
µCRL: A Toolset for Analysing Algebraic
Specifications

Stefan Blom1, Wan Fokkink1, Jan Friso Groote2, Izak van Langevelde1,
Bert Lisser1, and Jaco van de Pol1

1 CWI, Department of Software Engineering
PO Box 94079, 1090 GB Amsterdam, The Netherlands

{sccblom,wan,izak,bertl,vdpol}@cwi.nl
2 Eindhoven University of Technology, Department of Computing Science

PO Box 513, 5600 MB Eindhoven, The Netherlands
jfg@win.tue.nl

1 Introduction

µCRL [13] is a language for specifying and verifying distributed systems in an
algebraic fashion. It targets the specification of system behaviour in a process-
algebraic style and of data elements in the form of abstract data types. The
µCRL toolset [21] (see http://www.cwi.nl/~mcrl) supports the analysis and
manipulation of µCRL specifications. A µCRL specification can be automatically
transformed into a linear process operator (LPO). All other tools in the µCRL
toolset use LPOs as their starting point. The simulator allows the interactive
simulation of an LPO. There are a number of tools that allow optimisations on
the level of LPOs. The instantiator generates a labelled transition system (LTS)
from an LPO (under the condition that it is finite-state), and the resulting LTS
can be visualised, analysed and minimised.

An overview of the µCRL toolset is presented in Figure 1. This picture is
divided into three layers: µCRL specifications, LPOs and LTSs. The rectangular
boxes denote different ways to represent instances of the corresponding layer (for
example, LPOs can be represented in a binary or a textual form). A solid arrow
denotes a transformation from one instance to another that is supported by the
µCRL toolset; keywords are provided to these arrows to give some information
on which kinds of transformations are involved. Finally, the oval boxes represent
several ways to analyse systems, and dashed arrows show how the different rep-
resentations of LPOs and LTSs can be analysed. The box named BCG and its
three outgoing dashed arrows actually belong to the CADP toolset (see Section
4). The next three sections are devoted to explaining Figure 1 in more detail.

The µCRL toolset was successfully used to analyse a wide range of protocols
and distributed algorithms. Recently it was used to support the optimised re-
design of the Transactions Capabilities Procedures in the SS No. 7 protocol stack
for telephone exchanges [1,2], to detect a number of mistakes in a real-life proto-
col over the CAN bus for lifting trucks [10], to analyse a leader election protocol
from the Home Audio/Video interoperability (HAVi) architecture [20], and to
perform scenario-based verifications of the coordination language SPLICE [6].

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 250–254, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://www.cwi.nl/~mcrl

µCRL: A Toolset for Analysing Algebraic Specifications 251

minimisation
confluence reduction

minimisation

constelm
sumelm
parelm

structelm
rewr

instantiator with confluence reduction
instantiator

lineariser pretty printer

text

binary

BCG SVC

model checking visualisationsimulation

LTS

LPO

µCRL

Fig. 1. The Main Components of the µCRL Toolset.

2 µCRL Specifications

The µCRL language is based on the process algebra ACP. It allows one to specify
system behaviour in an algebraic style using atomic actions, alternative and
sequential composition, parallelism and communication, encapsulation, hiding,
renaming and recursive declarations. Furthermore, µCRL supports equationally
specified abstract data types. In order to intertwine processes and data, atomic
actions and recursion variables carry data parameters. Moreover, an if-then-
else construct enables that data elements influence the course of a process, and
alternative quantification chooses from a possibly infinite data domain.

3 Linear Process Operators

When investigating systems specified in µCRL, our current standard approach is
to transform the µCRL specification under scrutiny to a relatively simple format
without parallelism or communication, called an LPO. In essence this is a vector
of data parameters together with a list of condition, action and effect triples,
describing when an action may happen and what is its effect on the vector of
data parameters. It is stored in a binary format or as a plain text file. From an
LPO one can generate an LTS, in which the states are parameter vectors and
the edges are labelled with parametrised actions.

In [14] it is described how a large class of µCRL processes can be transformed
automatically to a bisimilar LPO. The resulting LPO and its data structures are
stored as ATerms. The ATerm library [5] stores terms in a very compact way by
minimal memory requirements, employing maximal sharing, and using a tailor-

252 Stefan Blom et al.

made garbage collector. Moreover, the ATerm library uses a file format that is
even more compact than the memory format.

The µCRL toolset comprises five tools (constelm, sumelm, parelm, structelm
and rewr) that target the automated simplification of LPOs while preserving
bisimilarity [8]. These tools do not require the generation of the LTS belong-
ing to an LPO, thus circumventing the ominous state explosion problem. The
simplification tools are remarkably successful at simplifying the LPOs belonging
to a number of existing protocols. In some cases these simplifications lead to a
substantial reduction of the size of the corresponding LTS.

Elimination of constant parameters. A parameter of an LPO can be re-
placed by a constant value, if it can be statically determined that this pa-
rameter remains constant throughout any run of the process.

Elimination of sum variables. The choice of a sum ranging over some data
type may be restricted by a side condition to a single concrete value. In that
case the sum variable can be replaced by this single value.

Elimination of inert parameters. A parameter of an LPO that has no (di-
rect or indirect) influence on the parameters of actions or on conditions does
not influence the LPO’s behaviour and can be removed. Whereas the two re-
duction techniques mentioned above only simplify the description of an LPO,
elimination of inert parameters may lead to substantial reduction of the LTS
underlying an LPO. If the inert parameter ranges over an infinite domain,
the number of states can even reduce from infinite to finite by this operation.
This typically happens after hiding part of the system’s behaviour.

Elimination of data structures. Sometimes, the operations above cannot be
applied to single parameters, but they can be applied to parts of the data
structures that these variables range over. For this to take place, such data
structures must be partitioned into their constituents.

Rewriting data terms. The data terms occurring in an LPO can be rewritten
using the equations of the data types. If a condition is rewritten to false, then
the corresponding condition, action and effect triple in the LPO is removed.

Confluence is widely recognised as an important feature of the behaviour
of distributed communicating systems. Roughly, a τ -transition from a state in
an LTS, representing an internal computation that is externally invisible, is
confluent if it commutes with any other transition starting in this same state.
In [18] it was shown that confluence can be used in process verification. In [15]
several notions of confluence were studied on their practical applicability, and it
was shown that on the level of LPOs confluence can be expressed by means of
logical formulas. In [4] it is shown that the presence of confluence within an LPO
can be exploited at a low cost at the level of the instantiator, i.e., during the
generation of the associated LTS. A prototype of this generation algorithm was
implemented, and experience learns that this exploitation of confluence within an
LPO may lead to the generation of an LTS that is several orders of magnitudes
smaller compared to the standard instantiator. The detection of confluence in an
LPO is performed using the automated reasoning techniques that are surveyed
in Section 5.

µCRL: A Toolset for Analysing Algebraic Specifications 253

4 Labelled Transition Systems

The SVC format [17] offers an extremely compact file format for storing LTSs.
This format is open in its specification and implementation, and allows states
to be labelled by ATerms. A prototype visualisation tool has been developed
for the SVC format, dubbed Drishti. A reduction algorithm based on conflu-
ence and minimisation algorithms modulo equivalences such as bisimulation and
branching bisimulation have been implemented, collapsing equivalent states.

Alternatively, LTSs belonging to µCRL specifications can be visualised and
analysed using the Cæsar/Aldébaran Development Package (CADP) [7]. This
toolset originally targets the analysis of LOTOS specifications. Cæsar gener-
ates the LTS belonging to a LOTOS specification, and supports simulation.
Aldébaran performs equivalence checking and minimisation of LTSs modulo a
range of process equivalences. XTL offers facilities for model checking formulas
in temporal logics. The CADP toolset comprises the BCG format, which sup-
ports compact storage of LTSs. SVC files can be translated to BCG format and
vice versa, given a CADP license (as the BCG format is not open source).

In [11] a reduction algorithm for LTSs is presented, based on priorisation
of confluent τ -transitions. First the maximal class of confluent τ -transitions is
determined, and next outgoing confluent τ -transitions from a state are given
priority over all other outgoing transitions from this same state. For LTSs that
do not contain an infinite sequence of τ -transitions, this reduction preserves
branching bisimulation. An implementation of this algorithm is included in the
µCRL toolset. In some cases it reduces the size of an LTS by an exponential
factor. Furthermore, the worst-case time complexity of the reduction algorithm
from [11] compares favourably with minimisation modulo branching or weak
bisimulation equivalence. Hence, the algorithm from [11] can serve as a useful
preprocessing step to these minimisation algorithms.

5 Symbolic Reasoning about Infinite-State Systems

For very large finite-state systems, a symbolic analysis on the level of LPOs may
result in the generation of much smaller LTSs. For systems with an inherently
infinite number of states the use of theorem proving techniques is indispensable.

The original motivation behind the LPO format was that several proper-
ties of a system can be uniformly expressed by first-order formulae. Effective
proof methods for LPOs have been developed, incorporating the use of invari-
ants [3] and state mappings [16]. Also the confluence property of an LPO can
be expressed as a large first-order formula [15]. Using these techniques, large
distributed systems were verified in a precise and logical way, often with the
help of interactive theorem provers. See [9] for an overview of such case studies.

Since the confluence properties and the correctness criteria associated with
state mappings for industrial-scale case studies tend to be rather flat but very
large, we are developing a specialised theorem prover based on an extension of
BDDs with equality [12]. A prototype tool has been implemented [19], which was
used to detect confluence in a leader election protocol and in a Splice specification

254 Stefan Blom et al.

from [6]. (This information on confluence was exploited using the method of [4];
see Section 3.) This tool can also check invariants and the correctness criteria
associated with a state mapping between a specification and its implementation.

References

1. Th. Arts and I.A. van Langevelde. How µCRL supported a smart redesign of a
real-world protocol. In Proc. FMICS’99, pp. 31–53, 1999.

2. Th. Arts and I.A. van Langevelde. Correct performance of transaction capabilities.
In Proc. ICACSD’2001. IEEE, 2001.

3. M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In Proc. 5th
Conference on Concurrency Theory, LNCS 836, pp. 401–416. Springer, 1994.

4. S.C.C. Blom. Partial τ -confluence for efficient state space generation. Technical
Report, CWI, 2001.

5. M.G.J. van den Brand, H. de Jong, P. Klint, and P.A. Olivier. Efficient annotated
terms. Software – Practice and Experience, 30(3):259–291, 2000.

6. P.F.G. Dechering and I.A. van Langevelde. The verification of coordination. In
Proc. COORDINATION’2000, LNCS 1906, pp. 335-340. Springer, 2000.

7. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP – a protocol validation and verification toolbox. In Proc. 8th Confer-
ence on Computer-Aided Verification, LNCS 1102, pp. 437–440. Springer, 1996.

8. J.F. Groote and B. Lisser. Computer assisted manipulation of algebraic process
specifications. Technical Report, CWI, 2001.

9. J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of protocols
and distributed systems by computer. In Proc. 9th Conference on Concurrency
Theory, LNCS 1466, pp. 629–655. Springer, 1998.

10. J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for lifting
trucks. Technical Report, CWI, 2001.

11. J.F. Groote and J.C. van de Pol. State space reduction using partial τ -confluence.
In Proc. MFCS’2000, LNCS 1893, pp. 383–393. Springer, 2000.

12. J.F. Groote and J.C. van de Pol. Equational binary decision diagrams. In Proc.
LPAR’2000, LNAI 1955, pp. 161–178. Springer, 2000.

13. J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Proc. ACP’94,
Workshops in Computing, pp. 26–62. Springer, 1995.

14. J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization of parallel pCRL. To appear
in Journal of Logic and Algebraic Programming.

15. J.F. Groote and M.P.A. Sellink. Confluence for process verification. Theoretical
Computer Science, 170(1/2):47–81, 1996.

16. J.F. Groote and J. Springintveld. Focus points and convergent process operators:
a proof strategy for protocol verification. In Proc. ARTS’95, 1995.

17. I.A. van Langevelde. A compact file format for labeled transition systems. Technical
Report SEN R0102, CWI, 2001.

18. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
19. J.C. van de Pol. A prover for the µCRL toolset with applications – version 1.

Technical Report SEN R0106, CWI, 2001.
20. Y.S. Usenko. State space generation for the HAVi leader election protocol. To

appear in Science of Computer Programming.
21. A.G. Wouters. Manual for the µCRL toolset (version 1.11). Technical Report, CWI,

2001.

	Introduction
	$mu $CRL Specifications
	Linear Process Operators
	Labelled Transition Systems
	Symbolic Reasoning about Infinite-State Systems

