Skip to main content

Data-Dependent Margin-Based Generalization Bounds for Classification

  • Conference paper
  • First Online:
Computational Learning Theory (COLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2111))

Included in the following conference series:

  • 2011 Accesses

Abstract

We derive new margin-based inequalities for the probability of error of classifiers.The main feature of these bounds is that they can be calculated using the training data and therefore may be effectively used for model selection purposes.In particular, the bounds involve quantities such as the empirical fat-shattering dimension and covering number measured on the training data, as opposed to their worst-case counterparts traditionally used in such analyses, and appear to be sharper and more general than recent results involving empirical complexity measures.In addition, we also develop an alternative data-based bound for the generalization error of classes of convex combinations of classifiers involving an empirical complexity measure that is more easily computable than the empirical covering number or fat-shattering dimension.W e also show an example of efficient computation of the new bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the ACM, 44:615–631, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  3. M. Anthony and J. Shawe-Taylor. A result of Vapnik with applications. Discrete Applied Mathematics, 47:207–217, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine Learning, to appear, 2001.

    Google Scholar 

  5. P. Bartlett and G. Lugosi. An inequality for uniform deviations of sample averages from their means. Statistics and Probability Letters, 44:55–62, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  6. P.L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44:525–536, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration inequality with applications. Random Structures and Algorithms, 16:277–292, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Devroye, L. Györfi, and G Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-V erlag, New York, 1996.

    MATH  Google Scholar 

  9. L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer-Verlag, New York, 2000.

    Google Scholar 

  10. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58:13–30, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Kearns and R.E. Schapire. Efficient distribution-free learning of probabilistic concepts. Journal of Computer Systems Sciences, 48:464–497, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. manuscript, 2000.

    Google Scholar 

  13. M. Ledoux and M. Talagrand. Probability in Banach Space. Springer-V erlag, New York, 1991.

    Google Scholar 

  14. C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics 1989, pages 148–188.Cam bridge University Press, Cambridge, 1989.

    Google Scholar 

  15. J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44:1926–1940, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Shawe-Taylor and R.C. Williamson. Generalization performance of classifiers in terms of observed covering numbers. In H.U. Simon P. Fischer, editor, Computational Learning Theory: Proceedings of the Fourth European Conference, EuroCOLT’ 99, pages 153–167. Springer, Berlin, 1999. Lecture Notes in Artificial Intelligence 1572.

    Google Scholar 

  17. V.N. Vapnik and A.Ya. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974.(in Russian); German translation: Theorie der Zeichenerkennung, Akademie Verlag, Berlin, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kégl, B., Linder, T., Lugosi, G. (2001). Data-Dependent Margin-Based Generalization Bounds for Classification. In: Helmbold, D., Williamson, B. (eds) Computational Learning Theory. COLT 2001. Lecture Notes in Computer Science(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44581-1_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-44581-1_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42343-0

  • Online ISBN: 978-3-540-44581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics