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Abstract We introduce a new method for representing and solving a
general class of non-preemptive resource-constrained project scheduling
problems. The new approach is to represent scheduling problems as de-
scriptions (activity terms) in a language called RSV, which allows nested
expressions using pll, seq, and xor. The activity-terms of RSV are sim-
ilar to concepts in a description logic. The language RSV generalizes
previous approaches to scheduling with variants insofar as it permits
xor’s not only of atomic activities but also of arbitrary activity terms.
A specific semantics that assigns their set of active schedules to activity
terms shows correctness of a calculus normalizing activity terms RSV
similar to propositional DNF-computation.

Based on RSV, this paper describes a diagram-based algorithm for the
RSV-problem which uses a scan-line principle. The scan-line principle is
used for determining and resolving the occurring resource conflicts and
leads to a nonredundant generation of all active schedules and thus to a
computation of the optimal schedule.

1 Introduction

Ever since the introduction of the pioneer works of Kelly [13] and Wiest [27] very
much has been reported for the classical resource-constrained project schedul-
ing (RCPS) but most approaches solving this problem use either heuristic algo-
rithms ([11], [5], [3], [14], [19]) or exact algorithms ([21], [23], [24], [26], [7], [8].
[18]), are restricted to the case in which each job could be performed in only
one prescribed way. Although Schrage [23] and Konig et al. [16] suggested the
possibility of generalization to “OR” activities, there are only a few publications
([10], [25]) which deal with a class of resource-constrained scheduling problems
with variants, where “OR” was restricted to atomic activities.

This paper generalizes resource constrained project scheduling with variants
(RSV) to allow “OR” of compound activities. The use of semantic methods from
description logics ([22,9] is the key for understanding the meaning of compound
activity terms (for more information see [15]).

Description Logic emerged from KL-ONE-based, terminological knowledge rep-
resentation systems and is now an active field of research in artificial intelligence



with its own conference(s). Characteristics of descriptions logics are a term lan-
guage for concepts and other notions, a clean denotational semantics, and spe-
cific calculi (like subsumption) based on the semantics. There are extension of
description logics by temporal operators (see e.g. [1,2]), which allow reasoning
about concepts in time.

Scheduling is roughly the problem, given certain tasks, their duration and re-
source usage to find an optimal conflict free schedule, usually on a discrete time
line. It is possible to encode these problems into temporal description logics,
though it appears to be inconvenient, since for scheduling problems, time has to
be measured and added, and the goal is finding an optimal schedule. Further-
more reasoning is not optimized to deal with the constraint of exclusive resource
usage.

The methods proposed so far for solving scheduling problems are mostly based
on integer programming. In that approach it is generally difficult to read the flow
structure and the content of a scheduling problem (for example, which activity
requires what resource).

This motivates to use a term language RSV for activity terms and to model
its semantics in a way best suited to the specific time and resource constraints.
Based on this semantics, a calculus is defined which can transform each activity
term A into a semantically equivalent, normalized activity term B, which is
a nonredundant disjunction of reduced activity terms corresponding to A. For
every reduced activity term, optimal schedules (with the minimal makespan)
can be computed using an algorithm for solving the classical RCPS-problem.
For any RSV-activity term the optimal schedules can be computed by this two-
step process using a final minimization. It is non-obvious how to compute the
active schedules of compound activity terms in another way.

Further we introduce a new diagram-based method, which represents reduced
activity terms graphically as RSV-diagrams. Based on this method, an algorithm
for generating all nonredundant active schedules for a reduced activity term is
described, which uses a time-based scan-line principle to determine and resolve
the occurring resource conflicts. The principle of using a scan-line is well known
in the area of geometrical algorithms ([20], [28]) and may be used for example
to solve problems occurring during the design of VLSI circuits.

This paper is structured as follows. First, the scheduling language RSV is defined
in section 2. Then the calculus is described in section 3. The optimal solution
algorithm and the correctness proof for it are given in section 4. The last section
5 contains conclusions and future work.

2 The Scheduling Language RSV

A terminological language RSV that may be used to model a new general class
of resource-constrained project scheduling problems with variants is defined as
follows:



2.1 The Syntax of the Language RSV

Definition 1. The vocabulary of RSV consists of two disjoint sets of symbols:

— A set of atomic activities, also called ground activities. Each atomic activity
consists of a name and two integer constants (written like arguments of a
predicate symbol). The first denotes a resource; the second a duration. For P
a name and r,t € IN, P(r,t) is a ground activity. The name of each ground
activity is uniquely chosen. For a ground activity A let r(A) and d(A) denote
its associated resource and duration, respectively.

— Three structural symbols (operators) seq, xor and pll.

The activity terms of RSV are inductively defined as follows:

1. Each ground activity is an activity term.

2. If Ay, As, - -, Ay are activity terms, then
(Squ17 A27 e 7Ak:)7
(xor Ay, Ay, -+, Ayp),
(P Ay, As, -, Ay)

are also activity terms.
The operators ‘seq’, ‘xor’ and ‘pll’ have the following meaning:

— ‘seq’ : This operator specifies the sequential processing of an activity term
or activity terms (precedence constraints).

— ‘xor’ : This operator can be used to select an activity term among several
different, alternative activity terms. Exactly one activity term among the
alternatives must be selected and executed.

— ‘pll’ : This operator specifies the possibility of parallel processing of activity

terms.

2.2 Reduced Activity Terms

An expression of RSV which is xor-free is called a reduced activity term. For a
project represented by a reduced activity term there is no selection possibility
for any part of it.

B is a reduced activity subterm of A, if B can be derived from A by repeatedly
replacing subterms of the form (xor Cjy,---,C,) by exactly one C; (i = 1,---
or n) so that B is xor-free. Associated with any activity term A of RSV, there
exist finitely many different reduced activity terms which can be derived from
A. These reduced activity terms take partially different paths but complete the
same project.

Example 1. We show how to encode the small project of preparing food for two
persons and then eating this food. The project is to either putting 2 pizzas in
the oven, or putting 4 toasts into the toaster, and then eating them. Let resource



1 be the oven, resource 2 be the toaster, 3 and 4 are the two persons. Then a
description could be

(seq (xor pizza(l,15) (pll toastfst(2,2), toastsnd(2,2))))
(pll arne eating(3,10), pokson eating(4,12))

Note that we permit several occurrences of the same ground activity in an activ-
ity term but this is not permitted for a reduced activity term, i.e. each ground
activity can occur once and only once in a reduced activity term.

2.3 Schedules

For a reduced activity term A let g(A) = {Ay,---, A, } be the set consisting of
all ground activities occurring in A. The activity term A defines a strict partial
order <4 on {Ay, -+, Ay}, using the sequentiality operator. It is generated on
the set S of subterms of A as follows:

— (seq B1,...,Bn) € SANi<j= B; <a Bj.
— By,B2 € SA By <4 B = Bj <4 Bj, for every subterm B] of B;,i =1,2.

Definition 2. Let A be a reduced activity term and g(A) = {4y, -, An}.
An active schedule for A is a set of starting times of ground activities {ta, €
IN | A; € g(A)} such that:

— The precedence constraints are satisfied: ta, + d(Ap) < ta, for each A; and
each immediate predecessor Ap with Ap <4 A; ,

— The resource constraints are satisfied: ta,, > ta, + d(A;) or ta, > ta, +
d(An) for all Ay, Apy € g(A) with r(A;) = r(An)(l # m) and

— No ground activity can be started earlier without changing other start times:
There does not exist another set {t'y. |A; € g(A)} with a ground activity Aj;,
which satisfies the precedence and resource constraints, such that ta, = t'Ai
fori#j andty, > t’Aj.

The makespan of an active schedule is the duration from the first starting time
min;(ta,) to the stopping time max;(ta, + d(A;)).

Let A be an activity term. Then the set of active schedules for A is the union of
the set of active schedules for all reduced activity subterms of A.

Since time is discrete it is easy to see that for any activity term A the set of active
schedules derived from A is finite. In the following all schedules are assumed to
be active.

2.4 The Semantics of the Language RSY

Definition 3. The model-theoretic semantics of activity terms in RSV is given
by an interpretation I which consists of the set D (the domain of Z) and a
function - (the interpretation function of Z). The set D consists of all active
schedules derived from activity terms in RSY. The interpretation function - as-

signs to every activity term A the subset of D that consists of all active schedules
derived from A.



2.5 Scheduling Problem

The objective is minimizing the project makespan, i.e. finding an active schedule
with a minimal duration. So, we define the scheduling problem RSV as follows:

Definition 4 (The scheduling problem RSV).
For a given activity term A of RSV an (active) schedule corresponding to A
which has the minimal project makespan has to be determined.

3 A Calculus for the Scheduling Language RSV

Two activity terms are semantically equivalent, if the interpretations of the two
activity terms are identical. For example, the following two activity terms

(pll (Seq P3(Cv 15)7 P4(Cv 16))7 (XOI‘ P5(Cv 3)7 Fs (dv 5))) (1)
and

(xor (pll (seq P3(c, 15), Ps(c,16)), Ps(c, 3)), (2)
(pll (Seq P3(Cv 15)7 P4(Cv 16))7 Pﬁ(dv 5)))

are semantically equivalent, i.e. the set of all schedules which may be derived
from (1) and the set of all schedules which may be derived from (2) are identical.
An activity term such as (2) in which the xor-operator occurs only once in the
leftmost position is called a normalized activity term. In this section we will
define a calculus that may be used to transform any RSV-expression A into a
semantically equivalent normalized RSV-expression B. Further we will show the
calculus to be correct, i.e. in the calculus only such syntactical derivations which
cause no semantical change are permitted. So, if A - B, then A = B holds, as
illustrated in Figure 1.

Syntax 7 Semantics
RSV D

Figurel. Graphical representation of a scheduling equation A = B



3.1 The RSV -calculus

Similar to the computation rules for a disjunctive normal form in propositional
logic, a RSV- calculus is defined:

Definition 5. If Ay, Ay, -+, Ag, B1,--+ , By, Agya, - , Ay are activity terms,
the calculus has the following 3 associative rules (3,4,5) and 2 distributive rules
(6,7). Each associative rule describes that a subexpression combined by ‘seq’,
xor’ or ‘pll’ which is an argument of the operator ‘seq’, xor’ or Ppll’ respec-
tively may be flattened. Each distributive rule describes that if the operator xXor’
occurs as an argument of the operator ‘seq’ or ‘pll’, the operator xor’ may be
moved to the leftmost position:

(Squ17A27"' 7Ak7(squ17B27"' 7Bl)7Ak+27Ak+37"' 7An) (3)
(Squ17A27"' 7Ak7B17327”' 7Bl7Ak)+27Ak)+37"' 7An)

(XOI‘ A17A27"' 7Ak,7(XOI' BlvB27"' 7Bl)7Ak+27Ak+37"' 7A’n) (4)
(XOI‘ A17A27"' 7Ak7B17327"' 7Bl7Ak+27Ak+37"' 7An)

(pll A17A27'.' 7Ak7(p11B17B27"' 7Bl)7Ak+27Ak+37"' 7An) (5)
(p11A17A27"' 7Ak7B17327”' 7Bl7Ak)+27Ak)+37"' 7An)

(SquhAQ"” 714]4;7()(01' BI7B27"' 7Bl)7Ak+27Ak)+37"' 7A'n,)
(xor (seq A1, A, -+ , A, By, Apr2, Arys, -, An),
(seq Ay, As, -+ A, Bo, Ajyo, Agas, -, An)

(seq A17A27 e 7Ak7BlaAk+27Ak+37 o 7An))

(p11A17A27.“ 7Ak7(X0rB17B27"' 7Bl)7Ak)+27Ak+37"' 7An)
xor ((pll A1, Az, -+, Ag, Br, At Az, o5 An
(pllA1,A27... ,Ak7B27Ak+27Ak+3,"' ’An

(pll Ala A27 e 7Ak7 BlvAk+27Ak+37 e 7An))
Lemma 1. The RSV-calculus is a correct calculus.

Proof. A rule in the form

A

B

is “correct” iff the interpretation of the upper expression A and the lower expres-
sion B is identical ( AT = BT). In the following we show this for each of the 5
rules.



Rule (3): The set of all active schedules derived from the upper and lower expres-
sion is obviously identical, because both expressions describe the same ordering
of the activity terms Ay,--- , Ak, By, -, By, Agy2, -+, Ap—1 and A,. Otherwise
the expression transformation doesn’t make changes. Therefore, the following
equation holds:

(seq A17A27"' 7Ak7(squ17327"' 7Bl)7Ak+27Ak+37"' 7An)I
= (Squ17A27"' 7Ak7B17327"' 7Bl7Ak+27Ak+37"' 7An)I

Rule (4) and Rule (5) may be proved similarly to rule (3).

Rule (6): For the k + 1-st argument of the operator ‘seq’ a choice possibility
exists. One of the [ activity terms By, --- B;_1 and B; must be selected. For each
choice of B; (i = 1,---,1) a set of all schedules derived from the expression

(seq A17A27 e 7Ak7Bi7Ak+27Ak+37 o 7An)

denoted by M p;is determined. Then the set of all schedules which may be derived
from the upper expression

(Squ17A27"' 7Ak7(X0rB17B27"' 7Bl)7Ak)+27Ak+37"' 7An)

corresponds to the union of the sets Mp, --- Mp, , and Mp,. Further this union
corresponds to the set of all schedules which may be derived from the lower
expression. So, the following equation holds:

(squ17A27 7Ak7(X0rBlaB27"' 7Bl)7Ak+27Ak+37"' 7An)I
= (XOI’ (Squ17A27"' 7Ak7B17Ak+27Ak+37"' 7An)7
(Squ17A27"' 7Ak:7B27Ak:+27Ak:+37"' 7A7L)7

(seq A17A27 T Aka Bla Ak+27 Ak+37 e 7An))I
Rule (7): This may be proved similar to rule (6).
The correctness of the RSV-calculus permits to formalize the following theorem:

Theorem 1. For any activity description A of RSV all operators xor’ in the
interior of A always can be moved to the leftmost position such that A is trans-
formed to a semantically equivalent, normalized activity term A’ in which the
operator ‘xor’ can occur uniquely once in the leftmost position combining all
reduced activity terms derived from A.

Proof. Tt is sufficient to show that for any expression A of RSV all derivations
terminate in a normalized expression. This is the case when no further RSV-rules
can be applied.

Using an innermost strategy and induction on the number of occurrences of
xor’s it is easy to see that in every expression containing the ‘xor’-operator, it
can be shifted to the topmost position.

Thus all ‘xor’-operators in the interior of the activity term A may be moved
stepwise to the left until at most one topmost xor remains. O



Theorem 1 shows that the RSV-problem can be solved by first transforming
each activity term A into a semantically equivalent, normalized activity term
B and then computing the schedules with the minimal project makespan for
every reduced activity term of B separately. A final minimizing step computes
the minimum makespan for A.

In the following section we describe a solution algorithm that nonredundantly
computes all active schedules for each reduced activity term of RSV.

4 Solving the RSV-problem using diagram-based
calculation

Many varieties of branch-and-bound-based implicit enumeration methods ([23],
[24], [26], [4], [7], [8], [18], [6]) for solving the RCPS-problem which may be also
used for determining the optimal schedules for reduced activity terms of RSV
have been reported. In this section we introduce a new diagram-based method
for representing reduced activity terms graphically. The resulting diagrams are
called RSV-diagrams. Further we show that based on the representation method,
a solution algorithm is described for explicit generation of all nonredundant
active schedules. This is illustrated graphically using RSV-diagrams.

4.1 The RSV-Diagram

A RSV-diagram has a time axis and a scan-line. The operator ‘seq’ is specified
using a continuous line while the operator ‘pll’ is specified using a broken line.
In the following two reduced activity terms are for example represented by a
RSV-diagram.

Example 2. The following two reduced activity terms

11 (seq P (b, 3), P3(c,4)), pll (seq (pll P (a, 1), P3(b,2)), P3(c,2)),
v (Segp3 (a’7 2) P4(b7 3))7 and 5_56(3(3’;4)([)’ 1)’ P5 (a7 1))7
(seq Ps(a,4), Ps(b,2)) (seq,P7(,d7 )

)
)
may be represented by the RSV -diagram 1 and 2 of Figure 2 respectively.

4.2 Solution Algorithm Arsy Based on a Scan-Line principle

In a RSV-diagram each ground activity has a left and a right end point (a
start and end time). The left and right end point of any ground activity P(r,t)
denoted by LE(P(r,t)) and RE(P(r,t)) are referred to as stopping times of the
scan-line. (D, t) with ¢ > 0 denotes that the scan-line is found at the stopping
time tgr, =t in the RSV-diagram D. The scan-line is used for determining and
resolving resource conflicts. Instead of continuously moving, the scan-line jumps
from one stopping time to the next right stopping time while determining and
then resolving resource conflicts.
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Figure2. RSV-diagrams with the scan-line on the stopping time tgz, = 0.

In the beginning the scan-line is found at the time tg;, = 0 and the diagram is
empty. The diagram is accompanied by a given input activity term A and an
actual activity term T', where in the beginning A = T holds.

Step 1: Attaching start ground activities to the scan-line: First all start
ground activities of A (or T') which have no predecessors in A are attached to
the scan-line. “Attaching a ground activity P to the scan-line” means that P is
placed in the diagram so that the time at which the scan-line is found is assigned
to P as its start time.

Step 2: Moving the scan-line: The scan-line jumps to the next stopping time.

Definition 6. In a RSV-diagram (D,tsy) with ts, > 0 a ground activ-
ity P(r,t) is called a (tgp-time) scan-line activity iff LE(P(r,t)) < tsp and
RE(P(r,t)) > tsr, holds. A scan-line activity P(r,t) with RE(P(r,t)) = tsy, is
called a (tsr-time) direct scan-line activity. A direct scan-line activity P(r,t) is
called a (tgy-time) conflict-free activity iff there is no other scan-line activity
that requires the resource r, i.e. P(r,t) is a unique scan-line activity requiring
the resource r. The resource r which is required by a direct scan-line activity is
called a (ts-time) direct scan-line resource.

Definition 7. If in a RSV-diagram (D,tsy) with ts;, > 0, ground activities
Py(r,ty), Pa(r,ta),--- and P,(r,t,)(n > 2) and are all (tsi-time) scan-line ac-
tiities requiring the same resource r, Py(r,t1), Pa(r,t2), -+ and Py(r,t,) (n > 2)
are called to be involved in a (tsr,r)-resource conflict or tsy,-time resource con-
flict iff v is a direct scan-line resource . This resource r is called a tsy-time
conflict resource. Further tthese activities Py (r,t1), Po(r,t2),--- and P,(r,t,)
(n > 2) are called (tsy,,r)-conflict activities or tgy, -time conflict activities.

Step 3: Determining and resolving resource conflicts; Freezing all def-
initely placed ground activities: First, because the begin and end times of
all tgy-time conflict-free activities have been definitely determined, all tgy-time
conflict-free activities are frozen. If several scan-line activities require a conflict



resource r simultaneously, a resource conflict occurs. A resource conflict is re-
solved by selecting an activity and shifting all the other activities behind the
selected activity. In this case the begin and end time of this selected activity are
definitely determined. In order to mark that a selected activity must no longer
be moved, it is frozen.

At any stopping time tgy, several different tgz-time resource conflicts can si-
multaneously occur. In this case exactly one (tsy,,r)-conflict activity for each
tsr-time conflict resource r is selected in order to freeze it. There exist several
different combinational possibilities for selecting activities. Such a combination
is called a conflict combination and is formally defined as follows:

Definition 8. Let ry,r2, -+ ,ry, be tsp-time conflict resources in a RSV-
diagram (D,tsr). Let Pp 1,-+-, Prm, be all (tsr,r1)-conflict activities,
Pryi, -y Pryms, be all (tsp,ra)-conflict activities, --- , and Py 1, -+, Pr, .,

be all (tsr,rn)-conflict activities. An element of the following set
{[Pr1,i17PT‘27i27"' 7P7"n,in]|i1 = 17 7m17i2 = 17 s Mg, e 7in = 17 7m’n}
18 called a tsr-time conflict combination.

In the case of the definition 8 there exist altogether my X mgy X --+ X my, tgr-
time conflict combinations. In order to pursue all possible precedence orderings,
the actual RSV-diagram (D, tsy,) is multiplied by the number of the existing
conflict combinations. Every conflict combination is assigned to one of the mul-
tiplied diagrams respectively. In every diagram, the assigned conflict activities
are frozen and all the other tg;-time conflict activities are moved behind each
corresponding frozen activity respectively. We proceed with the step 4 for every
diagram accompanied by A and T'.

Step 4: Deleting all tg7-time direct scan-line activities from the actual
activity term T': If in the diagram (D, ts1,) tsz.-time direct scan-line activities
exist, they surely have been frozen in the last step 3. Now all tgy-time direct
scan-line activities in (D, tgy) are deleted from T of (D,tsy). So T may become
smaller.

Step 5: Attaching further ground activities to the scan-line: Further
ground activities from the actual activity term 7" which can be attached to the
scan-line are determined in order to place them. If in an actual diagram (D, tsy,)
a scan-line activity P(r,t) with RE(P(r,t) > tsz, has been frozen, the resource
r is being blocked until the time RE(P(r,t)). So, all further ground activities
requiring the tgy-time blocked resource r which have not yet been placed in the
diagram and have no predecessor in 7" must wait until the scan-line has jumped
to the time RE(P(r,t)). For (D,tsr)(tsr, > 0) with an input activity term A
and an actual activity term 7', a ground activity P(r,t) of T can be attached to
the scan-line iff

1. P isn’t from the diagram (D, tsy,),
2. in (D, tgr) there exists no frozen activity Q(r,[) for which LE(Q) < tsr and
RE(Q) > tsz, hold.



3. in T" P has no predecessor.

Furthermore the steps 2, 3, 4 and 5 are recursively applied until all ground
activities have been placed in the diagram and all activities in the diagram have
been frozen so that T is empty and an active schedule is completed. Among all
computed schedules, those that have the minimal project makespan are delivered
as the optimal schedules for A.

1 D 2 D1
-1 -1
Py(a,1) Py(a,1)
| P02 | P@2 |
Py(b,1) Py(b,1)
Py(a,2) Py(a,2)
Pi(d, 1) Pi(d, 1)
s } } } } } } } } } } }
6 t 6
3 D1 4 D11
HEe, Pie3) e | e
Py(b,2) Py(b,2)
Py(b, 1) Pi(b,1), P5(d, 1)
Ps({1,2) Ps(a,2)
Pi(d,1), AbY) | Po(d. 1) P(h2) |
} } } } } } } } } }
6 t 6

Figure3. RSV-diagram-based calculation of active schedules for the reduced
activity term of example 2

Ezample 3. In order to demonstrate that computing with the aid of RSV-
diagrams makes the algorithm easily understandable, we consider the second
reduced activity term of example 2. In the beginning, the input activity term
and the actual activity term are identical. There are start activities Py, Ps, Py, Ps
and Pr. The diagram 1 of figure 3 shows the resulting diagram after applying
step 1, in which the scan-line time 0 has been assigned to these start activities



Py, P, Py, Ps and P; as their start time. In step 2, the scan-line jumps into the
next stopping time tg;, = 1 and we have the resulting diagram (D, 1), in which
there is one 1-time conflict free activity P; and two 1-time conflict resources a
and b. So there exist four 1-time conflict combinations [Py, P, [Py, Py, [P, Ps)
and [Py, Ps] altogether. The diagram (D, 1) is multiplied 4 times, let these be
D1,---,D4 and [Py, Bs], [Py, P4, [Ps, Ps], [Py, Ps] are assigned to D1, --- , D4 re-
spectively. In every diagram, the 1-time conflict free activity P; and the assigned
1-time conflict activities are frozen and the other 1-time conflict activities are
moved behind each corresponding frozen activity. Subsequently we proceed with
the next step 4 in every diagram accompanied by the input activity term and
the actual activity term.

If we pursue (D1, 1) to which the combination [Py, P»] is assigned, we have di-
agram 2 of figure 3 where P;, P> and P: have been frozen and P, and P have
been moved behind P, and P; respectively. Now the two 1-time direct scan-line
activities P; and P; in (D1,1) (diagram 2) have to be deleted from the actual
activity term. After deleting both activities we have the following new actual
activity term for (D1,1):

pli(seq (pll P(b,2)), P3(c,2)),
(seq Py(b,1), Ps(a,1)),
Pﬁ (av 2)v
(seq P(b,2))

Ps is here the unique activity which has no predecessor and isn’t yet included
in the diagram, but it requires the 1-time blocked resource b. So in the next
step 5 there is no activity to be attached to the scan-line. After applying the
further steps 2, 3, 4 and 5 to the diagram 2, we have the diagram (D1,2) the
diagram 3 of figure 3 shows, where the two further activities P; and P newly
have been attached to the scan-line. The information that P corresponds to
the immediate predecessor of Py could be read from the input activity term
accompanied. So, Py, for example, has been placed behind Pr in the diagram.
After applying the next step 2 to the diagram 3 we get (D1, 3), in which there is
a 3-time conflict resource b. (D1, 3) is duplicated 2 times, let these be (D11, 3)
and (D12, 3) where 3-time conflict activities P, and Py are assigned to (D11, 3)
and (D12, 3) respectively. In (D11, 3) the 3-time conflict free activity Ps and the
assigned activity Py are frozen etc. Finally, from the diagram (D11, 3), one active
schedule requiring the project makespan 5 is generated which the diagram 4 of
figure 3 shows while from the diagram (D12,3), one active schedule requiring
project makespan 6 is generated. For this example, there are 4 different optimal
active schedules with project makespan 5 altogether.

4.3 Proving Correctness of Arsy
A correctness proof for Arsy is given as follows:

Theorem 2. For any given reduced RSV-activity term A, Arsy generates
nonredundantly all active schedules which may be derived from A.



Proof. We show the theorem through structural induction on the term construc-
tion of A.
Induction base: If A is a ground activity, the proof is trivial.
Induction step: In the beginning the scan-line is found at the time tsz, = 0. After
applying the first step all start activities of A are attached to the scan-line. In
the following the scan-line jumps to the next stopping time I. Let G1,--- ,Gp
be all [-time direct scan-line activities, i.e. it holds that RE(Gy) = RE(G2) =
-+ RE(Gy) = 1. Now, the following 2 different cases have to be distinguished:

Case 1: There is at least one activity G; which corresponds to a I-time conflict-
free activity. First, all [-time conflict-free activities are frozen and then the oc-
curring resource conflicts are resolved. Here, let the diagram be multiplied to
k diagrams Dy, -+, Dy so that each [-time conflict combination is assigned to
a diagram respectively. After resolving the resource conflicts, for every diagram
all [-time direct scan-line activities are deleted from the actual activity term T
respectively. So, in every diagram the corresponding actual activity term T be-
comes smaller since at least one [-time conflict-free activity G; is deleted from T'.
Furthermore, Arsy is applied recursively to every diagram accompanied by the
corresponding actual activity term 7. By induction hypothesis, Arsy generates
nonredundantly all active schedules for every diagram since every corresponding
actual activity term T is smaller than A. Moreover, Arsy generates nonredun-
dantly all active schedules for A since Dq,---, Dy are pairwise different. It is
obviously true for the case k£ =0, i.e. all G4, -+ , G, are [-time conflict-free too.
Case 2: Each activity G; is involved in a [-time resource conflict, i.e. there is no
[-time conflict-free activity. First the occurring resource conflicts are resolved.
Let the diagram be multiplied to k diagrams D, ---, Dy so that each [-time
conflict combination is assigned to a diagram respectively. For any D; the fol-
lowing two subcases have to be distinguished:
Case 2.1: There is at least one activity G; which is frozen. This case is very
similar to the case 1.
Case 2.2: None of the [-time direct scan-line activities Gy,--- ,G,, is frozen.
Then, there are further [-time conflict activities which are frozen. Let these be
H,,---,H, where RE(H;) > [ for each j must hold. Eventually Hq,---,Hp
will be deleted from the actual activity term 7" and in the result 7" will become
structurally smaller. So, by induction hypothesis, Arsy generates nonredun-
dantly all active schedules.
Consequently, for the case 2, Arsy generates nonredundantly all active sched-
ules for A since D1q,--- , D;, are pairwise different.

O

5 Summary and Future Work

The methods of description logics have been applied in order to formulate and
solve a new general class of resource-constrained scheduling problems. Scheduling
problems with variants are defined as activity terms of a concept language RSV.
The logic of RSV offered an effective approach for solving the A/P-complete



RSV-problem. Furthermore, based on the language RSV a new diagram-based
method for representing reduced activity terms of RSV has been introduced. The
nonredundant generation of all active schedules for any reduced activity term
could be described graphically using RSV-diagrams, in whose center a scan-line
principle stands.

The resource availability we discussed in this paper falls into category of type
n/1/1, according to Holloway et al.’s [12] notation, where the most general cate-
gory of type n/n/n stands for multiple resource types, multiple units of resources
and multiple number of resource types required by a ground activity. Until now,
many models which deal with the classical RCPS-problem and fall into the cat-
egory of type n/n/n (e. g. [17], [7], [8], [18]) have been introduced. In these
models, a constant amount of each resource is assumed to be available through-
out the duration of the project and to be also demanded by a ground activity
throughout the duration of the ground activity.

Future work may investigate a generalization of resource availability of type
n/n/n for the language RSV. Such general problems may be easily formulated

by generalizing the syntax P(r,t) to P((r1,r2, -+ ,rp),t), where n corresponds
to the number of resource types and r; (i = 1,---,n) and 0 < r; < b; describes
required units of resource type ¢ by P. Here, each resource type i (i =1, -+ ,n)

is assumed to be available in a constant amount b; throughout the duration
of the project. Otherwise the three structural symbols (operators) ‘seq’, ‘xor’
and ‘pll’ and the inductive rules for constructing activity terms may be applied
unchanged.
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