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Abstract. We present a model checking algorithm for ∀CTL (and full CTL)
which uses an iterative abstraction refinement strategy.
It terminates at least for all transition systems M that have a finite simulation or
bisimulation quotient. In contrast to other abstraction refinement algorithms, we
always work with abstract models whose sizes depend only on the length of the
formula Φ (but not on the size of the system, which might be infinite).

1 Introduction

The state explosion problem is still the major problem for applying model checking
to systems of industrial size. Several techniques have been suggested to overcome this
limitation of model checking; including symbolic methods with BDDs [6,33] or SAT-
solvers [4], partial order reduction [35,22,40], compositional reasoning [29,21] and ab-
straction [11,26,13,27,29,16,19]. See [14] for an overview.
In this paper, we concentrate on abstraction in a temporal logical setting. Let M be
the concrete model that we want to verify against a temporal logical formula Φ. The
rough idea of the (exact) abstraction approach is to replace M by a much smaller ab-
stract model Aα with the strong preservation property stating that Aα |= Φ iff M |= Φ.
The subscript α stands for an abstraction function that describes the relation between
concrete and abstract states. In the simplest case, α is just a function from the concrete
state space S to the abstract state space. (the state space of the abstract model Aα). For
instance, dealing with the abstraction function α that assigns to each concrete state s
its (bi-)simulation equivalence class, we get the (bi-)simulation quotient system Mbis or
Msim, for which strong preservation holds if Φ is a CTL∗ resp. ∀CTL∗ formula [5,13].

Algorithm 1 Schema of the Abstraction Refinement Approach.
construct an initial abstract model A0; i := 0;
REPEAT

Model Check(Ai,Φ);
IF Ai �|= Φ THEN Ai+1:= Refinement( Ai,Φ) FI;
i := i+ 1;

UNTIL Ai−1 |= Φ or Ai = Ai−1;
IF Ai−1 |= Φ THEN return “yes” ELSE return “no” FI.
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If Φ is fixed these are unnecessarily large. In general, conservative abstractions that
rely on the weak preservation property, stating that Aα |= Φ implies M |= Φ, yield
much smaller abstract models. Such models can be used in the abstraction refinement
schema shown in Algorithm 1 (e.g. [10,18,26,23,12]). Here, Model Check(. . .) denotes
any standard model checking algorithm and Refinement(. . .) an operator that adds fur-
ther information about the original system M to Ai to obtain an abstract slightly more
“concrete” model. A necessary property that ensures partial correctness of the above ab-
straction refinement technique is the strong preservation property for the final abstract
model which might be obtained when no further refinement steps are possible.
The major difficulty is the design of a refinement procedure which on one hand should
add enough information to the abstract model such that the “chances” to prove or dis-
prove the property Φ in the next iteration increase in a reasonable measure while on
the other hand the resulting new abstract model Ai+1 should be reasonable small. The
first goal can be achieved by specification-dependent refinement steps such as coun-
terexample guided strategies [10,26,12] where the current abstract model Ai is refined
according to an error trace that the model checker has returned for Ai or by strategies,
that work with under- and/or overapproximations for the satisfaction relation |=M of the
concrete model, e.g. [18,28,31,36]. To keep the abstract models reasonable small two
general approaches can be distinguished. One approach focusses on small symbolic
BDD representations of the abstract models (e.g. [10,25,31,36,15]), while other ap-
proaches attempt to minimize the number of abstract states (e.g. [11,13,27,19]). While
most of the fully automatic methods are designed for very large but finite concrete sys-
tems, most abstraction refinement techniques for infinite systems are semi-automatic
and use a theorem prover to perform the refinement step or to provide the initial model
A0 [17,23,9,1,38]. An entirely automatic abstraction technique that can treat infinite
systems is presented in [34].
Our Contribution: In this paper, we present an abstraction refinement algorithm that
works with abstract models with a fixed state space that just depends on the specification
(temporal logical formula) but not on the concrete system. In our approach, the concrete
system M to be verified is an ordinary (very large or infinite) transition system. We use
the general abstraction framework suggested in [19] and deal with abstract models Ai

with two transition relations. Although our ideas work for full CTL, we provide the ex-
planations for the sublogic ∀CTL for which the formalisms are simpler.
The rough idea of our algorithm is the use of abstract models Ai that are approximations
of AΦ, the abstract model that results from the original model M when we collapse all
states that satisfy the same subformulas of Φ. (Here, Φ is the formula we want to check
for M .) Of course, the computation of the abstract model AΦ would be at least as hard
as model checking the original system M . Anyway, we can use the state space of AΦ
(which consists of sets of subformulas of Φ or their negations) for the abstract models
Ai. Thus, the size of any of the abstract models Ai is at most exponential in the length
|Φ| of the formula; independent on the size of the concrete system which might be in-
finite. Any abstract model Ai is equipped with an abstraction function αi which stands
for partial knowledge about the satisfaction relation |=M in the concrete system M .
The abstraction function αi maps any concrete state s to the abstract state σ = αi(s) in
Ai consisting of those subformulas Ψ of Φ where we already know that s |=M Ψ for all
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Ψ ∈σ and all those negated subformulas¬Ψ where s �|=M Ψ is already shown. Refining
Ai means adding more information about the concrete satisfaction relation |=M ; result-
ing in an abstract model Ai+1 where αi+1(s) is a superset of αi(s). Partial correctness of
our algorithm is guaranteed for (concrete) transition systems of arbitrary size. Our al-
gorithm terminates at least if the concrete system has a finite simulation or bisimulation
quotient. The only theoretical requirement for an entirely automatic implementation is
the effectiveness of the dual predecessor predicate in the concrete system.
Related Work: Our methodology borrows ideas from many other abstraction refine-
ment algorithms. We work with under- and overapproximations for the concrete sat-
isfaction relation |=M that we derive from the abstraction function αi. Although such
“sandwich” techniques are used by several other authors, e.g. [3,28,31], we are not
aware any other method that is designed for general (possibly infinite) transition sys-
tems and works with abstract models of a fixed size. Our methodology is also close to
the framework of [18] where an abstraction refinement algorithm for ∀CTL and finite
concrete transition systems is presented. [18] only needs underapproximations for the
concrete satisfaction relation. The major difference to our algorithm is the treatment of
formulas with a least or greatest fixed point semantics (such as ∀♦Ψ and ∀�Ψ) in the
refinement step.1 Abstraction techniques with under- and/or overapproximations that
focus on abstract models with small BDD representations are presented in [31,36,15].
We also use ideas of stable partitioning algorithms for computing the quotient space
with respect to simulation or bisimulation like equivalences [37,7,32,24,8]. However,
instead of splitting blocks (sets of concrete states that are identified in the current ab-
stract model) into new subblocks (and thus, creating new abstract states), our approach
refines the abstract model by moving subblocks from one abstract state to another ab-
stract state (which presents more knowledge about the satisfaction relation |=M ).
The method is also loosely related to tableau based methods as presented in [30,39].
Outline: In Section 2, we explain our notation concerning transition systems, CTL and
briefly recall the basic results on abstract interpretations which our algorithm relies on.
The type of abstract models used in our algorithm is introduced in Section 3. Section 4
presents our abstraction refinement algorithm for ∀CTL and sketches the ideas to handle
full CTL. Section 5 concludes the paper.

2 Preliminaries

We expect some background knowledge on transition systems, temporal logic, model
checking, abstraction and only explain the notations used throughout this paper. For
further details see, e.g. [14].

Transition Systems : A transition system is a tuple M = (S,→, I,AP,L) where S is
a set of states, I ⊆ S the set of initial states, AP a finite set of atomic propositions and
L : S → 2AP a labeling function which assigns to any state s ∈ S the set L(s) of atomic

1 Our refinement operator works with a “one-step-lookahead” while [18] treats paths that might have length > 1. In fact,
this explains why underapproximations are sufficient in the framework of [18] while we need both under- and overap-
proximations to mimic the standard least or greatest fixed point computation. The fact that we just refine according to
single transitions (paths of length 1) makes it possible to treat infinite systems.
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propositions that hold in s. →⊆ S× S denotes the transition relation. Let Post(s) =
{s′ ∈ S : s → s′}, P̃re(B) = {s ∈ S : Post(s) ⊆ B}. A path in a transition system is a
maximal sequence π = s0 → s1 → . . . of states such that si ∈ Post(si−1), i = 1,2, . . . .
Here, maximality means that either π is infinite or ends in a terminal state (i.e., a state
without successors).

Computation Tree Logic (CTL) : CTL (state) formulas in positive normal form are
built from the following grammar.

Φ ::= true
∣∣∣ a

∣∣∣ ¬a
∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨Φ2

∣∣∣ ∀ϕ | ∃ϕ ϕ ::= XΦ
∣∣∣ Φ1UΦ2

∣∣∣ Φ1ŨΦ2

with a ∈ AP. Here, X and U are the standard temporal modalities “Next step” and “Un-
til” while Ũ denotes “weak until” (also often called “unless”).2 Operators for mod-
elling “eventually” or “always” are derived as usual, e.g. ∀♦Φ = ∀trueUΦ and ∀�Φ =
∀ΦŨfalse. The universal fragment of CTL (where the application of “∃” is not allowed)
is denoted by ∀CTL. Similarly, ∃CTL denotes the existential fragment of CTL. The sat-
isfaction relation |=M for CTL formulas and transition systems M is defined in the stan-
dard way. The satisfaction set for Φ in M is given by SatM (Φ) = {s ∈ S : s |=M Φ}.
We write M |= Φ iff Φ holds for any initial state, i.e., iff I ⊆ SatM (Φ). Although nega-
tion is only allowed on the level of atomic propositions, we shall use expressions of the
type ¬Ψ (with the intended meaning s |=M ¬Ψ iff s �|=M Ψ).

Abstract Interpretations : Let M = (S,→, I,AP,L) be a transition system that models
the “concrete system” (that we want to verify). Let SA be an arbitrary set of “abstract
states”. In what follows, we use the Latin letter s for concrete states (i.e., states s∈ S) and
the greek letter σ for abstract states (i.e., states σ ∈ SA). An abstraction function for M
(with range SA) is a function α : S→ SA such that α(s) = α(s′) implies L(s) = L(s′). The
induced concretization function γ : SA → 2S is just the inverse image function γ = α−1

(that is, γ(σ) = {s ∈ S : α(s) = σ}). We use the results of [19] and associate with α
two transition relations →α (which we shall use to get underapproximations for the
satisfaction sets SatM (·)) and �α (yielding overapproximations). They are given by

σ →α σ′ iff ∃ s ∈ γ(σ) ∃ s′ ∈ γ(σ′) s.t. s → s′

σ �α σ′ iff ∀s ∈ γ(σ) ∃ s′ ∈ γ(σ′) s.t. s → s′.

For any (abstract) path σ0 �α σ1 �α . . . and concrete state s0 ∈ γ(σ0), there is a (con-
crete) path s0 → s1 → . . . in M such that α(si) = σi, i = 0,1, . . . while the corresponding
statement for →α may be wrong. Vice versa, any (concrete) path s0 → s1 → . . . in M
can be lifted to a path σ0 →α σ1 →α . . . where σi = α(si).

Let U = (SA,→α, Iα,AP,Lα) and O = (SA,�α, Iα,AP,Lα) be the transition system
with state space SA where the set of abstract initial states is Iα = α(I) = {α(s) : s ∈ I}.
The abstract labeling function Lα : A → 2AP is given by Lα(σ) = α(s) for some/all
concrete states s ∈ γ(σ). Then, we have weak preservation of the following type.

2 Any ordinary CTL formula (where also negation is allowed in the state formulas) can be transformed into positive normal
form. Note that the dual to the until operator (often called the “release operator”) can be obtained by ¬(¬Φ1U¬Φ2) =
(¬Φ1 ∧Φ2)Ũ(Φ1 ∧Φ2).
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Lemma 1. (cf. [13,27,19]) Let s be a concrete state.

(1) If Ψ is a ∀CTL formula and α(s) |=U Ψ then s |=M Ψ.
(2) If Ψ is a ∃CTL formula and α(s) |=O Ψ then s |=M Ψ.

3 Abstract Φ-Models

Throughout this paper, we assume a fixed concrete transition system M = (S,→, I,AP,
L) without terminal states and a ∀CTL formula Φ. When we refer to a subformula then
we mean a formula which is not a constant true or false. sub(Φ) denotes the set of all
subformulas of Φ. We may assume that, AP ⊆ sub(Φ). We refer to any subformula of
Φ of the form Ψ = ∀ϕ as a ∀subformula of Φ.

The Abstract State Space SΦ : Let cl(Φ) denote the set of all subformulas Ψ of Φ and
their negation ¬Ψ (where we identify ¬¬a and a). I.e., cl(Φ) = sub(Φ)∪{¬Ψ : Ψ ∈
sub(Φ)}. We define the set SΦ ⊆ 2cl(Φ) as follows. SΦ denotes the set of σ ⊆ cl(Φ) such
that the following conditions (i) and (ii) hold. (i) for any atomic proposition a ∈ AP
and σ ∈ SΦ, either a ∈ σ or ¬a ∈ σ. (ii) asserts the consistency of σ with respect to
propositional logic and local consistency with respect to “until” and “weak until”. We
just mention the axioms for “until”.3

1. If Ψ2 ∈ σ and ∀Ψ1UΨ2 ∈ sub(Φ) then ∀Ψ1UΨ2 ∈ σ.
2. If Ψ2 /∈ σ and ∀Ψ1UΨ2 ∈ σ then Ψ1 ∈ σ (provided that Ψ1 /∈ {true, false}).
3. If ¬Ψ1, ¬Ψ2 ∈ σ and ∀Ψ1UΨ2 ∈ sub(Φ) then ¬∀Ψ1UΨ2 ∈ σ.
4. If ¬∀Ψ1UΨ2 ∈ σ then ¬Ψ2 ∈ σ.

The abstract models UΦ and OΦ yield precise abstractions. Let αΦ : S → SΦ be given
by αΦ(s) = {Ψ ∈ sub(Φ) : s |=M Ψ}∪{¬Ψ : Ψ ∈ sub(Φ), s �|=M Ψ}. It is well-known
[20] that for the abstract model that we get with the abstraction function αΦ we just can
establish the weak preservation property but do not have strong preservation. However,
when we add a new atomic proposition aΨ for any ∀subformula Ψ of Φ then we get an
abstract model for which a slight variant of the strong preservation property holds. Let

APΦ = AP∪{aΨ : Ψ is a ∀subformula of Φ}.

We put aΨ = a if Ψ = a is an atomic proposition. Let LU , LO : SΦ → APΦ be given by

LU(σ) = {aΨ ∈ APΦ : Ψ ∈ σ}, LO(σ) = {aΨ ∈ APΦ : ¬Ψ �∈ σ}.

When dealing with underapproximations, we use the labeling function LU while LO
will serve for the overapproximations. We define UΦ = (SΦ,→αΦ , IαΦ ,APΦ,LU) and
OΦ = (SΦ,�αΦ , IαΦ ,APΦ,LO).

3 For “weak until” we have essentially the same axioms as for “until”. The propositional logical axioms are obvious;
e.g. we require that “Ψ ∈ σ implies ¬Ψ /∈ σ” and the symmetric axiom “¬Ψ ∈ σ implies Ψ /∈ σ”. One of the axioms for
conjunction is “Ψ1 ∧Ψ2 ∈ σ iff Ψ1 ∈ σ and Ψ2 ∈ σ.” Note that we do not require maximality; i.e., Ψ, ¬Ψ /∈ σ is possible
if Ψ /∈ AP.
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Intuitively, the labelings LU and LO with the auxiliary atomic propositions aΨ shall
encode the information about the satisfaction set SatM (Ψ) that might got lost with the
abstract transition relations →α and �α.
Example: For the concrete system M shown in the picture above and the formula Φ =
∀♦∀�a, M �|= Φ while OΦ |= Φ. In our examples we depict concrete states by circles,
abstract states by ellipses. Their names are written below while the corresponding labels
are written inside the states.�
The Formulas Ψ and Ψ̃: For each subformula Ψ of Φ we define new ∀CTL formulas
Ψ and Ψ̃ by structural induction. If Ψ is true, false or a literal then Ψ = Ψ̃ = Ψ. If
Ψ = Ψ1 ∨Ψ2 then Ψ = Ψ1 ∨Ψ2 and Ψ̃ = Ψ̃1 ∨ Ψ̃2. Conjunction is treated in a similar
way. The transformations for “next step”, “until” and “weak until” make use of the new
atomic propositions. For Ψ = ∀XΨ0 we put Ψ = (∀XΨ0)∨aΨ and Ψ̃ = (∀XΨ̃0)∧aΨ.
If Ψ = ∀Ψ1UΨ2 then we put Ψ = ∀Ψ1U(Ψ2∨aΨ) and Ψ̃ = (∀Ψ̃1UΨ̃2)∧aΨ. Similarly,
we treat weak until. It is easy to see that for any concrete state s and Ψ ∈ cl(Φ):

αΦ(s) |=UΦ Ψ iff αΦ(s) |=OΦ Ψ̃ iff s |=M Ψ.

In the example above, we get Φ̃ = (∀♦Ψ̃)∧aΦ where Ψ̃ = (∀�a)∧aΨ and the desired
property OΦ �|= Φ̃.

Abstract Φ-Models : UΦ and OΦ contain all information that we need to model check
the original system M against the formula Φ. In our abstraction refinement algorithm
we make use of abstract models which can be viewed as approximations of UΦ and OΦ.

Definition 1. An abstract Φ-model for M is a tuple A = (α,γ,U,O) consisting of an
abstraction function α : S → SΦ with α(s) ⊆ αΦ(s) for any concrete state s ∈ S, the
concretization function γ = α−1 : SΦ → S and the two transition systems U = (SΦ,→α
, Iα,APΦ,LU) and O = (SΦ,�α, Iα,APΦ,LO) where Iα, →α, �α are as in Section 2. �

Intuitively, the sets α(s) consist of all subformulas Ψ of Φ where s |=M Ψ has already
been verified and all formulas ¬Ψ where s �|=M Ψ has already been shown. However,
there might be formulas Ψ ∈ sub(Φ) such that neither Ψ ∈ α(s) nor ¬Ψ ∈ α(s). For
such formulas Ψ, we do not yet know whether s |=M Ψ.

Let A = (α,γ,U,O) be an abstract Φ-model. We associate with A two satisfaction
relations. |=U denotes the standard satisfaction relation for CTL and the transition sys-
tem U. As we assume that the concrete transition system M has no terminal states,
all paths in M and U are infinite. However, the abstract transition system O might
have terminal states. For O, we slightly depart from the standard semantics of CTL.
For the finite paths in O, the satisfaction relation |=O treats weak until and until in the
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same way. Let π = σ0 �α σ1 �α . . . �α σn be a finite path. Then, π |=O Ψ1UΨ2 iff
π |=O Ψ1ŨΨ2 iff either σ0,σ1, . . . ,σn |=O Ψ1 or there is some k ∈ {0,1, . . . ,n} with
σ0,σ1, . . . ,σk−1 |=O Ψ1 and σk |=O Ψ2.4 The reason why we need this modification is
that we “reverse” the result established by [19] stating that α(s) |=O Ψ implies s |=M Ψ
for any ∃CTL formula Ψ (compare Lemma 1, part (2), and Lemma 2, part (b)) For in-
finite paths and any type of path formulas, we deal with the usual CTL semantics in O.
Also for the next step and weak until operator and finite paths in O, we work with the
usual semantics. (Thus, σ |=O ∀XΨ holds for all terminal states σ in O.)

Lemma 2. For any concrete state s ∈ S and Ψ ∈ sub(Φ):

(a) If α(s) |=U Ψ then s |=M Ψ.
(b) If α(s) �|=O Ψ̃ then s �|=M Ψ.
(c) If Ψ ∈ α(s) then α(s) |=U Ψ.
(d) If ¬Ψ ∈ α(s) then α(s) �|=O Ψ̃.

Any abstract Φ-model A = (α,γ,U,O) induces under- and overapproximations for the
sets SatM (Ψ) = {s ∈ S : s |=M Ψ}, Ψ ∈ sub(Φ).

Definition 2. Let Sat+A(Ψ) = {s ∈ S : ¬Ψ /∈ α(s)}, Sat−A(Ψ) = {s ∈ S : Ψ ∈ α(s)}. �

Lemma 3. Sat−A(Ψ) ⊆ SatM (Ψ) ⊆ Sat+A (Ψ) for any Ψ ∈ sub(Φ). �
Lemma 3 follows by α(s) ⊆ αΦ(s). Clearly, given α or γ, the abstract Φ-model A
is uniquely determined. Vice versa, given over- and underapproximations Sat+(Ψ)
and Sat−(Ψ) for SatM (Ψ) there exists a unique abstract Φ-model A with Sat+(Ψ) =
Sat+A(Ψ) and Sat−(Ψ) = Sat−A(Ψ).5

Definition 3. A |= Φ iff Φ ∈ σ for all abstract initial states σ and A |= ¬Φ iff there is
an abstract initial state σ with ¬Φ ∈ σ.6 �
Clearly, A |= Φ iff I ⊆ Sat−A (Φ) iff Φ ∈ α(s) for any concrete initial state s. Similarly,
A �|= Φ iff there is a concrete initial state s such that ¬Φ ∈ α(s). By Lemma 2(c,d):

Lemma 4. If A |= Φ then M |= Φ. If A |= ¬Φ then M �|= Φ. �

Blocks and the Partition ΠA : We refer to the sets B = γ(σ), σ ∈ SΦ, as blocks in
M with respect to A . Clearly, the collection ΠA of all blocks in MA is a partition
of the concrete state space S. It should be noticed that for any block B ∈ ΠA either
B ⊆ Sat−A(Ψ) or B∩Sat−A(Ψ) = /0. The same holds for Sat+A(Ψ).

4 An Abstraction Refinement Model Checking Algorithm

Our algorithm (sketched in Algorithm 2) uses the abstraction refinement schema of
Algorithm 1. We start with an abstract Φ-model A0 and will successively refine the
model Ai until Ai |= Φ or Ai |=¬Φ. The output of our algorithm (sketched in Algorithm
2) is clear from Lemma 4.

4 Alternatively, when we interpret a path formula Φ = ∀ϕ over O then we may use the standard semantics for CTL but
switch from ∀Ψ1UΨ2 to the formula ∀Ψ1U(Ψ2 ∨ (Ψ1 ∧∀Xfalse)).

5 Consider the model A induced by the abstraction function α(s) = {Ψ : s ∈ Sat−(Ψ)}∪{¬Ψ : s �∈ Sat+(Ψ)}.
6 The reader should notice that A �|= Φ is not the same as A |= ¬Φ. A �|= Φ and A �|= ¬Φ is possible.
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The initial abstract Φ-model is the abstract Φ-model A0 = AAP that we get with the
abstraction functions α0 = αAP : S→ SΦ where αAP(s) = �L(s)∪{¬a : a∈AP\L(s)}�.
Here and in the following, �σ� denotes the smallest element of SΦ containing σ.7

The use of αAP reflects the knowledge that all concrete states labeled with an atomic
proposition a satisfy a while ¬a holds for s if a is an atomic proposition not in L(s). The
status of more complex subformulas in Φ (whose truth value cannot be derived from
the axioms for SΦ) is still open. For the concrete system M and formula Φ depicted in
the previous figure (Section 3), the initial abstract model A0 is as shown on below.

a
��� �������

�

��

��� �������

�� ��� ��

��

��

Algorithm 2 Main Procedure of the Abstraction Refinement Algorithm.
A0 := AAP; i := 0;
REPEAT

A := Model Check(Ai,Φ);
IF Ai �|= Φ and Ai �|= ¬Φ THEN

FOR ALL ∀subformulas Ψ of Φ DO
IF Sat+A (Ψ) �= Sat−A(Ψ) THEN

A := Refine(A ,Ψ);
ELSE

replace Ψ by the atomic proposition aΨ
FI

OD
FI
i := i+ 1; Ai := A ;

UNTIL Ai |= Φ or Ai |= ¬Φ;
IF Ai |= Φ THEN return “yes” ELSE return “no” FI.

Model Checking the Abstract Φ-Model: Let Ai = (α,γ,U,O) be the current abstract
Φ-model. In any iteration, we apply a standard model checker that successively treats
any ∀subformulas Ψ of Φ for both transition systems U and O.

Let Ψ be a ∀subformula of Φ. First, we apply a standard model checking routine for
U and the formula Ψ to calculate the satisfaction set SatU(Ψ) = {σ ∈ SΦ : σ |=U Ψ}.
We derive the set NewSat(Ψ) = {σ ∈ SΦ : Ψ /∈ σ, σ |=U Ψ} of all abstract states σ
where Ψ now holds while Ψ did not hold in the previous iteration. By Lemma 2, part
(a), we know that Ψ holds for all concrete states s ∈ ⋃{γ(σ) : σ ∈ NewSat(Ψ)}. Thus,
we can improve the underapproximation Sat−Ai

(Ψ) of SatM (Ψ) by adding all blocks

γ(σ) where σ ∈ NewSat(Ψ) to Sat−Ai
(Ψ).

7 If σ ⊆ 2cl(Φ) meets all axioms concerning propositional consistencies then σ can be extended (according to the axioms
that we require for SΦ) to a least superset �σ� ∈ SΦ that contains σ. E.g. for Φ = ∀aUb, �{b}� = {b,Φ}.
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Second, we call a standard model checker for O and Ψ̃ to obtain the set NewSat(¬Ψ)
= {σ ∈ SΦ : ¬Ψ /∈ σ, σ �|=O Ψ̃} of all abstract states σ where Ψ̃ is not satisfied while
Ψ̃ did hold for σ in the previous iteration. Lemma 2, part (b), yields that none of the
concrete states s ∈ ⋃{γ(σ) : σ ∈ NewSat(¬Ψ)} satisfies Ψ. Hence, we may remove the
blocks γ(σ) where σ ∈ NewSat(¬Ψ) from Sat+Ai

(Ψ) (i.e., we improve the overapproxi-
mation).

Algorithm 3 The Model-Checking-Routine Model Check(A ,Φ).
Let γ be the concretization function of A .
FOR ALL ∀subformulas Ψ of Φ DO

calculate the set NewSat(Ψ) = { σ ∈ SΦ σ |=U Ψ and Ψ �∈ σ};
FOR ALL σ ∈ NewSat(Ψ) DO γ(� σ ∪ {Ψ} �) := γ(σ) ∪ γ(� σ ∪ {Ψ} �);
γ(σ) := /0 OD;
calculate the set NewSat(¬Ψ) = { σ ∈ SΦ σ �|=O Ψ̃ and ¬Ψ �∈ σ};
FOR ALL σ ∈ NewSat(¬Ψ) DO γ(� σ∪{¬Ψ} �) := γ(σ)∪ γ(� σ∪{¬Ψ} �);
γ(σ) := /0 OD;

OD
return the abstract Φ-model induced by γ.

Algorithm 3 combines the two model checking fragments and returns a new abstract
Φ-model A ′ = Model Check(Ai,Φ) with the abstraction function α′ where α′(s) arises
from α(s) by adding Ψ if α(s) ∈ NewSat(Ψ) and adding ¬Ψ if α(s) ∈ NewSat(¬Ψ).8

Example : For the initial model A0 in the running example, NewSat(Ψ)= NewSat(Φ)=
NewSat(¬Ψ) = /0 while NewSat(¬Φ) consists of the black abstract state σ = {¬a,¬Ψ}.
Therefore, we move γ(σ) to σ′ = {¬a,¬Ψ,¬Φ} and obtain a model A with the follow-
ing components U and O.

a
���

�

�

��� ����������

�� ��� �� ��

�

����������

The refinement operator takes as input the abstract Φ-model A that the model checker
returns and replaces A by another abstract Φ-model Ai+1 where again the under- and
overapproximations are improved. Ai+1 is obtained by a sequence of refinement steps
that successively treat any of the ∀subformulas of Φ. As usual, the subformulas should
be considered in an order consistent with the subformula relation. Let us assume that
A is the current abstract Φ-model to be refined according to a ∀subformula Ψ of Φ. If
the over- and underapproximations for Ψ agree in A , i.e., if Sat+A (Ψ) = Sat−A(Ψ), then

8 Any movement of blocks might change (improve) the current abstract Φ-model A . Thus, any FOR-loop of
Model Check(A ,Φ) is started with a model that might be even better than the original model A .
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we may conclude that Sat+A(Ψ) = SatM (Ψ) = Sat−A(Ψ). As the precise satisfaction set
for Ψ is known there is no need for further treatment of Ψ. From this point on, Ψ (and
its subformulas) can be ignored. Thus, we just replace Ψ by the atomic proposition aΨ.
E.g. if Φ = ∀X(∀♦a ∧ b) and Ψ = ∀♦a then we replace Φ by ∀X(aΨ ∧b). Otherwise,
i.e., if Sat−A(Ψ) is a proper subset of Sat+A (Ψ), we calculate A ′ = Refine(A ,Ψ) by:

CASE Ψ IS

ENDCASE

∀XΨ0 THEN return Refine Forall Next(A ,Ψ);
∀Ψ1UΨ2 THEN return Refine Forall Until(A ,Ψ);
∀Ψ1ŨΨ2 THEN return Refine Forall WeakUntil(A ,Ψ);

First, we briefly sketch the next step operator. Let Ψ = ∀XΨ0. Clearly, all concrete
states s where Post(s) ⊆ Sat−A ′(Ψ0) satisfy Ψ. Similarly, only those concrete states s
where Post(s) ⊆ Sat+A(Ψ0) are candidates to fulfill Ψ. Thus, we may replace A by the
abstract Φ-model A ′ with

Sat+A ′(Ψ) = P̃re
(
Sat+A(Ψ0)

)
, Sat−A ′(Ψ) = P̃re

(
Sat−A(Ψ0)

)
while the over- and underapproximations for SatM (Ψ′) (where Ψ′ �= Ψ) do not change.
This change of A corresponds to a splitting of the

� � ��

� � ��

���
�
�
����

��������

blocks B ∈ ΠA into the subblocks B∩ P̃ and B \ P̃
where P̃ = P̃re(. . .). The splitting is performed twice:
first for P̃ = P̃re(Sat−A(Ψ0)) which yields an “inter-
mediate” abstract Φ-model A ′′; second we split the blocks in A ′′ with the set P̃ =
P̃re(Sat+A(Ψ0)) In our algorithm the splitting operation does not create new abstract

states. Let B = γ(σ) where Ψ, ¬Ψ /∈ σ and P̃ = P̃re(Sat−A(Ψ)). We realize the split-
ting of B by moving the subblock B∩ P̃ from the abstract state σ to the abstract state
�σ∪{Ψ}�. Similarly, we treat the splitting according to the overapproximations.

� � ��
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The procedure for the handling of until and weak until is based on similar ideas. For
Ψ = ∀Ψ1UΨ2 we switch from A to the abstract Φ-model A ′ where

Sat−A ′(Ψ) = Sat−A(Ψ2)∪
(
Sat−A(Ψ1)∩ P̃re

(
Sat−A(Ψ)

))
.

Then, we check whether the least fixed point computation of SatM (Ψ) via the under-
approximations is finished. For this, we just need the information whether A ′ = A ,
i.e., whether at least one of the blocks has been split into proper subblocks (i.e., γ
changed). If so and if Ψ1 and Ψ2 are propositional formulas (for which the precise
satisfaction sets are already computed) then we may conclude that Sat−A(Ψ) agrees with
SatM (Ψ). In this case, we switch from A to A ′′ where Sat+A ′′(Ψ) = Sat−A(Ψ) and replace
Ψ by the atomic proposition aΨ. If the computation of SatM (Ψ) is not yet finished then
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we improve the upper bound. These ideas are presented in Algorithm 4. The treatment
of weak until in the refinement step is almost the same as for until; the only difference
being – as we have to calculate a greatest fixed point via overapproximations – that the
roles of under- and overapproximations have to be exchanged.

Example : Let us revisit the running example. Let A = (α,γ,U,O) be the current
abstract Φ-model the model checker has returned in the first iteration (see the pic-
ture above). Refinement starts with Ψ = ∀�a. We get P̃re(Sat+A (Ψ)) = P̃re(γ({a})) =
γ({a}) \ {s0}. Thus, the grey concrete initial state s0 is moved to {a,¬Ψ}. All other
refinement steps leave the model unchanged. Refine(A ,Φ) returns the model with com-
ponents U1,O1 as shown below.

���

�
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In the following model checking phase, NewSat(Ψ) = NewSat(Φ) = NewSat(¬Ψ) =
/0. NewSat(¬Φ) consists of the grey abstract state σ = {a,¬Ψ}. Therefore, we move
γ(σ) = {s0} to the abstract state σ′ = {a,¬Ψ,¬Φ}. We obtain an abstract Φ-model
A2 where the abstract interpretation of the concrete initial state s0 is α2(s0) = σ′. As
σ′ contains ¬Φ, the condition A2 |= ¬Φ in the repeat-loop of Algorithm 2 holds (see
Def. 3). Hence, Algorithm 2 terminates with the correct answer “no”. �

Remark : There is no need for an explicit treatment of the boolean connectives∨ and ∧
in the model checking or refinement step. For instance, if Ψ = Ψ1 ∨Ψ2 is a subformula
of Φ then improving the approximations for the sets SatM (Ψ1) automatically yields an
improvement for the underapproximation for SatM (Ψ). “Moving” a block B from an
abstract state σ to the abstract state σ′ = �σ∪{Ψ1}� has the side effect that B is added
to both Sat−A(Ψ1) and Sat−A(Ψ). This is due to the axioms, we require for the elements
in SΦ. The corresponding observation holds for the overapproximations Sat+A (·). �
Remark: The atomic propositions aΨ play a crucial role in both the model checking and
the refinement procedure. The labelings LU and LO cover the information that might
got lost due to the transition relations →α and �α. In the refinement phase, they are
necessary to detect when the computation of a least or greatest fixed point is finished.
�

Theorem 1. [Partial Correctness] If Algorithm 2 terminates with the answer “yes”
then M |= Φ. If Algorithm 2 terminates with the answer “no” then M �|= Φ. �

Because of the similarities with stable partitioning algorithms for calculating the (bi-)
simulation equivalence classes [37,7,32,24] it is not surprising that our algorithm ter-
minates provided that the (bi-)simulation quotient space of M is finite.

Theorem 2. [Termination] If the concrete model M has a finite simulation or bisim-
ulation quotient then Algorithm 2 terminates.
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Algorithm 4 Refine Forall Until(A ,Ψ) where Ψ = ∀Ψ1UΨ2.
Let γ be the concretization function of A .
P̃ := P̃re(Sat−A (Ψ)); changed:= false; (* improve the underapproximation for SatM (Ψ) *)

FOR ALL σ ∈ SΦ where Ψ �∈ σ, Ψ1 ∈ σ and γ(σ)∩ P̃ �= /0 DO
γ(� σ∪{Ψ} �) := (γ(σ)∩ P̃) ∪ γ(� σ∪{Ψ} �); γ(σ) := γ(σ)\ P̃; changed:= true;

OD;
IF not changed and Ψ1,Ψ2 are propositional formulas THEN

(* the least fixed point computation is finished; put Sat+A (Ψ) := Sat−A (Ψ) *)
replace Ψ by the atomic proposition aΨ;
FOR ALL σ ∈ SΦ with Ψ �∈ σ and ¬Ψ �∈ σ DO

γ(� σ∪{¬Ψ} �) := γ(� σ∪{¬Ψ} �) ∪ γ(σ); γ(σ) := /0;
OD

ELSE
P̃ := P̃re(Sat+A (Ψ)); (* improve the overapproximation for SatM (Ψ) *)

FOR ALL σ ∈ SΦ where ¬Ψ �∈ σ, ¬Ψ1 /∈ σ, ¬Ψ2 ∈ σ and γ(σ)\ P̃ �= /0 DO
γ(� σ∪{¬Ψ} �) := γ(� σ∪{¬Ψ} �) ∪ (γ(σ)\ P̃); γ(σ) := γ(σ)∩ P̃

OD
FI
Return the abstract Φ-model with concretization function γ.

Full CTL: Our algorithm can be extended to treat full CTL. The major difference is the
handling of existential quantification which requires the use of the transition relation
�α when calculating the underapproximations while for the overapproximations we
use the transition relation →α. Given an abstract Φ-model A = (α,γ,U,O), we work
(as before) with two satisfaction relations |=U and |=O . E.g. σ |=U ∃ϕ iff there exists
a path π in O (i.e., a path built from transitions w.r.t. �α) that starts in σ and π |=U ϕ.
In the refinement phase, we use the predecessor predicate Pre(·) rather than P̃re(·). For
instance, to improve the underapproximation for a subformula Ψ = ∃♦Ψ0 we split any
block B = γ(σ) (where Ψ /∈ σ) into B∩Pre(Sat−A(Ψ)) and B\Pre(Sat−A(Ψ)). Again, the
partial correctness relies on the results of [19]. Termination can be guaranteed for any
concrete system with a finite bisimulation quotient.

5 Concluding Remarks

We have presented a general abstraction refinement algorithm for model checking large
or infinite transition systems against ∀CTL (or CTL) formulas. Partial correctness can
be established for any concrete transition system M which (if it is finite) could be
represented by a BDD or might be a program with variables of an infinite type. Termi-
nation can be guaranteed for all concrete systems with a finite bisimulation quotient.
For ∀CTL, our algorithm terminates also if only the simulation quotient is finite.

Clearly, the feasability of our algorithm crucially depends on the representation of
the concrete system for which we have to extract the P̃re-information. In principle,
our methodology can be combined with several fully or semi-automatic techniques that
provide an abstract model. For large but finite concrete systems, we suggest a symbolic
representation of the transition relation in M and the blocks in ΠA with BDDs. We
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just started to implement our method with a BDD representation for the concrete model
M but, unfortunately, cannot yet report on experimental results. It might be interesting
to see whether (and how) the abstraction techniques for BDDs (e.g. [15,31]) can be
combined with our algorithm. To reason about infinite systems, the fully automatic
approach of [34] seems to fit nicely in our framework as it works with a P̃re-operator
similar to the one that we use.

One of the further directions we intend to investigate is the study of real time sys-
tems or other types of transition systems that are known to have finite (bi-)simulation
quotients [2,24]. In principle, our technique should be applicable to establish qualitative
properties of timed automata (expressed in CTL). It would be interesting to see whether
our method can be modified to handle quantitative properties (e.g. specified in TCTL).
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