
BOOSTER: Speeding Up

RTL Property Checking of Digital Designs
by Word-Level Abstraction

Peer Johannsen

Siemens AG, Corporate Technology, Design Automation, CT–SE–4
81730 Munich, Germany

peer.johannsen@mchp.siemens.de

Abstract. In this paper we present a tool which operates as a pre- and
postprocessor for RTL property checking and simplifies word-level speci-
fications before verification, thus speeding up property checking runtimes
and allowing larger design sizes to be verified. The basic idea is to scale
down design sizes by exploiting word-level information. BooStER imple-
ments a new technique which computes a one-to-one RTL abstraction
of a digital design in which the widths of word-level signals are reduced
with respect to a property, i.e. the property holds for the abstract RTL
if and only if it holds for the original RTL. The property checking task
is completely carried out on the scaled-down version of the design. If the
property fails then the tool computes counterexamples for the original
RTL from counterexamples found on the reduced model.

1 High-Level Property Checking of Digital Designs

Today’s digital circuit designs frequently contain up to several million transistors
and designs need to be checked to ensure that manufactured chips operate cor-
rectly. Formal methods for verification are becoming increasingly attractive since
they confirm design behavior without exhaustively simulating a design. Over
the past years, bounded model checking and property checking have increased
in significance in electronic design automation [1,9]. Promising approaches to
enhance capabilities of hardware verification tools are decision procedures which
make use of high-level design information [2,3,4,5,11], and automated abstraction
techniques, e.g. using uninterpreted functions and small domain instantiations
[6,10].

We consider a property checking flow in which design specifications are given
as VHDL or Verilog source code. Properties are specified in a linear time logic
used in Symbolic Trajectory Evaluation and describe the intended behavior of
the design within a finite bounded interval of time. As a first step, design and
property are synthesized into a flattened RTL netlist, including word-level sig-
nals, word-level gates, arithmetic units, comparators, multiplexors and memory
elements. Each word-level signal x has a fixed width n ∈ N+ and takes bitvec-
tors of respective length as values. A property checker, which reads RTL netlists

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 373–377, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

374 Peer Johannsen

as input, translates such representation of design and property into an internal
bit-level representation (i.e. an instance of propositional SAT) and uses SAT,
BDD and ATPG methods to either prove that the property holds for the given
design or to compute a counterexample. A counterexample is an indication that
a circuit does not function in the way intended by the designer and is given in
terms of assignments of values to the circuit inputs, such that a violation of the
desired behavior, which is described by the property, can be observed.

BooStER (Boolean String Length Reduction) implements a new word-level
abstraction technique developed in [7], which is embedded within the flow. In
a preprocessing step prior to the property checker (see fig.), the tool takes the
RTL netlist and computes a scaled down RTL model of the design in which each
word-level signal x is replaced by a corre-
sponding shrunken signal of width mx ≤
n, where n is the original width of x , while
guaranteeing that the property holds for
the reduced RTL if and only if it holds
for the original RTL. Design and abstract
model differ from each other only as far as
signal widths are concerned. The reduced
RTL is given to the property checker in-
stead of the original RTL. Depending on
the degree of reduction, the internal bit-
level representation computed from the re-
duced RTL contains significantly less vari-
ables than the one computed when using
the non-reduced RTL. If the property does
not hold, the counterexample returned by
the property checker is taken, which is a
counterexample relating to the signals of
the reduced RTL. A corresponding coun-
terexample for the original RTL is com-
puted, using information about the applied
reduction, gathered during the preprocess.

Property
Design Specification

(VHDL , Verilog)

Counterexample for Reduced RTL

Frontend

RTL Representation

Counterexample for Original RTLResult

Signal−Width Enhancement

Postprocessing

Reduced
RTL Representation

Internal
Bit−Level Representation

Verification Engine

(SAT, BDD, ATPG, ...)

NO
Property holds?

YES

Property Checker

Abstraction
Signal−Width Reduction

Preprocessing

Information
Reduction

2 Scaling Down RTL Designs by Signal Width Reduction

BooStER reads an RTL representation of a design and a property and generates a
system E of equations over a theory of fixed-size bitvectors based on [7], which is
an extension of the core theory of bitvectors presented in [5]. Our theory features
high-level operators like bitwise Boolean operations, arithmetics (cf. [2]) and if-
then-else, and allows complete RTL designs to be modeled. E is satisfiable if and
only if the property does not hold for the RTL. Word-level signals in the RTL
correspond to bitvector variables in E, thus the information, which bits belong
to the same signal, is kept. A satisfying solution of E yields a counterexample for
the RTL. For each bitvector variable occurring in E the smallest possible number

BooStER: Speeding Up RTL Property Checking of Digital Designs 375

of bits is computed, such that a second system E′ of bitvector equations, which
differs from E solely in the manner that variable widths are shrunken to these
computed numbers, is satisfiable if and only if E is satisfiable. E′ is generated
using these minimum signal widths and then retranslated into a netlist, which
is output by the tool and represents a scaled down version of the original RTL.

Reduced RTL NetlistRTL Netlist
Analysis

Minimum Width

System E

of Bitvector Equations

System E’
of Equations with

Shrunken Signal Widths
Computation

Data Dependency

The process of scaling down signal widths is separated into two subsequent
phases. The high-level operators occurring in the equations of E impose struc-
tural and functional dependencies on the bitvector variables. Thereby, variables
typically have non-uniform data dependencies, i.e. different dependencies exist
for different chunks of a signal. Our method analyzes such dependencies and, for
each variable, determines contiguous parts in which all bits are treated uniformly
in the exact same manner with respect to data dependencies. Such decomposition

Granularity Analysis

Minimum Width Computation

Abstraction

Bitvector

Width−Reduced Bitvector

of a variable into a sequence of chunks
is called a granularity. For each such
chunk of a signal, the necessary minimum
width is computed, as required by dy-
namical data dependencies. According to
these computed minimum chunk widths,
the reduced width for the corresponding
shrunken signal is reassembled (see [7,8]
for further details on the reduction).

3 Experimental Results

BooStER is implemented in C++ and was tested in several case studies at the
EDA department of Siemens Corp. in Munich and at Infineon Techn. in San Jose.
Test cases were run on a PII 450Mhz Linux PC with 128MB. The tool operated
as a preprocessor to the property checker used at Siemens and Infineon. All run-
times on reduced models were compared to those achieved on the original designs
without preprocessing. As an example, we here consider the management unit
of an ATM switching element. The design consists of 3.000 lines of Verilog code,
the netlist synthesis has approx. 24.000 gates and 35.000 RAM cells. The RTL
incorporates 16 FIFO queue buffers and complex control logic. Data packages
are fed on 33 input channels to the management unit, stored in the FIFOs and
upon request are output on one of 17 output channels, while the cell sequence
has to be preserved and no package must be dropped from the management unit.

376 Peer Johannsen

Property Original design Shrunken model

Computation times for nop 2.96 secs
pre- and postprocessing read 6.53 secs

write 3.24 secs

FIFO sizes on RTL nop 160 cells × 10 bit 160 cells × 2 bit
read / write 160 cells × 10 bit 160 cells × 3 bit

Overall number of bits in all nop 20925 5034 (24.0 %)
signals in cone of influence read 31452 10592 (33.6 %)
of property write 14622 5163 (35.3 %)

Overall number of gates in nop 23801 5661 (27.9 %)
synthesized netlist read / write 23801 7929 (33.3 %)

Number of state bits nop 1658 362 (21.8 %)
read / write 1658 524 (31.6 %)

Property checker runtimes nop 23:33min 37.96 secs (2.7 %)
read 42:23min 3:27min (8.1 %)
write fail 2:08 min 25.66 secs (19.5 %)
write hold 27:08min 1:08min (4.2 %)

Three different properties (nop, read, write) had to be verified, which specified
the intended behavior within a range of 4 timesteps (nop, write) and 6 timesteps
(read). Results and CPU times are are shown above. As can be seen, in all cases

. . .

Cell Inputs

R/W

Cell

Outputs

10

1

10

10

17

4

Usage
Control

Target Decoder

MUX

. . . .

. . . .

Central RAM
Control

Queue 1 Queue 2 Queue 16

Original RTL

Data

MUX

. . .

Usage

. . . .

Central RAM
Control

. . . .

Target Decoder

Control

Cell Inputs

Cell

Outputs

R/W 1

17

4

Queue 1 Queue 2 Queue 16

Reduced RTL

Data

3

3

3

the data path signals could be scaled. This is illustrated in the block diagrams
above, showing the original design and the reduced model for the read property.
We encountered a significant reduction in the sizes of the design models and
a tremendous drop in the runtimes of the property checker. It turned out that
the write property did not hold due to a design bug in the Verilog code. A
counterexample for the reduced model was found (write fail) from which the
tool computed a counterexample for the original design, whereupon the bug was
fixed and the property was again checked on the corrected design (write hold).

4 Conclusions

Reducing runtimes and the amount of memory needed in computations is one
requirement in order to match today’s sizes of real world designs in hardware
verification. We have presented a tool that efficiently simplifies word-level cir-
cuit specifications for RTL property checking by scaling down the widths of
input, output and internal signals. A linear reduction from n bits down to m
bits, m < n, causes an exponential reduction of the induced state space of the
signal from 2n to 2m, while reduced state space sizes coincide with increased
verification performance. Our method provides a one-to-one RTL abstraction,

BooStER: Speeding Up RTL Property Checking of Digital Designs 377

which interprets all RTL operators and which strictly separates the pre- and
postprocessing of design and counterexample, and the property checking process
itself. Thus, the proposed method is independent of the concrete realization of
the property checker and can be combined with a variety of existing techniques
which take RTL netlists as input. Due to providing a one-to-one abstraction,
postprocessing of counterexamples is straightforward, false-negatives cannot oc-
cur. Moreover, if preprocessing yields that no reduction is possible for a given
design and a property, then abstract model and original design are identical, so
the verification task itself is not impaired by using the proposed abstraction, and
in all case studies pre- and postprocessing runtimes were negligible. Test cases
showed that the tool cooperated particularly well with a SAT and BDD based
property checking multi-engine, because the complexity of those techniques often
depends on the number of bits occurring in a design. Furthermore, experiments
revealed that the proposed abstraction seems to be well qualified for hardware
verification of memories, FIFOs, queues, stacks, bridges and interface protocols.

References

1. A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu. Symbolic Model Checking
Using SAT Procedures instead of BDDs. DAC’99, pages 317–320. 1999.

2. C.W. Barrett, D.L. Dill, J.R. Levitt. A Decision Procedure for Bit-Vector Arith-
metic. DAC’98, pages 522–527. 1998.

3. N. Bjørner, M.C. Pichora. Deciding Fixed and Non-fixed Size Bit-vectors.
TACAS’98, pages 376–392. 1998.

4. C.Y. Huang, K.T. Cheng. Assertion checking by combined word-level ATPG and
modular arithmetic constraint-solving techniques. DAC’00, pages 118–123. 2000.

5. D. Cyrluk, M.O. Möller, H. Ruess. An Efficient Decision Procedure for the Theory
of Fixed-Sized Bit-Vectors. CAV’97, pages 60–71. 1997.

6. R. Hojati, A.J. Isles, D. Kirkpatrick, R.K. Brayton. Verification Using Uninter-
preted Functions and Finite Instantiations. FMCAD’96, pages 218–232. 1996.

7. P. Johannsen. Scaling Down Design Sizes in Hardware Verification. Ph.D. Disser-
tation at the Christian-Albrechts-University of Kiel, to appear in 2001.

8. P. Johannsen. Computing One-to-One Minimum-Width Abstractions of Digital
Designs for RTL Property Checking. Intern. Report, Siemens AG, CT-SE-4, sub-
mitted to ICCAD’01.

9. J.P. Marques da Silva, K.A. Sakallah. Boolean satisfiability in electronic design
automation. DAC’00, pages 675–680. 2000.

10. A. Pnueli, Y. Rodeh, O. Shtrichman, M. Siegel. Deciding Equality Formulas by
Small Domains Instantiations. CAV’99, pages 455–469. 1999.

11. Z. Zeng, P. Kalla, M. Ciesielski. LPSAT: A Unified Approach to RTL Satisfiability.
DATE’01. 2001.

	High-Level Property Checking of Digital Designs
	Scaling Down RTL Designs by Signal Width Reduction
	Experimental Results
	Conclusions

