriented methodologies'. In
Pre-Proc. of the ¥ Int. Workshop on Agent Theories, Architectures and Languages Paris,
France, 1998.

10. C. A. Iglesias, M. Garijo, JC. Gonzdez, JR. Veasco: “Andysis and Design of Multiagent
Systems Using MASCommonKADS'. In M.P. Singh, A. Rao, M.J. Wooldridge (eds.),
Intelligent Agents IV (ATAL'97), LNAI 1365, pages 314 — 327. Springer-Verlag: Berlin,
Germany, 1998.

11. I. Jacobson: Object-Oriented Software Ergineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

12. EA. Kenddl, M.T. Makoun, C.H. Jiang: "A Methodology for Developing Agent Based
Sysems'. In C. Zhang, D. Lukose (eds), Digributed Artificial Intelligence — Architecture
and Modelling, LNAI 1087, pages 85 — 99. Springer-Verlag: Berlin, Germany, 1996.

13.
14.

16.

17.

18.

19.

20.

21

23.

24,

25.

E.A. Kendall: "Agent Software Engineering with Role Modelling". In this volume.

D. Kinny, M. Georgeff: "Modelling and Design of MultrAgent Systems’. In JP. Miiller,
M.J. Wooldridge, N.R. Jennings (eds.), Intelligent Agents |11 (ATAL'96), LNAI 1193, pages
1- 20. Springer-Verlag: Berlin, Germany, 1997.

. J. Lind: MASSIVE: Software Engineering for Multiagent Systems PhD thesis, University of

Saarbriicken, Germany, 1999.

F. von Martia: Coordinating Plans of Autonomous Agents LNAI 610. Springer-Verlag:
Berlin, Germany, 1992.

B. Moulin, M. Brassard: "A Scenario-Based Design Method and an Environment for the
Development of Multiagent Systems'. In C. Zhang, D. Lukose (eds.), Distributed Artificial
Intelligence — Architecture and Modelling, LNAI 1087, pages 216 — 232. Springer-Verlag:
Berlin, Germany, 1996.

A. Omicini: "SODA: Societies and Infrastructure in the Analysis and Design of Agent-
based Systems'. In this volume.

H.V.D. Parunak: "Manufacturing Experience with the Contract Net". In M.N. Huhns (ed.),
Distributed Artificial Intelligence pages 285 — 310. Pitman: London, UK, 1987.

V. Paunak, J. Sauter, S. Clark: “Toward the Specification and Design of Industria
Synthetic Ecosystems’. In M.P. Singh, A. Rao, M.J. Wooldridge (eds.), Intelligent Agents
IV (ATAL'97), LNAI 1365, pages 45 — 59. Springer-Verlag: Berlin, Germany, 1998.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object-Oriented Modeling
and Design. Prentice-Hall: Englewood Cliffs, NJ, USA, 1991.

. G. Schreiber, BJ. Widinga, R. de Hoog, H. Akkermans W. Van de Vede

"CommonKADS: A comprehensive methodology for KBS development”. In |EEE Expert,
Val. 9, No. 6, pages 28 — 37, 1994.

M. Wooldridge, N.R. Jennings, D. Kinny: "The Gaia Methodology for Agent-Oriented
Andysis and Design”. In Autonomous Agents and Multi-Agent Systems Vol. 3, No. 3,
pages 285 — 312, 2000.

E. Yourdon, L.L. Congtantine: Structured Design Prentice Hall: Englewood Cliffs, NJ,
USA, 1979.

E.SK. Yu, J Mylopoulos. "Understanding the 'Why' in Software Process Modelling,
Andysis, and Design”. In Proc. of the 161 Int. Conf. on Software Engineering. Sorrento,
Italy, 1994.

