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Abstract. Model Checking is an algorithmic technique to determine
whether a temporal property holds of a program. For linear time prop-
erties, a model checker produces a counterexample computation if the
check fails. This computation acts as a “certificate” of failure, as it can
be checked easily and independently of the model checker by simulating
it on the program. On the other hand, no such certificate is produced if
the check succeeds. In this paper, we show how this asymmetry can be
eliminated with a certifying model checker. The key idea is that, with
some extra bookkeeping, a model checker can produce a deductive proof
on either success or failure. This proof acts as a certificate of the result, as
it can be checked mechanically by simple, non-fixpoint methods that are
independent of the model checker. We develop a deductive proof system
for verifying branching time properties expressed in the mu-calculus, and
show how to generate a proof in this system from a model checking run.
Proofs for linear time properties form a special case. A model checker
that generates proofs can be used for many interesting applications, such
as better ways of exploring errors in a program, and a tight integration
of model checking with automated theorem proving.

1 Introduction

Model Checking [CEST|QS82] is an algorithmic technique to determine whether
a temporal property holds of a program. Perhaps the most useful property of the
model checking algorithm is that it can generate a counterexample computation
if a linear time property fails to hold of the program. This computation acts as
a “certificate” of failure, as it can be checked easily and efficiently by a method
independent of model checking — i.e., by simulating the program to determine
whether it can generate the computation. On the other hand, if it is determined
that a property holds, model checkers produce only the answer “yes”! This does
not inspire the same confidence as a counterexample; one is forced to assume
that the model checker implementation is correct. It is desirable, therefore, to
provide a mechanism that generates certificates for either outcome of the model
checking process. These certificates should be easily checkable by methods that
are independent of model checking.

In this paper, we show how such a mechanism, which we call a certifying
model checker, can be constructed. The key idea is that, with some extra book-
keeping, a model checker can produce a deductive proof on either success or
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failure. The proof acts as a certificate of the result, since it can be checked inde-
pendently using simple, non-fixpoint methods. A certifying model checker thus
provides a bridge from the “model-theoretic” to the “proof-theoretic” approach
to verification [Eme90].

We develop a deductive proof system for verifying mu-calculus properties of
programs, and show it to be sound and relatively complete. We then show how to
construct a deductive proof from a model checking run. This is done by by storing
and analyzing sets of states that are generated by the fixpoint computations
performed during model checking. The proof system and the proof generation
process draw upon results in [EJ91] and [EJS93|, which relate model checking
for the mu-calculus to winning parity games. A prototype implementation of a
proof generator and proof checker for linear time properties has been developed
for the COSPAN [HHKO96] symbolic model checker.

The ability to generate proofs which justify the outcome of model checking
makes possible several interesting applications. For instance,

— A certifying model checker produces a proof of property f on success, and
a proof of =f on failure. The proof of —f is a compact representation of all
possible counterexample computations. As is shown later, it can be exponen-
tially more succinct than a single computation. Particular counterexample
computations can be “unfolded” out of the proof by an interactive process
which provides a better understanding of the flaws in the program than is
possible with a single computation.

— Producing a deductive proof makes it possible to tightly integrate a certi-
fying model checker into an automated theorem prover. For instance, the
theorem prover can handle meta-reasoning necessary for applying compo-
sitional or abstraction methods, while checking subgoals with a certifying
model checker. The proofs produced by the model checker can be composed
with the other proofs to form a single, checkable, proof script.

The paper is organized as follows. Section [2] contains background information
on model checking and parity games. Section [B]develops the deductive proof sys-
tem for verifying mu-calculus properties, and Section [4 shows how such proofs
can be generated by slightly modifying a mu-calculus model checker. Applica-
tions for certifying model checkers are discussed in detail in Section [l Section [6]
concludes the paper with a discussion of related work.

2 Preliminaries

In this section, we define the mu-calculus and alternating tree automata, and
show how mu-calculus model checking can be reduced to determining winning
strategies in parity games.

2.1 The Mu-Calculus

The mu-calculus [Koz82| is a branching time temporal logic that subsumes
[EL86] commonly used logics such as LTL, w-automata, CTL, and CTL*. The
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logic is parameterized with respect to two sets: X (state labels) and I" (action
labels). There is also a set of variable symbols, V. Formulas of the logic are
defined using the following grammar, where [ is in X, ¢ isin I', Z is in V| and
1 is the least fixpoint operator.

S:=1Z|{a)P|P|PNPD|(uZ:P)

To simplify notation, we assume that X and I" are fixed in the rest of the
paper. A formula must have each variable under the scope of an even number of
negation symbols. A formula is closed iff every variable in it is under the scope
of a p operator. Formulas are evaluated over labeled transition systems (LTS’s)
[Kel76]. An LTS is a tuple (S, so, R, L), where S is a non-empty set of states,
so € S is the initial state, R C Sx I'x S is the transition relation, and L : S — X
is a labeling function on states. We assume that R is total; i.e., for any s and a,
there exists ¢ such that (s,a,t) € R. The evaluation of a formula f, represented
as || flle, is a subset of S, and is defined relative to a context ¢ mapping variables
to subsets of S. The evaluation rule is given below.

— |lllle={sls€ S A L(s) =1}, | Z]|c = c(Z),

[{@)®llc = {s|(3¢ : R(s,a,t) At € |Pc)},

[=@][c = S\[[@]le, |P1 A Poflc = [|@1[c N [| P2,

|(uZ:P)e = (UT : T € S A ||®|lejz—r) € T}, where c[Z «— T is the
context ¢’ where, for any X, ¢/(X) is T if X = Z, and ¢(X) otherwise.

A state s in the LTS satisfies a closed mu-calculus formula f iff s € || f|| ., where
1 maps every variable to the empty set. The LTS satisfies f iff so satisfies f.
Mu-calculus formulas can be converted to positive normal form by introducing
the operators @1 V $3 = =(=(P1) A =(P2)), [a]® = —{a)(—~P) and (vZ : ) =
—(uZ : =@(—Z)), and using de Morgan rules to push negations inwards. The
result is a formula where negations are applied only to elements of 3.

Mu-Calculus Signatures: Consider a closed mu-calculus formula f in positive
normal form, where the p-variables are numbered Y7, ...,Y, in such a way that
if (uY;) occurs in the scope of (uY;) then j < i. Streett and Emerson [SE84]
show that, with every state s of an LTS M that satisfies f, one can associate a
lexicographically minimum n-vector of ordinals called its signature, denoted by
sig(s, f). Informally, sig(s, f) records the minimum number of unfoldings of least
fixpoint operators that are necessary to show that s satisfies f. For example, for
the CTL property EF(p) = (uY1 : p V (1)Y1), sig(s,EF(p)) is the length of the
shortest 7-path from s to a state satisfying p.

Formally, for an n-vector of ordinals v, let f¥ be a formula with the se-
mantics defined below. Then sig(s, f) is the smallest n-vector v such that s €
| f?]| L. First, define the new operator p*, for an ordinal k, with the semantics
[(1*Y : D)||. = Y*, where YO =0, Y™ = ||®||.;y vy}, and for a limit ordinal
ANYAN=(Uk:k<X:YF),

= IIC
(D1 A Da)%le = [|DF A Dile, [[(P1 V P2)*lle = | V Bl
= (85 @)l = [ @°[|er, where ¢’ = e[V « || (V1Y - D)l ]
|(vZ : D)"||c = ||®||e, where ¢ = ¢[Z — ||(vZ : D))
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2.2 Alternating Automata and Parity Games

An alternating automaton is another way of specifying branching time temporal
properties. For sets X and I” of state and transition labels respectively, an alter-
nating automaton is specified by a tuple (@, qo, d, F'), where @ is a non-empty
set of states, go € @ is the initial state, and ¢ is a transition function mapping
a pair from @ x X to a positive boolean expression formed using the opera-
tors A,V applied to elements of the form true, false,q, (a)q and [a]q, where
a € X, and q € Q. F is a parity acceptance condition, which is a non-empty list
(Fo, F1,..., F,) of subsets of ). An infinite sequence over () satisfies F' iff the
smallest index ¢ for which a state in F; occurs infinitely often on the sequence
is even. For simplicity, we assume that the transition relation of the automaton
is in a normal form, where F is a partition of @, and §(q,!) has one of the
following forms: 1 A g2,q1 V g2, {a)q1, [a]q1, true, false. Converting an arbitrary
automaton to an equivalent automaton in normal form can be done with a linear
blowup in the size.

A tree is a prefix-closed subset of N*, where A, the empty sequence, is called
the root of the tree. A labeled tree t is a tree together with two functions Ny :
t — X and E; : edge(t) — I', where edge(t) = {(x,z.i)|lx € t A x4 € t}. We
require the transition relation of such a tree to be total.

The acceptance of a labeled tree ¢t by the automaton is defined in terms of
a two-player infinite game. A configuration of the game is a pair (z,q), where
x is a node of the tree and ¢ is an automaton state. If d(q, Ni(x)) is true,
player I wins, while player II wins if it is false. For the other cases, player I
chooses one of q1,¢qo if it is ¢1 V g2, and chooses an a-successor to z if it is
(a)q:. Player II makes similar choices at the A and [a] operators. The result
is a new configuration (z’,¢’). A play of the game is a maximal sequence of
configurations generated in this manner. A play is winning for player I iff either
it is finite and ends in a configuration that is a win for I, or it is infinite and
satisfies the automaton acceptance condition. The play is winning for player II
otherwise. A strategy for player I (II) is a partial function that maps every finite
sequence of configurations and intermediate choices to a choice at each player I
(IT) position. A winning strategy for player I is a strategy function where every
play following that strategy is winning for I, regardless of the strategy for II.
The automaton accepts the tree t iff player I has a winning strategy for the game
starting at (A, qo). An LTS M satisfies the automaton iff the automaton accepts
the computation tree of M.

Theorem 0. [EJ9TITWI5] For any closed mu-calculus formula f, there is a
linear-size alternating automaton Ay such for any LTS M, M satisfies f iff M
satisfies Ay. The automaton is derived from the parse graph of the formula.

A strategy s is history-free iff the outcome of the function depends only on
the last element of the argument sequence. By results in [E.J91]|, parity games
are determined (one of the players has a winning strategy), and the winner has
a history-free winning strategy. From these facts, winning in the parity game
generated by an LTS M = (5, s, R, L) and an automaton A = (Q, qo, 9, F)
can be cast as model checking on a product LTS, M x A, of configurations
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[EJS93]. The LTS M x A = (5, s(, R',L') is defined over state labeling X' =
{I, 11, wing, winrr} X {fo,..., fn} and edge labeling I = {7}, and has S’ =
S x @ and s, = (s0,qo)- The first component of L'(s,q) is I if 6(g, L(s)) has the
form ¢ V g2 or {a), I if it has the form q; A g2 or [a]q1, winy if it has the form
true, and winyy if it has the form false. The second component is f; iff ¢ € Fj.
R’ is defined as follows. For a state (s, q), if (g, L(s)) is true or false, then (s, q)
has no successors; if (g, L(s)) is g1 V g2 or g1 A g2, then (s, ¢) has two successors
(s,q1) and (s, q2); if 6(a, L(s)) is (a)q1 or [alqi, then (s, q) has a successor (¢, q1)
for every t such that R(s,a,t) holds, and no other successors.

Let Wi = (0020 . ..0nZpn : D1(Z0, ..., Zy)), where o; is v if i is even and p
otherwise, and @1(Zy, ..., Zy) =wing V (I AN (ANi: fi = (T)Z;)) vV (IT A (N
fi = [7]Z;)). The formula Wy describes the set of configurations from which
player I has a winning strategy. Similarly, player II has a winning strategy from
the the complementary set Wy, where Wiy = (6020 - .. 0nZn : P11(Zo,y - - -3 Zn)),
where §; is p if 7 is even, and v otherwise, and @1;(Zo, ..., Z,) = wing;y V (I A
(/\i fi = [T]Zz)) vV (II A (/\i fi = <T>ZZ))

Theorem 1. (cf. [EJS93]) For an LTS M and a normal form automaton A of
the form above, M satisfies A iff M x A, (so,q0) E Wr.

3 The Proof System

Deductive proof systems for verifying sequential programs rely on the two key
concepts of invariance (e.g., loop invariants) and progress (e.g., rank functions,
variant functions) [Flo67Hoa69]. These concepts reappear in deductive verifica-
tion systems for linear temporal logic [MP83IMPS87ICMS8E|, and also form the
basis for the proof system that is presented below.

Suppose that M = (5, sp, R, L) is an LTS, and 4 = (Q, 0,0, F’) is a normal
form automaton, where F' = (Fy, Fi,. .., Fs,). To show that M satisfies A, one
exhibits (i) for each automaton state ¢, a predicate (the invariant) ¢, over S, ex-
pressed in some assertion language, (ii) non-empty, well founded sets Wy,..., W,
with associated partial orders <1,..., =<,, and (iii) for each automaton state g,
a partial rank function pg : S — (W, %), where W = W; x ... x W,, and =< is
the lexicographic order defined on W using the {=<;} orders.

We extend the < order to apply to elements a,b in Wy x ... x Wy, for some
k <mnbya=biff (a1,...,0x,0,0,...,0) =< (b1,...,bk,0,0,...,0), where we
assume, without loss of generality, that 0 is an element common to all the W;’s.
For an automaton state ¢, define the relation <1 over W x W as follows. For
any a,b, a <4 b holds iff for the (unique, since F' is a partition) index k such
that ¢ € Fy, either k = 0, or k > 0,k = 2i and (a1,...,a;) = (b1,...,b;),
or k =2i—1and (a,...,a;) < (b1,...,b;). We use the label | to denote the
predicate I(s) = (L(s) = 1), and the notation [f] to mean that the formula f is
valid. Note that, in the following, (a) and [a] are operators interpreted on M. The
invariants and rank function must satisfy the following three local conditions. In
these conditions, the variable k has type W.

— Consistency: For each ¢ € Q, [¢q = (Fk : (pg = k))] (pq is defined for
every state in ¢q)
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— Initiality: ¢q4,(so) (the initial state satisfies its invariant)
— Invariance and Progress: For each ¢ € @), and [ € X', depending on the

form of §(g,1), check the following.

e true: there is nothing to check.

false: [¢pq = =] holds,
Q1 A gt [pg N LA (pg = k)
a1V g2 [pg NN (pg = k)
(@yqr: [pg ANLA (pg=k) =
[algi: [pg NN (pg =Fk) =

(g A (Pgr 1g k) A (dgs A (pgo g F))]
(g1 N (pgy < k) V (Dgy N (pgy <q K))]
(a)(@g A (Pg <q k)]
al(¢g A (pg <q k)]

=
=

[

Theorem 2. (Soundness) The proof system is sound.

Proof. Given a proof in the format above, we have to show that M satisfies A.
We do so by exhibiting a winning strategy for player I in the parity game. For
a configuration (s, g), let py(s) be its associated rank. Inductively, assume that
at any configuration (s, ¢) on a play, ¢4(s) is true. This holds at the start of the
game by the Initiality requirement. Suppose that L(s) = I. Based on the form
of §(g,1), we have the following cases:

— true: the play terminates with a win for player I,

— false: this case cannot arise, as the inductive invariant contradicts the proof
assertion [¢, = —l].

— q1 N q2,[a]qr: Player II plays at this point, with the new configuration sat-
isfying the inductive hypothesis by the proof.

— q1 V go: Player I chooses the ¢; for which the VvV proof assertion holds. The
new configuration (s, ¢g;) thus satisfies the inductive hypothesis.

— (a)q1: Player I chooses the a-successor ¢ of s which is a witness for the (a)
formula. Hence, ¢g, (t) holds.

Thus, a finite play terminates with §(q,l) = true, which is a win for player I.
In an infinite play, by the definition of <,;, whenever the play goes through a
configuration (s, ¢) with ¢ in a odd-indexed set Fy;_1, the rank decreases strictly
in the positions 1..7, and the only way it can increase in these components is if
the play later goes through a configuration (s,¢’) with ¢’ in an even indexed
set of smaller index. So, if an odd indexed set occurs infinitely often, some even
indexed set with smaller index must also occur infinitely often, which implies
that the smallest index that occurs infinitely often must be even. Thus, the
defined strategy is winning for player I, so M satisfies A. O

Theorem 3. (Completeness) The proof system is relatively complete.

Proof. We show completeness relative to the expressibility of the winning sets,
as is done for Hoare-style proof systems for sequential programs [Coo7§|. Assume
that M satisfies A. By Theorem [ M x A, (so,q0) = Wr. The history-free
winning strategy for player I corresponds to a sub-structure N of M x A, which
has a single outgoing edge at each player I state.

For each automaton state g, let ¢4(s) = (M x A, (s,q) = Wr). The rank
function is constructed from the mu-calculus signatures of states satisfying the
formula W;. For each automaton state g, let the function p, have domain ¢,. For
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every state (s, q) satisfying Wy, let p,(s) be the n-vector that is the signature of
Wr at (s, q).

We now show that all the conditions of the proof rule are satisfied for these
choices. Consistency holds by the definition of the p, functions. Initiality holds by
the definition of ¢4, since (so, qo) satisfies Wr. From the definition of signatures
and the shape of the formula defining Wi, it it not difficult to show that at each
transition from a state in IV, the signature for Wy decreases strictly in the first ¢
components if the state is in Fb;_1, and is non-increasing in the first ¢ components
if the state is in Fy;. This corresponds directly to the progress conditions in the
proof rule. For each state (s,¢) in N, ¢4(s) is true, so the invariance conditions
also hold. If §(q,1) is false, then for any state s with L(s) = I, (s, q) represents
a win for player II, so that s € Wy, and ¢, A [ is unsatisfiable, as desired. O

Proofs for Linear Time Properties: Manna and Pnueli [MP87] show that
every w-regular linear time property can be represented by a V-automaton, which
accepts an w-string iff all runs of the automaton on the string satisfy a co-Biichi
acceptance condition. Model checking the linear time property h is equivalent to
checking the branching time property A(h). By the V nature of acceptance, the A
quantifier can, informally, be distributed through h, resulting in a tree automaton
where § is defined using only [a] and A operators. Specializing our proof system
to such automata results in a proof system similar to that in [MP87].

Proofs for LTS’s with Fairness: So far, we have only considered LTS’s with-
out fairness constraints. Fairness constraints, such as weak or strong fairness on
actions, are sometimes required to rule out undesired computations. Manna and
Pnueli [MP87] observe that there are two possible ways of handling fairness: one
can either incorporate the fairness constraints into the property, or incorporate
them into the proof system. They point out that these approaches are closely
related. Indeed, the modified proof system corresponds to a particular way of
proving the modified property using the original proof system. Therefore, we
prefer to keep the simplicity of the proof system, and incorporate any fairness
constraints into the property.

4 Proof Generation and Checking

The completeness proof in Theorem [3] shows how to generate a proof for a suc-
cessful model checking attempt. Such proofs can be generated both by explicit-
state and symbolic model checkers. For symbolic model checkers, the invariant
assertions are represented by formulas (i.e., BDD’s), and it is desirable also for
the rank functions to be converted to predicates; i.e., to represent the terms
(pg = k) and (pg, <4 k) as the predicates p=(q, k) and p«(q1,¢q, k), respectively.
Individual proof steps become validity assertions in the assertion language which,
for a finite-state model checker, is propositional logic. It is possible for the proof
generator and the proof checker to use different symbolic representations and dif-
ferent validity checking methods. For instance, the model checker can be based
on BDD methods, while the proof checker represents formulas with syntax trees
and utilizes a SAT solver to check validity.
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Since we use alternating automata to specify properties, the automaton that
defines —f can be obtained easily by dualizing A;: exchanging true and false,
A and V, and (a) and [a] in the transition relation and replacing the parity
condition F with its negation (0, Fy, ..., Fb,). A winning strategy for player I
with the dual automaton is a winning strategy for player II with the original
automaton. Thus, the set Wiy = =W can be used to construct a proof of —f
relative to the dual automaton. To avoid doing extra work to create a proof
for —f on failure, it is desirable to record approximations for both the p and v
variables while evaluating Wy: if f holds, the approximations for the p variables
are used to calculate the rank function; if not, a dual proof can be constructed
for —f, using the negations of the approximations recorded for the v variables of
Wr, which are the p variables in Wyy. This strategy is followed in our prototype
proof generator for COSPAN.

Example: To illustrate the proof generation process, consider the following
program and property. All transitions of the program are labeled with 7.

Program M (m : N) (* circular counter *)
var ¢ : (0..2™ — 1); initially ¢ = 0; transition ¢’ = (c+ 1) mod 2™

Property A (* AGF(c = 0), i.e., on all paths, ¢ = 0 holds infinitely often *)
states = {qo, ¢1}; initially qo;

transition §(qo, true) = [7]q1,d(q1,c = 0) = qo,d(q1,¢ # 0) = [7]q1

parity condition (Fo, F1), where Fo = {qo}, F1 = {q1}.

()’ (290) Gw)!
[Oﬁq?H 1;1)}2 q1)>[3 ql)h[ O‘qzl)

4 3

Fig. 1. The Graph of M x A for m = 2.

The Wy formula, as defined in Section Z2] simplifies to the following, since
every state of M x A is a Il-state: Wy = (vZy : (uZ1 : @1(Zo, Z1)), where
D1(Zo, Z1) = ((qo = [7]Z0) N (g1 = [7]Z1)). This formula evaluates to true
on M x A. Thus, ¢4, and ¢4, , as calculated in the proof of Theorem [3] are
both true (i.e., ¢ € {0..2™ — 1}). The rank function is calculated by computing
the signatures of states satisfying Wj. As there is a single odd index in the
parity condition, the signature is a singleton vector, which may be represented
by a number. By the definition in Section B.1], the signature of a state satisfying
W is the smallest index i for which the state belongs to (u'Z; : @1(Wr, Z1)).
This formula simplifies to (127 : (g0 V [7]Z1)), which essentially calculates the
distance to the qg state.

The italicized number next to each state in Figure[llshows its rank. The rank
functions are, therefore, pg,(c) = 1 and pgy, (¢) = if (¢ = 0) then 2 else (6—c). By
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construction, the Consistency and Initiality properties of the proof are satisfied.
Instantiating the general proof scheme of Section Bl the Invariance and Progress
obligations reduce to the following, all of which can be seen to hold.

= [ao(€) A true N (pgy(¢) = k) = [7](¢g, (c))]
= [bg () A (c=0) A (pg,(c) = k) = (¢go(c) A (pgo(c) <k))], and
= [Pai () A (¢ #0) A (pgy (¢) = k) = [7](dg,(¢) A (pas(c) < k))]

Proofs vs. Counterexamples: A natural question that arises concerns the
relationship between a proof for —f and a counterexample computation for f.
This is elucidated in the theorem below.

Theorem 4. For a program M and a linear time, co-Biichi V-automaton A, if
M does not satisfy A, and M x A has m bits and a counterexample of length
n, it is possible to construct a proof for —A that needs 2mn bits. On the other
hand, a proof can be exponentially more succinct than any counterexample.

Proof. In general, a counterexample consists of a path to an accepting state,
and a cycle passing through that state. Define the invariants ¢, so that they hold
only of the states on the counterexample, and let the rank function measure the
distance along the counterexample to an accepting state. This can be represented
by BDD’s of size 2mn.

On the other hand, consider the program in Figure [[I and the property
G(c’ > ¢). This is false only at ¢ = 2™ — 1, so the shortest counterexample has
length 2™ + 1. We can, however, prove failure by defining the invariant to be
true (really, EF(¢’ < ¢)), and by letting state ¢ have rank k iff ¢ + k = 2™ — 1.
This rank function measures the distance to the violating transition. It can be
represented by a BDD of size linear in m by interleaving the bits for ¢ and k.
Thus, the proof has size linear in m and is, therefore, exponentially more succinct
than the counterexample. O

5 Applications

The ability to generate proofs which justify the outcome of model checking makes
possible several interesting applications for a certifying model checker.

1. Generating Proofs vs. Generating Counterexamples: We have shown
how a certifying model checker can produce a proof of property f upon success
and a proof for —f on failure. Both types of proofs offer insight on why the
property succeeds (or fails) to hold of the program. Inspecting success proofs
closely may help uncover vacuous justifications or lack of appropriate coverage.
The generated proof for —f is a compact representation of all counterexample
computations. This proof can be “unfolded” interactively along the lines of the
strategy description in the soundness proof of Theorem 2l This process allows
the exploration of various counterexamples without having to perform multiple
model checking runs (cf. [SS9§]).

2. Detecting Errors in a Model Checker: The proof produced by a cer-
tifying model checker stands by itself; i.e., it can be checked for correctness
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independently of the model checker. For instance, the model checker may use
BDD’s, but the proof can be checked using a SAT solver. It is possible, there-
fore, to detect errors in the model checkerfl. For instance, if the model checker
declares success but produces an erroneous proof, this may be due to a mistake
in the implementation which results in a part of the state space being overlooked
during model checking.

3. Integrating Model Checking with Theorem Proving: Efforts to in-
tegrate model checking with theorem proving [JS93IRSS95] have added such a
capability at a shallow level, where the result of model checking is accepted as an
axiom by the theorem prover. This has been addressed in [YL97/Spr98], where
tableau proofs generated using explicit state model checkers are imported into
theorem provers. Our proof generation procedure allows symbolic proofs, which
are more compact than explicit state proofs, to be used for the same purpose.
Theorem proving, in one form or another, has been used to design and verify
abstractions of infinite state systems (cf. [MNS99]), to prove conditions for sound
compositional reasoning (cf. [McM99]), and to prove parameterized systems cor-
rect (cf. [BBCT00]). In the first two cases, model checking is applied to small
subgoals. Proofs generated by a certifying model checker for these subgoals can
be composed with the other proofs to produce a single, mechanically checkable,
proof script. In the last case, the model checker can be used to produce proofs
about small instances of parameterized systems. The shape of the invariance
and progress assertions in these proofs can often suggest the assertions needed
for proving the general case, which is handled entirely with the theorem prover.
This approach has been applied in [PRZ0OIJAPR*01] to invariance properties.

4. Proof Carrying Code: A certifying model checker can produce proofs
for arbitrary temporal properties. These proofs can be used with the “proof-
carrying-code” paradigm introduced in [NL96] for mobile code: a code producer
sends code together with a generated correctness proof, which is checked by the
code consumer. The proof generator in [NLIg] is tailored to checking memory
and type safety. Using a certifying model checker, one can, in principle, gener-
ate proofs of arbitrary safety and liveness properties, which would be useful for
mobile protocol code.

6 Conclusions and Related Work

There is prior work on automatically generating explicit state proofs for proper-
ties expressed in the mu-calculus and other logics, but the proof system and the
algorithm of this paper appear to be the first to do so for symbolic representa-
tions. In [Kid[YT.97], algorithms are given to create tableau proofs in the style
of [SWR89]. In parallel with our work, Peled and Zuck [PZ01] have developed an
algorithm for automatically generating explicit state proofs for LTL properties.
The game playing algorithm of [SS98] implicitly generates a kind of proof.
Explicit state proofs are of reasonable size only for programs with small
state spaces. For larger programs, symbolic representations are to be preferred,

1 S0 a certifying model checker can be used to “certify” itself!
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as they result in proofs that are more compact. While the tableau proof system
has been extended to symbolic representations in [BS92], the extension requires
an external, global termination proof. In contrast, our proof system embeds the
termination requirements as locally checkable assertions in the proof.

The proof system presented here is closely related to those of [MP87] (for V-
automata) and [FG96] (for fair-CTL), but generalizes both systems. The proof
system is specifically designed to be locally checkable, so that proofs can be
checked easily and mechanically. For some applications, it will be necessary to
add rules such as modus ponens to make the proofs more “human-friendly”. As
we have discussed, though, there are many possible applications for proofs that
are generated and checked mechanically, which opens up new and interesting
areas for the application of model checking techniques.
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