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1 Introduction

Time is an important dimension in many real-world problems. This is particu-
larly true for behavioral tasks where the temporal factor is critical. Consider for
example the analysis of a perceptual scene or the organization of behavior in a
planning task. Temporal problems are often solved using temporal techniques like
Markovian Models or Dynamic Time Warping. Classical connectionist models
are powerful for pattern matching tasks but exhibit some weaknesses in dealing
with dynamic tasks involving the temporal dimension. Thus, they are efficient
for off-line statistical data processing, but must be adapted for situated tasks
which are intrinsically temporal.

This adaptation can correspond to the coupling of connectionist models with
classical temporal techniques, thus yielding hybrid models (Sun and Alexandre
1997). Tt can also correspond to the design of new connectionist architectures
with specific abilities for temporal processing. We have proposed in the past a
classification for temporal connectionist architectures (Durand and Alexandre
1996). Following this classification, these networks can be described according
to the way time is represented within the architecture.

Architectures with an external representation of time correspond to classical
neural networks like multilayer perceptrons in which only the input space is
modified to include the temporal dimension and some specific mechanisms are
added. The Time Delay Neural Network (TDNN) is a typical example of this
kind of system. This model was introduced by (Waibel et al. 1989) to learn
and recognize phonemes in automatic speech recognition tasks. The input space
is a window on a spectral representation of speech with frequency and time
axes, and a mechanism of weight sharing ensures invariance of position in time.
Apart from that, the general architecture of a TDNN is a classical multilayer
perceptron learning with a backpropagation algorithm. Models with such an
external representation suffer from serious limitations because time is considered
as a dimension similar to other spatial or physical dimensions.

Architectures with an internal representation of time are specific architec-
tures designed for the purpose of dynamic information processing and are thus
not classical architectures with an adapted input space. The internal representa-



tion of time in these architectures can be built either in an implicit or an explicit
way.

Concerning the implicit method, typical architectures are recurrent neural
networks (Pearlmutter 1990), that manage time via the succession of their in-
ternal steady states. In this case, the current output is obtained as a function
of the current input state and of the context, obtained from a copy of the pre-
vious internal state of the network (Elman 1990). This representation is called
implicit because the succession of events only appears implicitly, through the
context layer.

On the contrary, the ezplicit method for the internal representation of time
clearly implements time through sequences of events that can be detected di-
rectly inside the network. Close to Markovian principles, these architectures
include units that represent events, and links that represent transition prob-
abilities between these events, thus yielding explicit sequence representations
within the network. Models using this strategy of representation are often (but
not always (Béroule 1990)) inspired by cortical functioning, either for memory
mechanisms (Ans et al 1994) or for more general sensorimotor tasks (Alexandre
1996). Here the main problem is to design learning rules for establishing these
temporal links and to integrate the latter with other classical spatial links.

The biological validity of these various strategies for time representation in-
side neural networks has been discussed elsewhere (Durand and Alexandre 1996).
We just mention here that the external strategy could correspond to the pro-
cessing of temporal sensory input like auditory input (Suga 1990), the inter-
nal implicit strategy could correspond to the highest levels of time integration
(Dominey et al. 1995), (Elman 1990) and the internal explicit strategy could cor-
respond to some biological models of cortical functioning (Burnod 1989). Many
neurobiologically plausible mechanisms of time processing have been proposed
in the past. They are generally using an internal representation of time. Some
of the most typical will be reviewed in section 2.

Beyond this local view on specific temporal mechanisms, the goal of this chap-
ter is to emphasize the idea of integrating these mechanisms into a more general
framework, allowing a better exploitation and articulation between them. As will
be discussed in section 3, the cerebral cortex may be seen as a set of functionally
and architecturally different modules, each devoted to specific aspects of time
processing. Building modular architectures gathering and coupling these abil-
ities can undoubtedly offer new temporal properties, particularly if integrated
behavioral tasks are investigated, as reported in section 4.

2 Temporal mechanisms in biological modeling

Even if the whole neural network domain often draws (more or less tightly) on
biological inspiration, mechanisms like activation functions or learning rules are
often designed with no reference to time, whereas a real neuron is a dynamic
system that evolves over time. In this section, some biologically inspired temporal
models of neurons available in the literature will be presented. All of them have



been designed in order to model experimental data from conditioning paradigms
involving stimulus associations, sequence management, or the ability to keep
cues in memory during a delay period. Underlying temporal mechanisms will be
described here and related to the functioning and to the learning of neurons.
The experimental framework and the fitting of the models to the data will not
be mentioned and the reader might refer to cited papers for further information
concerning those points.

2.1 Functioning mechanisms

In simple terms, neuronal functioning can be explained as follows. Dendrites
receive signals from other neurons and transmit them to the soma and the axon.
Then, a non-linear functioning causes an output signal to be propagated on the
axon toward other connected neurons. This signal constitutes a spike train. Only
the quantity and the timing of spikes code the information. In classical neuronal
models, a continuous value, the activation, stands for the mean frequency of
the firing rate and thus hides individual neuronal temporal behavior. On the
contrary, it is exploited by some more biologically inspired models.

Spiking neurons One of the lowest levels of description of neuronal temporal
behavior is the spike itself (Gerstner 1998). In the so-called spiking neuron ap-
proach, neuronal activity is fully reported with, for each neuron i, the set of its
firing times.

Fi={t, - 6"} (1)

Based on these elementary data, various neuronal operations can be implemented
(Gerstner 1998). They can investigate rate coding (with an average over time,
over several cycles or over a population of neurons) or pulse coding (strategies
of coding based on synchronicity of spike timing).

Several models of neurons, from the simplest to the most complex (e.g. com-
partmental), have also been designed within this formalism (Maass and Bishop
1998). For example, the Spike Response Model describes the neuronal state u;(t)
at time ¢ (which can be interpreted as the cell membrane potential) as the sum
of the neuronal response to its own spikes (refractory period with negative kernel
ni(s)) and the response to presynaptic spikes (excitatory (resp. inhibitory) post-
synaptic potential given by a positive (resp. negative) kernel €;;(s)), as written
in equation 2.

wi®)= 3 mt—tN+ 3 S wyet—1) (2)

tgf)EFi Jer; t;.'f)EFj

where I’; is the set of neurons connected to neuron ¢ and w;; corresponds to the
synaptic strength of the connection between the neurons i and j.

This formalism has the advantage of being established at a very low (and thus
precise) level of time. It has also given rise to a variety of theoretical as well as
applied studies (Maass and Bishop 1998) which now establish spiking neurons as



a full domain of research. However, the corresponding drawback of this formalism
is that its low level of granularity implies a large amount of computation even
for a simple network of neurons. Another drawback is related to the lack of well
established learning rules at this level of description. That is one reason why it is
important to keep in mind other formalisms describing these (and other related)
temporal mechanisms.

The leaky integrator At a higher level of description than the spike, explicit
temporal functions can also be used to obtain a neuronal temporal behavior.
In the simple leaky integrator model (SLI), the input to a neuron at time t,
denoted by I(t), can take a continuous value between zero and one (Reiss and
Taylor 1991). Then, the membrane potential A(t) is written as:

A(t+1) = fF(D).I(1) + (1 = f(I))-A(?) ®3)

where the function f(I) is defined, with constants a and d:
f()y=d(1-1I)+al. (4)
Finally, the output of the neuron is computed via the Heaviside function H as:
Out(t + 1) = H(A(t) — 0.5) (5)

As illustrated in figure 1, functions A and f are such that they provide to the
neuronal internal state a wave input attack in the time 1/In(a) and a wave
input decay in the time 1/In(d). It is thus possible to determine the shape of the
activity with the choice of constants a and d. Of course, these phenomena can
also be obtained within the spiking neuron formalism (Gerstner 1998), but at a
much higher computational cost.

Activity

Neuron A Neuron B Neuron C

0.5

Time

Fig. 1. This figure represents the typical shape of activity obtained with a trace mech-
anism. It also illustrates how this mechanism enables two events occurring at distinct
instants to have lasting activities, to meet and to interact via learning



This trace mechanism, describing neurons as leaky integrators, makes the
neuronal activity last longer than its input. We will explain below how this
mechanism is important for a network to properly learn and recall sequences.

The gated dipole Synaptic functioning has also been studied, with differ-
ential equations over time describing at each time the variation of some state
variables, as in the SLI model. This approach has led to many models, shar-
ing common features. These features are described below, on the basis of the
gated dipole model introduced by Grossberg (Grossberg 1984). The model is a
good illustration of the kind of complex temporal behavior that can arise from
straightforward equations.

The gated dipole is grounded on the modeling of synaptic dynamics. The role
of the synapse is to transfer a signal from presynaptic to postsynaptic nervous
fibers. Let ¢ be the (continuous) time parameter, S(t) the value of the presynaptic
activity, T'(t) the value of the postsynaptic activity and z(t) the conductance of
the synapse provided by chemical neurotransmitters. Equation 6 describes the
way S is transmitted through the synapse over time, figure 2 illustrates it.

T(t) = S(t).2(t) (6)

A perfect conduction would correspond to a constant conductance z(t) over
time. When S(¢) occurs (becomes non null), some previously stored neurotrans-
mitters are emitted to provide conductance (this is considered as instantaneous
in the model). The synapse continuously produces neurotransmitters to “refill”
the stock until saturation. The production and consumption of neurotransmit-
ters can then be described with equation 7.

%dﬂzAxB—z@)—Swz@) (7)

The first term of equation 7 represents the production of neurotransmitters,
with a speed A, until the level B. The second term is the consumption of neu-
rotransmitters by the signal S(¢). If signal S(t) is kept constant, production
and consummation of neurotransmitters complement each other and the output
signal T'(t) reaches an equilibrium value such that:
d

Ez(t) =0=A.(B —2z2(t)) — S(t).2(t)
= 2(t) = AB = T(t) = AB-5(t) ®

A+ S(t) A+S(t)

The function T' = f(S) at the equilibrium state is non-linear, monotonic increas-
ing and saturates with the value AB. Such a function is similar to the sigmoidal
transfer function used with the classical formal neuron. Outside the equilibrium
case, the dynamics of the synapse, shown in figure 2, have interesting temporal
properties. For example, overshoots and undershoots can trigger events when
S(t) respectively sets and resets. Moreover, the decay from overshoot to habitu-
ation can be considered as a progressively decaying trace of the burst of S. The



concept of trace is useful to correlate time separated events, as will be discussed
later.

This model is suitable for detecting transitions of signals and illustrates well
the kind of temporal properties easily obtained by using appropriate intrinsically
temporal models.

S(t) Sy T(t)
So So
t
Z(t)
A+B A+B A+B
A+So A+S, A+Sg z(t)
t
T(t) overshoot
habituation
undershoot S(t)

t

Fig. 2. The gated dipole, from (Grossberg 1984).

2.2 Learning mechanisms

Classical static learning mechanisms are often based on Hebbian rules, which
compute weight variations from the correlation between presynaptic and post-
synaptic activities, according to the rule:

This static view is obviously an approximation since it is clear that, as a con-
sequence of presynaptic activity, postsynaptic activity is not simultaneous but
consecutive to presynaptic activity. Several temporal learning mechanisms have
been proposed and take this constraint into account.

The common feature that underlies these mechanisms is the use of traces, so
that instantaneous correlations between traces of signals signify temporal corre-
lations of those signals (cf. figure 1). The shapes of the traces, and the properties
of the learning rules, endow the models with their own specific properties.



Learning the earliest predictor Adaptive behavior has been widely studied
throughout classical (Pavlov 1927) and instrumental (Skinner 1938) condition-
ing. The classical conditioning experiment is described in the following terms in
(Sutton and Barto 1981):

..., the subject is repeatedly presented with a neutral conditioned stim-
ulus, that is, a stimulus that does not cause a response other than ori-
enting responses, followed by an unconditioned stimulus (UCS), which
reflexively causes an unconditioned response (UCR). After a number of
such pairings of the CS and the UCS-UCR, the CS comes to elicit a re-
sponse of its own, the conditioned response (CR), which closely resembles
the UCR or some part of it.

There exist several variations of this simple experiment. For example, one can try
to condition the subject with the help of several C'S;. The point is that the delay
separating C'S; from UCS (inter-stimulus interval or ISI) plays a crucial role in
the success or failure of the conditioning. Neural modeling takes this point into
account. Furthermore, a large amount of experimental paradigms (overshad-
owing, blocking, etc.) give serious clues concerning the temporal mechanisms
underlying conditioning,.

Sutton and Barto (Sutton and Barto 1981) propose a model based on activity
traces which is able to take these kinds of data into account. The model is
grounded in a formal neuron (cf. figure 3) where input zq is the value of the
UCS, other inputs x; are respective values of the C'S; and y is indifferently the
CR or the UCR.

Xo=UCS

y=UCR & CR

Fig. 3. The adaptive element of (Sutton and Barto 1981).

The model is driven by the following equations, where f is a sigmoid function,
a and f are positive constants with 0 < o, < 1 and ¢ is a positive constant
determining the learning rate:



Tt +1) = BT + (1 - Ay (2) (11)
y(t) = 13 wi(t); (1) (12)

j=1
Vi € [Ln, it + 1) = wit) + ey () — GO (1) (13)

Each input z; and y has a trace activity, respectively Z; and 7. At the beginning
of conditioning, in the case of a single C'S (corresponding to a single input z),
the output y is activated at the same time as UCS (or zo) because of the fixed
weight wg. Meanwhile, if T is active, it will increase its weight w since this latter
is proportional to (y(¢t) — y(t)) and Z. It will then soon be able to trigger the
output on its own. The adaptive element has learned to trigger a response when-
ever CS is present just before UCS. As in the classical conditioning paradigm,
the delay separating the onset of C'S and UC'S plays a crucial role since learn-
ing only occurs in case of temporal overlap between a positive trace of z and a
“burst” of (y(t) — 7(t)).

CR,UCR:y____ | [

y-y 1

i

Fig. 4. Time courses of element variables after conditioning. CS elicits a response of
its own.

Another aspect of classical conditioning is the context factor, which may be
determinant during the learning phase. For example, when a first association
CS1 — CR has been learned, the addition of a new CSy contingent to C'Sy
generally implies a very weak C'Sa — CR association or no association at all.
This phenomenon is called “blocking” and is modeled by the Rescorla-Wagner
theory (Rescorla and Wagner 1972) which states that organisms only learn when



events violate their expectations. Figure 5 shows the evolution of weights for such
a blocking paradigm, where three phases can be distinguished:

Connection
weight
ucs
cst [
Ccs2

@ ® ®

w2

i f } t Trids

0 10 20 30

Fig. 5. The blocking paradigm. As long as C'S, is not the earliest predictor (step 1 and
2), ws remains unchanged. As soon as C'S» becomes the earliest predictor (step 3), w:
decreases to zero while w2 reaches its asymptotic value.

1. This is a classical conditioning experiment with only one C'S;. Weight w is
then increased up to its asymptotic value.

2. A second C'S; contingent to C'S; is added, but, since learning has occurred
at a previous phase, output (triggered by C'S1) onset is now overlapping with
C'S; onset. C'Ss is then unable to learn anything since its trace activity T» is
not positive during the output onset. Weights w1 and ws remain the same.

3. C'Ss onset is now earlier than C'Sy, trace activity T2 is now positive during
the output onset (triggered by CSy), weight ws is then increased. The con-
sequence is that output will be triggered sooner and sooner by C'S2 up to
the point where Z; will be positive during the output offset. Then w; will
be decreased to zero. C'Sy has become a better predictor of UC'S than CS;.

Learning the date of the predictor Learning the earliest predictor is useful
for anticipating the consequence of an event. However, if the time interval that
separates the event and its consequence is nearly constant, it may be useful to
be ready only when the consequence occurs. A mechanism allowing the mem-
orization of this time interval has been proposed in (Grossberg and Schmajuk
1987), (Grossberg and Schmajuk 1989). This mechanism is grounded on a trace
that arises after the burst of a signal and then shuts down. This defines a time
interval, after the burst of the signal, and correlation can be computed during
this interval. The idea is then to provide many synapses with different time con-
stants, and thus to allow an overlap during complementary intervals. The model
is called the Spectral Timing Model.



Let us first describe the functioning of one synapse, and then the use of a
range of such synapses for anticipation. Let Ics be a conditioned signal (a step
function), and Iycs be the unconditioned signal. When learning has occurred,
Iycs has to be anticipated when it should occur, according to I¢cg. Synapse 4 is
described by three variables, according to the following equations, where f is a
sigmoidal function.

E.’Ei = Oé,'[—AZ‘,' -+ (1 — B.Z‘i)Ics] (14)
2y =C(1 ~yy) - Df(z) (15)
9 2= Bl + Tves) (16)

Equation 14 allows z; to transmit Icg with a delay, depending on parame-
ters. Equation 15 describes spontaneous production of neurotransmitter y; and
consumption of this neurotransmitter when the synapse transmits x;. This equa-
tion is similar to equation 7. As a delayed signal z; is transmitted through the
synapse, using neurotransmitter y;, the transmitted value of z;, i.e the product
f(zi)y;, is a trace of the occurrence of Ics. Then, equation 16 describing the
strength of association z; performs the evolution of z; toward Iycs, but only
when the trace of I¢g is strong enough. The shape of the traces for a high «;
(in plain line) and for low a; (in dashed line) is illustrated in figure 6.

f(x)

Fig. 6. Spectral Timing Model, from (Grossberg and Schmajuk 1987).

Spectral timing consists then in endowing a neuron with a battery of synapses,
having different values «;, for correlations with a given Iogs (cf. figure 6). The



response of the neuron is then given by equation 17.

+
Zf §)Yi-Zi —

. gt =z ifx >0
with {x+ =0 otherwise (17)
The behavior of the neuron then consists in responding to an I¢g by summing
traces that have been associated with Iycg (they have a high z; value). The
response then occurs at the moment when Ijy¢og should occur.
Finally, let us mention that the spectral timing paradigm has also been suc-
cessfully implemented with a range of leaky integrators as a model of frontal
cortex (Dominey et al. 1995).

Context-dependent learning The models previously discussed were grounded
on classical conditioning experiments, and deal with the association of two sig-
nals. Some other models describe a synapse concerned with a third signal, modu-
lating the associative role of the synapse. This defines the concept of the synaptic
triad.

S(t) | R(t)
SO —— Wb

S ()

Fig. 7. The synaptic triad, from (Dehaene and Changeux 1989).

The synaptic triad model of Dehaene and Changeux (Dehaene and Changeux
1989), illustrated in figure 7, involves a presynaptic activity S, (t), a postsynaptic
activity Sp(t), and a modulation signal Sy, () that acts on the synaptic weight
W (t). The weight W (t) is a trace of the modulation activity.

apW(t) + (1 — ap)W™(t) if Sp(t) > 0.5
agW () if Sp(t) < 0.5
The a, and ag4 parameters are in the range [0,1]. The weight W (t) is a trace
that increases toward the current maximal authorized weight W™ (¢) when the

modulation signal S, (t) is high, and decreases otherwise. The contribution of
all the synapses i to the output signal S,(¢) is given by:

Lt +1) ZW’ t)S? (t (19)

W(t+1) = { (18)

The temporal learning rule for the triad actually computes the value W™ of the
synapse. The learning rule is given by:

W (t)
Wm(t)

SW™(t) = BR(t) Sa(t)(28p(t) — 1) (20)



The function R(t) is a reinforcement signal, related to the experimental frame-
work of the model (Dehaene and Changeux 1989). It will be considered as a
positive constant and will not be discussed here. The maximal weight W™ in-
creases according to the cooccurence of presynaptic signal S, and postsynaptic
signal S, as for Hebbian learning rules, but this occurs only when the trace W
of S, is close to its maximum value. The signal S,, can be viewed as a con-
text value, and the synapse will conduct signals only when the context is active
(cf. equation 19).

More complex contextual rules have been developed since the initial model
by Dehaene and Changeux, dealing with non-simultaneity of presynaptic and
postsynaptic signals, i.e one has to come before the other when context is active
in order to increase the weight of the synapse (see (Guigon 1993) for example).

2.3 Biological temporal mechanisms

This overview of some functioning and neuronal learning mechanisms illustrates
the variety of temporal neuronal properties that can be exploited in artificial
neural networks (and that are absent in classical static models). As mentioned
above, these mechanisms are generally used to model experimental data and
often stick to the experimental framework. They have to be integrated in a more
complete architecture in order to address wider range of real-world problems.
For example, this has been successfully done for radar imaging by Grossberg
and colleagues (Gove et al. 1995), (Grossberg et al. 1995).

Engineering-like applications, like autonomous robot control, are often tack-
led by Markov Decision Processes such as Q-Learning (Watkins 1989) (see (Litt-
man 1996) for a good overview of these techniques). In the latter case, time is
considered as a discrete parameter, ordering a series of synchronous interactions
between the agent and the external world. However, this kind of approach seems
to be seldom applied to real asynchronous problems.

Biological models may be an efficient way to overcome this difficulty, due
to the robustness of temporal mechanisms like the trace concept. Our claim is
that the integration within a cortical framework of such elementary biologically-
inspired mechanisms can lead to efficient systems for real-world applications.

3 Cortical modeling

The goal of establishing a framework for cortical modeling is to bridge the gap
between the isolated temporal mechanisms and the distributed and polymodal
nature of the cerebral cortex itself. This makes it possible to efficiently express
complex behaviors, including several temporal resolutions. Before proposing (in
the next section) our computational models for this framework, we report the
outline of the biological model that underlies it. The reader can refer to the
original description of the model (Burnod 1989) for more details about the un-
derlying biological data. These data yield two levels of description. First, at the
global level, architectural and functioning data give hints about different kinds



of processing regions in the cortex, and information pathways between them.
Second, at a more local level, neuronal circuitry is described together with the
corresponding functioning and learning rules.

3.1 The global level: a network of areas

The global description of the four major lobes (frontal, parietal, temporal and
occipital) with the functional description of the cortex proposed by Brodmann as
early as 1909 (Brodmann 1909), gives precious hints for a functional approach.
It makes the distinction of four major types of areas, as illustrated in figure 8
and described below (using the formalism of this figure).

A
SH
0 FO o %
Frontal lob & %@%
ron ope i
Parietal lobe 2
FVT vT
MH
FAT 2 [ < AT
FV [ | FA ) A2 | 1 v2 (@
FSA sA

NN ie

sV
‘3’04/ — &
2 N
* N ? QVQ
g
Occipital lobe R

Temporal lobe MOTOR
(a) Main lobes of the cerebral cortex (b) Model of the connectivity between
cortical areas (adapted from (Burnod
1989))

Fig. 8. Anatomical and functional view of the cerebral cortex

Sensory areas These mono-modal areas map the sensory information com-
ing from the different body receptors which can be divided into five main sen-
sory poles (auditory (A), visual (V), somesthesic (S), olfactory (O) and internal
molecular (SH)). Moreover, the information flow is structured in such a way that
topology is conserved from peripheral receptors to cortical sensory areas. A fixed
mono-modal perceptive sequence can be encoded at this level.



Motor areas (M) These mono-modal areas allow the performing of actions
upon the internal world (e.g. hormonal secretion) or the external world (e.g
hand movement). Actions can be executed simultaneously but also coordinated
in a complex sequence of movements (but fixed at this level).

Posterior associative areas These polymodal areas, including temporal and
parietal areas, are crucial to cortical organization since they allow the linking
of at least two areas, one with the other. They will for instance allow direct
sensorimotor coordination encoding in the case of a link between a sensory and
a motor area (e.g. hand-eye coordination). Moreover, these associative areas may
also link two sensory areas or two other associative areas, allowing in this way the
construction of a more structured and integrated representation of information.
Stereotypical sensorimotor sequences (e.g. reaching one’s mouth with one’s hand)
can be learned in these areas.

Prefrontal associative areas From a functional point of view, prefrontal as-
sociative areas have to be distinguished from their posterior counterparts. The
former are generally action-oriented and play a major role in temporal organiza-
tion of behavior. Furthermore, the privileged relations with the posterior cortex
(cf. fig.8(b)) and the presence of specific temporal mechanisms within prefrontal
units (bistable) make prefrontal areas able to construct and coordinate dynamic
temporal sequences grounded on posterior ones (e.g. guidance of the hand toward
a goal in the focus of attention).

Information pathways To throw light on the nature of cortical organization,
cortical modeling defines a framework for a distributed polymodal representa-
tion of information. The integration of numerical data into more structured and
“sub-symbolic” reference frames is possible throughout a hierarchy of polymodal
areas. We are thus offered a way of keeping to some extent the robustness of nu-
merical data while manipulating this data at a higher level. These cortical mech-
anisms involve (mainly in the posterior cortex) statistical and slow learning, and
perform a kind of extraction of the world regularities through the construction
of stereotypied temporal sequences. The ability to model complex and more dy-
namic behaviors requires additional mechanisms that can be provided by frontal
areas or even by extra-cortical structures. The cortical network is not fully in-
terconnected but defines via associative areas three privileged pathways between
the motor system, the internal state and the perception of the outside world in
the following way:

— parietal areas relate the outside world with the motor system
— temporal areas relate the outside world with the internal state
— frontal areas relate the internal state with the motor system

Moreover, as shown in figure 8(b), there are privileged connections between
frontal areas and posterior cortex: each posterior area is mirrored within the



frontal lobes. This anatomical design suggests an interlaced cooperation between
perceptive posterior representation and frontal motor ones, for the temporal
organization of behaviour. Indeed, frontal areas are believed to play a central
role in most complex temporal behaviors such as anticipation, planning, working
memory or any other dynamic temporal sequencing behavior.

3.2 The local level: neuronal assemblies

A more detailed analysis of the inner organization of the cortical sheet may
also describe this as a large set of elementary circuits: the cortical minicolumns.
Each of those minicolumns receives a subset of the intra or extra-cortical infor-
mation and because of the topological property of the cortical areas, neighboring
minicolums will tend to receive the same subset of information. These groups
of minicolumns are called maxicolumns: they share the same information subset
but are able to apply different filters on it. The model of the cortical column
reported in (Burnod 1989) describes the functioning and learning properties of
such maxicolumns, which are different from those of the formal neuron.

Architecture The cortical minicolumn (also called cortical column) is a group
of a maybe a hundred interconnected neurons where activity is essentially re-
lated to the pyramidal neurons while the other neurons, excitatory or inhibitory
interneurons, mainly participate in the inner mechanism of the column. More-
over, the cortical column is a six layered structure (cf. figure 9) where layers I
to IIT allow communication with other cortical columns while layers IV to VI
allow communication with extra-cortical structures. Depending on the area the
column belongs to, the size of each layer may vary greatly.

Pyramidal neurons

Afferent input Upper layer Lower layer

Cortical distant 1/0 <::> Layer | Reticular D I

1
Cortical Iocal 1/0 Layersll & 11 Cortica . W -

External input Layer IV

Thalamic v

O/1 inoqubeN

LayersV & VI , —

Externa output Vi

Fig. 9. The six layered structure of the cortical column and the corresponding in-
put/output data channels



Basic operations The inner mechanisms of the column result in three possible
distinct levels of activity for the pyramidal neurons:

— Inhibited level EQ represents very weak activity

— Low level E1 represents small variations of relatively low frequencies (5Hz
to 10Hz). We will refer to this priming state as the call state

— High level E2 represents a much higher frequency (50Hz to 100Hz). We will
refer to this state as the satisfaction state

Spatial filters As said before, a maxicolumn is a set of several neighboring cor-
tical columns sharing the same subset of information and constitutes a functional
module. As long as there is no specialization of these columns, they will often be
activated in a moderate way for any pattern of information. Learning is then the
ability for a minicolumn to become specialized on a precise pattern of informa-
tion while others in the same maxicolumn are inhibited (coupling/uncoupling).
This task corresponds to filtering or feature extraction.

Spatio-temporal filters Cortical columns are able to activate themselves at
three distinct levels. Activation of a column at level E2 requires the simultaneous
activation of both cortical and thalamic inputs. Consequently, when a column
A receives a cortical input alone or a thalamic input alone, it will not reach
level E2 but rather level E1. This activity E1 is nonetheless propagated to all
neighboring columns. If among them, one (C) is excited via its thalamic input,
it will reach level E2 and will produce an extra-cortical action (whatever the
target). This action will then modify the thalamic context, which may now be
propitious for the activation of column A to level E2. Column A will then learn
to preferentially call column C since this latter is favorable to the excitation of
the former (cf. figure 10). This mechanism may be seen to some extent as a goal
directed search: the level E1 is a desired or calling state, while level E2 is the
satisfaction state.

The temporal mechanism of spreading intra-cortical activation indeed allows
the search for sequences that are able to satisfy the calling column. Learning
will then consist in slowly orienting the call activity toward columns that help
to reach the satisfaction state.

Bistable units All the prefrontal area units share a common mechanism: the
bistable mechanism. Bistable units possess two stable states: a resting state and
a sustaining state. Both ON (at rest to sustained activity) and OFF (sustained
activity to rest) transitions require an external activity (e.g. external stimuli A
and B) to be performed (cf. figure 11). Thus, while cortical posterior columns
are only able to organize sequences at one level (e.g. A-B-C), frontal ones are
able to organize hierarchical sequences (e.g. (A-(B-C))).
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Fig.10. 1) Column A receives cortical input and activates itself to level “E1” 2)
Activity is spread to neighbouring columns 3) Thalamic context allows the activation
of column C to level “E2”, an action is performed that modifies the thalamic context
4) Thalamic context modification allows column A to reach activation level “E2”.
Learning will occur and column A will learn to preferentially call column C.
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Fig. 11. 1) Bistable ATB™ is at rest 2) Detection of stimulus A produces the ON
transition on the bistable AT B~ 8) The bistable activity is sustained 4) Detection of
stimulus B produces the OFF transition on the bistable AT B~



4 Cortical temporal mechanisms for computer science
purposes

As computer scientists, we are specifically interested in efficient software design
for real-world problems. We think that such an engineering oriented purpose can
benefit from the study of biological data. Nevertheless, most biological models are
not suitable for immediate software integration, but have rather been designed
to explain experimental data. Classical connectionist models, like multi-layer
perceptrons or Kohonen’s Self Organizing Maps can be viewed as the adaptations
of biological models to software engineering constraints, adding mechanisms such
as backpropagation with derivable transfer functions, or explicit winner-takes-
all.

Concerning computation of temporal information, which is crucial when ad-
dressing real problems, a biological framework also appears to be helpful (cf. sec-
tion 3). As is shown by the attempts we have mentioned, adaptation of biological
temporal models to information processing is not obvious, and mechanisms that
arise from such attempts appear to be heterogeneous (cf. section 1). We propose
that one way to design reusable algorithms is to refer as precisely as possible to a
cortical framework, allowing us to deal with highly integrated architectures. Inte-
grated temporal processing implies different levels of time computation that have
to be consistent one with each other. Within the same cortical paradigm, pre-
sented in section 3, we first describe low level (small time constant) mechanisms
that are applied to temporal pattern recognition. We then consider causality de-
tection, applied to the learning of higher level reactive abilities of an autonomous
robot. Finally, we look at temporal mechanisms involved in neural planning with
bistable units.

4.1 Monomodal sequences within a map

The Temporal Organization Map (TOM) architecture (Durand and Alexandre
1996) has been proposed as a model of the auditory cortex and applied to speech
processing. At the lowest level, a simple cochlea model (Hartwich and Alexandre
1997) performs a spectral transformation of the speech signal. The processing
level is a map of super-units, each super-unit standing for a maxicolumn, as
described in section 3.2. As a first temporal mechanism, each super-unit has a
spatio-temporal receptive field. The spatial field corresponds to the integration of
a set, of contiguous fibers from the cochlea model. The temporal field corresponds
to a leaky integration, controlled by a decay parameter. This short term memory
allows the integration of activation within an interval of time.

The second temporal mechanism is performed within the processing map. It
corresponds to intra-map temporal links between super-units which can build
explicit sequences of activation within the map. Robustness to sequence distor-
tion (insertion or deletion) is obtained through the interaction of both temporal
mechanisms. A division mechanism was also implemented and leads to special-
izations within super-units in order to differentiate sequences passing through
the same units.



This model was applied to spoken digit recognition using some classical
benchmarks in speech processing (Durand and Alexandre 1996). It has obtained
performances similar to the best stochastic models, with a better performance
given the temporal and spatial complexity of the algorithm.

4.2 Multimodal causality sequences for reactive integrated
behaviour

The mechanism described here is related to internal computation within an
artificial cortical map. The maxicolumns (see section 3.2) of the map are involved
in the learning of temporal regularities, and are the basic units of the model. As
such, a unit represents a population of synchronous cortical columns that receive
the same information. Three kinds of activation have been defined, as described
for a single cortical column (Burnod 1989).

First, unit i stores an ezcitation activity E$*! as soon as the perceptive
events e; it is associated with occur. Another associated recency signal E}*¢ is
used as a trace of the occurrence of the event. It is initialized to 1 and linearly
decays over time. When it reaches 0, the stored intensity E¢*“! is reset to 0. The
use of two variables E$*! and EI* prevents the confusion of strong old events
with weak recent ones.

Second, a call activity of unit 7 means that event e; is useful, and has to
occur. For simplification here, this activity will be considered as a boolean value
(1 or 0), whereas it is, in the model, a continuous value, representing the strength
of the request for e;.

Third, when a specific event that was requested through the call activity has
occured (excitation of a called unit), the unit is said to be satisfied.

Learning by specialization When learning occurs at the level of a cortical
maxicolumn, columns inside the maxicolumn, that were synchronously firing,
separate into two asynchronous parts. Each part can split again, further refining
learning (see (Burnod 1989) for details). As units of the model represent syn-
chronous columns, the effect of learning at the level of a unit is the creation of
a new unit, both units representing the new synchronous sets of columns.

Temporal learning rule The aim of the learning rule presented here is to build
sequences of units, based upon perception. Let us suppose that a given unit ¢
is called, and that the associated event e; always occurs after another event e;,
i.e. after E;?"Ci of unit j is set. It is then possible to conclude that getting e;
is a means to get the requested e;, i.e. call activity has to spread from unit %
to unit j. If we consider unit 7 as the goal “getting occurrence of e;” when it is
called, unit j can be viewed as a subgoal to be called. The learning rule described
in equation 21 allows the detection of the goal/sub-goal relationships between
units, by increasing weights between units. When a subgoal is detected, it splits,
and the split unit is devoted to receiving a call activity from the goal. As it is



called after the call activity at the level of the goal, the subgoal can play the
role of a goal for other units in the map, in order to extend the causal sequence.

Let 7 be the unit whose subgoals are detected by using the mechanism, and
Jj one of the other units in the map. The weight w;;, initially null, represents the
causal relationship between ¢ and j, and the splitting of j occurs when it reaches
1. A flag d;; is associated with each w;;. Weights are updated according to the
procedure 21.

if E;ec = 1, 6,] <+« 1.
if Ef*¢ =1 and E§*" = 1, (satisfaction of )
case E}°° = M* and M* > 0: w;ij + wij + T.E§e°.E;?XCi

case 0 < E;*¢ < M Wi wij + T.(EC — Mi)-E;XCi
case B3¢ =0 fwij < wij — 0 (21)
in all cases 10;; <0

else if Ef*!! = 1 and E}*° reaches 0,
Wij < Wij — TI.E;XCI.(SM
else nothing to compute.

Parameters 7 and 7' are fixed learning rates, the symbol < stands for variable
setting and M? = max; ;. Learning w;; occurs only when unit i is a goal
(E" = 1). When an event e; occurs (E}°¢ = 1), the flags d; for all k are raised.
If the goal i is satisfied (E*° = 1 and E§3!! = 1), the weight w;; to unit E; that
has been excited the most recently (E%¢ = M %) increases, proportional to both
the recency and the stored intensity Ef}m of the event e;. For the other j units
that are “quite recent” (E;eC > 0), the weights w;; are decreased, proportionally
to the relative age EJ*° — M ¢ of e; occurrence, and also according to E;?XCi,
consistent with the rule for unit J. The mechanism for the most recent unit J
and the other recent j is a competition for recency, detecting the last predictor
of the goal satisfaction. Events that have not occurred before the satisfaction of
the goal i (E}*° = 0) are decreased with a decay value. Note that satisfaction
of the goal j resets the flags d;; of related weights w;;. If an event e; occurs,
without being followed by the satisfaction of the goal, i.e the trace E}*° reaches
0, if the goal is still being called (E$?!! = 1) and if it has not been satisfied since
the occurrence of e; (the flag d;; is still raised), then the weight w;; is decreased.

This mechanism has been shown to be robust to different kinds of tempo-
ral noise, mainly distortion of sequences, insertion of events, permutation of
items in the sequence (Frezza-Buet and Alexandre 1999). It is suitable for de-
tecting sequences of causality between perceptive events that are intrinsically
asynchronous, which is the case for real perception. Finally, the mechanism al-
lows the detection of the last predictor, as opposed to Sutton and Barto rules
(see section 2.2) that detect the earliest. This is important since spreading calls
from a goal to its successive subgoals requires the learning of all intermediate
events of a perceptive sequence, and not only the first, even if it is actually
predictive of the last.



Application This mechanism has been used inside each map of a multi-map
architecture for robot control (Frezza-Buet and Alexandre 1998b). This architec-
ture contains many maps for detecting multi-modal events that are linked with
the mechanism presented here. The multimodal sequences that are learned are
the basis for a competition within units in the model. This competition allows
the robot to trigger the appropriate action at each time, according to the needs
that initiate call activities, according to the perception that initiates excitation
activities, and to the knowledge concerning the world stored in the w;;. The
cortical framework, that drives the design of the map architecture, coupled with
the local temporal mechanism described in this section, has led here to an effi-
cient control architecture endowing the robot with the ability to learn elaborated
reactive behavior from its experience in the environment.

4.3 Context detection for bistable transitions

The previously described model deals with one level sequences (no sub-sequences),
providing procedural abilities for reactive behavior. This model refers to pos-
terior cortex functionalities. As we are interested in more complex behaviors,
involving planning on the basis of connectionist computation, we are currently
studying prefrontal functions. Some early modeling results will be presented here
briefly, in order to introduce the use of the context manipulation mechanism de-
tailed here, allowing temporal scheduling of actions.

Prefrontal modeling framework for neural planning As mentioned in sec-
tion 3, prefrontal functionality is grounded on cortical columns having a bistable
activity pattern. The model described now is an attempt to use this ability for
planning the behaviour of the robot. Compared with a biological description of
the cortex, and more precisely of the prefrontal lobe, our functional approach is
of course very rough, but it has to be seen in the context of the design of ef-
ficient and highly integrated control architectures. In this modeling framework,
prefrontal cortex is a set of units connected to posterior cortex units with one-to-
one connections (cf. figure 12). The posterior cortex part of the model is similar
to the one mentioned in section 4.2. It is a module allowing complex servo-control
oriented computation, i.e. a call activity at the level of a posterior unit (the P;s
in figure 12) triggers an elaborated action of the robot, as “facing the current
target” for example. Then, the role of the prefrontal cortex part of the model
(the F;s in figure 12) is to schedule posterior calls, in order to plan the behaviour
of the robot towards finding rewarding situations.

This scheduling, described in (Burnod 1989) and in a more computer sci-
ence oriented way in (Frezza-Buet and Alexandre 1998a), is illustrated by the
following example. Let us suppose that a sequence of events a — b — ¢ has to be
performed for getting a reward. That means that posterior units P,, P, and P,
have to be excited in that order, after successive calls in these three units. The
role of associated frontal units F,, Fy and F, (cf. figure 12) is then the following.
First Fy, triggers a call on posterior unit P,. As a consequence of this call, let us



suppose that event e, occurs, meaning that P, is excited. Then, F, sends call
activity to Fyp, that calls P, to get ep in the same way. When e occurs, Fy trans-
mits the call to F, that enables the occurrence of the rewarded event e.. The
significance of this sequence, compared with the posterior model of section 4.2,
is the way failures of calls are managed. Let us suppose that the call in P, trig-
gered by F, in the previous example is not followed by the event e, that makes
P, excited. That means that the current context does not allow the getting of
this event, and that something else has to be done before getting e, is possible.
What has to be done before is the activation of another sequence of events (they
may involve motor events as a consequence of calls), noted aa — ab in figure 12.
The failure of the call in F, makes F, have a sustained specific activity (transi-
tion ON of the bistable) that stacks the purpose of calling P, without calling it
anymore. Then, a call is transmitted to F,,. When sequence aa — ab has been
performed, the perceptive world is supposed to be in a context that allows e,
to occur subsequently to a call in P,. The detection of this context, which is
the temporal mechanism described in this section, triggers the OFF transition of
bistable activity in F,. The effect of this latter transition is first to stop storing
the call that previously failed, and second to retry it, by calling P, again (the
call is popped out from the stack). Due to the use of aa — ab, this call now allows
e, to occur, and F, transmits a call to Fp as in the non failing case presented
first.

Context detection, which is crucial for the neuronal stacking allowed by the
frontal cortex model, has to be robust to the intrinsic asynchronousness of per-
ceptions. This context detection, which is the learning rule for frontal sequences
in the model, is presented now and details concerning the use of this mechanism
for robot control can be found in (Frezza-Buet and Alexandre 1998a).

Frontal cortex

[ /%FJ [ ' [
Wi 3 Posterior cortex

Fig. 12. Prefrontal modeling framework.



Asynchronous context detection The purpose of the mechanism is to enable
a bistable frontal unit F; (cf. figure 12) to learn perceptive context. This context
must ensure that a call on the corresponding P; will succeed in getting the
associated event e;. At the level of Fj, let us consider two events €] and e],
respectively representing the success of call in A; and its failure (F; gives up
calling A4;). Learning occurs during both e and e; , as detailed below.

For any frontal connection between F; and Fj, a couple of weights (wi*j,w;j)

are used. Weights w;; and w;; store correlations between excitation in P; and
respective events ej and e; . Using these weights, two kinds of contextual ac-
tivities ¢ and & are computed, according to equations 22 where operator [z]"

returns z if > 0 and 0 otherwise.

Ej — f0 (E;;xci) X fa (E;ec)

where fy =
e = mAXW]
.'f?j = (1 — Wimax) + wimaxji

2w (22)
&g = l—mjax{(l_Ej)wij
z; = max{Ej x fy(w; —w)}
1
where f) =
+ o

Ci <~ [jj_ - mz_]+

The value E; is the trace of excitation activity of P; (intensity of e; modu-
lated by its recency). The value &} is the fitting of the E; distribution to the

stored w;; weights. If no strong correlation has been detected between any Ej
+

and e (W] 0y is weak), the w; are not significant, the context #; is then good

by default (close to 1). The context value Z; is sensitive to changes in the E;

distribution, allowing the detection that the current distribution is going closer
to the ideal one (defined by the wfj) As this context is too permissive for reliable
context detection, another context value i*f is defined, which is high when the
E; distribution matches exactly the w;‘; Finally, if one of the current E; has



been detected as being correlated to e;” without being correlated to e (w;; —wh
is high), this E; is predictive of the failure of the call, and the 2; context value
is high. Using the contexts ;ﬁj, :i";|r and z; , two respectively permissive and not
permissive contexts é and ¢; are defined.

As ¢; is reliable, it is used to trigger the OFF transition of F;. On the other
hand ¢&;, being sensitive to the improvement of the distribution of perception, is
used to sustain bistable activity of F; until ¢; allows the OFF transition.

The learning rule for the wijT is straightforward, once the previous values
are computed (cf. equation 23). Note that the w;; are computed only when the

call fails but it was supposed to succeed (&; > 0).

For all j,
When e/ occurs
Tt =1
w;; +— (1- T+)w;§. + 7T E; (23)
When e occurs
T =T XC¢;
Wi (1- T_)wi; +77E;

Interest of the context learning mechanism The context detection is ro-
bust (Frezza-Buet 1999) to asynchronous perception, due to correlation with
traces. It also enables one to separate events E; that are often occurring when-
ever a call in P; succeeds (e;) or not (e; ) from the events E; that are responsi-
ble for the failure. This mechanism, coupled with stacking properties of bistable
activation, is involved in the scheduling of action schemes, synchronizing calls
towards the posterior cortex model by defining when a sub-sequence has suc-
ceeded. Learned contexts are also used to determine which sub-sequence to call
when a call fails. Finally, the same context mechanism has been reused, detect-
ing distribution of call activities among the frontal units, to learn which schemes
are not compatible with the execution of others.

4.4 Discussion

The design of mechanisms presented in this section is driven by engineering con-
straints (robustness, integration into an efficient architecture), that lead us not
just to stick to the biological background. Using biological inspiration for such
purposes is constrained by a trade off between biological validity and computa-
tional efficiency. Nevertheless, cortical modeling offers us a framework to develop
highly integrated applications. These open architectures can then be refined and
extended consistently.

5 Conclusion

The main goal of this chapter was to present a cortical framework in which iso-
lated neurobiologically inspired mechanisms can be integrated. It was shown in



particular that these mechanisms can act at different levels of time, for different
kinds of elementary functions. Data from cortical organization and functioning
offer a framework for embedding these mechanisms in a way that yields neuro-
biological plausibility at the neuronal as well as the behavioral level.

As a conclusion, in a schematic way, we can now consider in turn the mech-

anisms and their time scale, with the corresponding neuronal and behavioral
description.

1.

The time scale of one millisecond corresponds, at the neuronal level, to the
duration of a spike and to the duration of synaptic transmission from one
neuron to its closest neighbors. It thus corresponds to the minimal time
scale for a bit of information. At the behavioral level, coincidence detectors,
in peripheral neural structures, can work at this time scale.

. The time scale of ten milliseconds corresponds, at the neuronal level in the

central structures, to the coding level of spike intervals, since the maximal
frequency cannot exceed 100 Hz in these structures. This thus corresponds
to the minimal timing from one area to the next. At the behavioral level, it
corresponds to the focus of attention or to the timing of feedback information
flow from an higher level to a lower level map.

The time scale of one hundred milliseconds corresponds, at the neuronal
level, to the activation dynamics of a population of neurons, which are locally
synchronized at this time scale. It is the basic timing of activities in the cortex
which are linked with simple sensory and motor events. At the behavioral
level, it corresponds to the minimal reaction times from the first processing
layer (stimulus) to the last (recognition or action). It is thus the minimal
time for the simplest sensorimotor loops.

The time scale of one second corresponds, at the neuronal level, to the time
scale of the basic processes which can result in learning. Neurons in the
higher levels of associative cortex can stay active on this time scale, even
if the stimulus is no longer present. At the behavioral level, it corresponds
to the time scale of correspondences between sensory and motor events on
different modalities which can produce reinforcement. It also corresponds
to a level of information processing which has strong intrinsic regulations
within modalities (for example, the exploration of an object).

The time scale of ten seconds corresponds, at the neuronal level, to the
typical time scale of working memory in the frontal regions of the cortex. The
learning mechanism is performed by the control of bistable states of frontal
neurons in order to build stacks. At the behavioral level, this time scale
corresponds to the processes in the frontal cortex allowing the organization
of temporal aspects of behavior like the exploration of a scene.

The time scale of one hundred seconds and more corresponds, at the neuronal
level, to the very long time constants of some neuronal intrinsic metabolic
and genetic processes. Rhythms with long periods can be produced by such
structures as the reticular formation and the hypothalamic nuclei. Such in-
ternal clocks can influence cortical activity by modulators which can switch
the intrinsic temporal programs of large populations of cortical neurons. At



the behavioral level, these biological rhythms can have large contextual in-
fluence (like emotion) and can produce global regulation of the behavioral
programs within the whole network.

On the one hand, each basic temporal mechanism that we have presented
above can be related to one (or two consecutive) of these temporal resolutions
and to the corresponding neuronal and behavioral mechanisms. On the other
hand it is clear that a fully plausible behavioral model should include all of the
six levels of time. In any case, it should not be restricted to one or two levels. We
believe that the cortical framework that we have presented here allows one to
work at the same time at these different temporal levels, with the corresponding
behavioral abilities.
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