EASN: Integrating ASN.1 and Model Checking

Vivek K. Shanbhag!, K. Gopinath*!, Markku Turunen?,
Ari Ahtiainen?, and Matti Luukkainen®

1 CSA Dept, Indian Institute of Science, Bangalore, India
{vivek,gopi}@csa.iisc.ernet.in
2 Nokia Research Center, Helsinki, Finland
{markku.turunen,ari.ahtiainen}@nokia.com
3 Department of Computer Science, University of Helsinki, Finland
Matti.Luukkainen@cs.Helsinki.fi

Abstract. Telecommunication protocol standards have in the past and
typically still use both an English description of the protocol and an
ASN.1[5] specification of the data-model. ASN.1 (Abstract Syntax No-
tation One) is an ITU/ISO data definition language which has been de-
veloped to describe abstractly the values protocol data units can assume;
this is of considerable interest for model checking as ASN.1 can be used
to constrain/construct the state space of the protocol accurately. How-
ever, with current practice, any change to the English description cannot
easily be checked for consistency while protocols are being developed. In
this work, we have developed a SPIN-based tool called EASN (Enhanced
ASN.1) where the behavior can be formally specified through a language
based upon Promela for control structures but with data models from
ASN.1. We use the X/Open standard on ASN.1/C++ translation so that
our tool can be realised with pluggable components. We have used EASN
to validate a simplified RLC in the W-CDMA (3G GSM) stack. In this
short pape7 we discuss the EASN language, the tool, and an example
usage.

1 Introduction

Next generation protocols for mobile devices have become very complex and it is
becoming increasingly difficult for standards bodies to be sure of the correctness
of protocols during the standardization process. This has become an impediment
in defining new standards. What one needs is a way of specifying an evolving
protocol and have some confidence that, at a certain level of abstraction, the
protocol is consistent inspite of modifications.

Why ASN.1?7 There are languages like Promela that can be used, but their
data structuring capabilities do not match those of ASN.1, for instance, that is

* Supported by funding from Nokia Research Center, under SID project 99033.
! See [2] for a full paper discussing the implementation & some performance indicators.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 382-B86] 2001.
© Springer-Verlag Berlin Heidelberg 2001



EASN: Integrating ASN.1 and Model Checking 383

widely used in telecommunication protocol specification. It will help the stan-
dardization process if a model checker could be augmented with ASN.1 data
modeling capabilities to check correctness of interim versions of a protocol be-
fore establishing a standard.

ASN.1 separates data modeling into abstract and transfer syntax. The ab-
stract syntax only specifies the universe of abstract values that can be assumed
by variables in the model without any concern for how they are mapped to a
particular machine, compiler, OS, etc. Hence from the point of view of model
checking, an abstract syntax constrains the state space as much as possible IF
there is a mechanism by which a system state vector can be encoded with exactly
only the possible values of its constituent substates. The latter is a chief feature
of the state compaction infrastructure that has been developed for the EASN
system described here. ASN.1 has a subtyping feature with a well developed no-
tation for expressing constraints. Note that data here actually means the control
data in the protocols and hence our concerns are different from those approaches
that exploit symmetry, etc. We derive our EASN tool by marrying ASN.1 with
the well known model checker SPIN.

Why SPIN? SPIN[1] is an effective model checking tool for asynchronous
systems, especially designed for communication protocols. Nondeterminism and
guarded commands in Promela (input language of SPIN) makes it convenient to
express behavior of communicating protocol entities. SPIN has many capabilities
for validation of safety and liveness properties|[4]. Algorithms that effect substan-
tial space and time savings, like bit-state hashing, on-the-fly[3] model-checking
and partial-order reduction have been incorporated into SPIN.

SPIN has a simulator that randomly checks only a portion of the state
space and also a (generated) validator that can attempt to exhaustively check
the state space of the system or can use techniques like bit-state hashing to check
a substantial portion of the state space with a fairly high level of assurance. Our
EASN system also has these components.

EASN Language. ASN.1 can only be used to define the datatypes and constant
values in an application. Promela, however, is a complete language with a set
of basic data types and typedef construct to help users compose datatypes, and
control constructs that are used to define the behavior of protocol entities.

The EASN Language replaces all the datatyping capabilities of Promela
with ASN.1. Hence, none of the data types of Promela are retained in EASN,
except the chan construct. As ASN.1 has richer and more expressive datatypes
compared to Promela, EASN needs to overload the semantics of many of the
operators of Promela, so as to support a natural set of operations on data. In
addition, we have also augmented the set of operators as necessary. In brief,

EASN = Promela - {mtype, typedef, bit, byte, bool, short, int} + ASN.1
+ overloaded semantics for existing operators + few new operators.



384 Vivek K. Shanbhag et al.

2 EASN, the Verification Tool

Encoding State Efficiently: SPIN represents state quite efficiently but, for
reasons of alignment, allows padding and other extraneous matter in the state
vector. Since our system uses ASN.1 data modules, we require that all variables
be as constrained as possible in the space of values that they can take through
the use of subtyping. For instance, if there are only two variables, that are
constrained between (say) 5..7 and 3..7, there are only 15 possibilities, and can
be represented in only 4 bits instead of either 2+3 (5 bits) or worse 3+3 (6 bits 2.

Our state compaction infrastructure views the state space of the system as a
multi-dimensional array (with one dimension for every component of the state),
and consequently, every state of the system, as a point in this multi-dimensional
space. We use column-major linearisation.

SPIN does various kinds of state compaction, and in EASN, we have a com-
parable mechanism for most of them that perform atleast as well in space. But
some are unnecessary in EASN. Geldenhuys and Villiers[§] also attempt state
compression in SPIN along similar lines as ours but by adding a simple construct
to Promela but with restrictions. For example, different orders of process activa-
tion along different execution paths are forbidden in their approach as much of
the state component placement is done statically. The ranges of their variables
must start at zero. We do not have such restrictions.

The EASN Tool: SPIN is open source[7]. We intend EASN to be open source
too. NRC has an ASN.1 parser that we could use but we did not want to com-
promise others from using EASN as open source. We, therefore, have used the
X/Open ASN.1/C++ translator std[6] to architect the tool so as to enable other
users besides us and NRC to realise it by plugging in any compliant ASN.1/C++
translator into the system. A block diagram of the EASN system is given in the
accompanying figure.

An EASN system specification (for simulation/verification) consists of two
compilation units. One containing all the ASN.1 modules (the dEASN spec.)
that is parsed by the ASN.1/C++ translator to generate C++ source, and the
other containing the behavioral specification of the protocol entities (the cEASN
spec.) that is parsed by the EASN parser (a modified Promela parser, derived
from SPIN). It is the variable declarations in the cEASN spec that ties it to the
dEASN spec as their types are defined in the ASN.1 modules. The EASN parser
imports all the relevant information regarding a type, from the generated C++
source, by querying its meta-data interface.

The Parser and Simulator: The executable that can parse and simulate a
given cEASN spec. is fetched from linking the C++4 generated by the translator
(corresponding to the associated dEASN spec.) along with all the (appropriately
modified) SPIN modules. This executable is the EASN tool. The EASN simulator
requires to access data values and modify them through permitted operations.

2 Experienced ASN.1 users may note that such an encoding is even better than the
often very compact PER encoding.



EASN: Integrating ASN.1 and Model Checking 385

Compaction
7| Information
Generator

Rectangles in this figure refer to executables.

Elipses refer to source code, either manually developed,

or automatically generated.

Rounded rectangles refer to s/w modules at a coarse

grain level of abstraction.

The hexagon contains data-structures internal to an application

ASN.1/C++
Translator
P
Generic
Data Interface

cific
Data Interface

dEASN: The ASN.1 Data modules for a EASN Spec.
CEASN: The control aspect (behaviour of protocol entities.)

Compaction
Information

SPIN: contains three main modules, the Parser, Simulator &
the pan-Generator. LTL-translation & GUI are the other two
modules of SPIN that we inherit into EASN without modification.

EASN: Given an EASN spec., the ASN.1/C++ translator is first
invoked to generate the C++ sources that are compiled into & with
the rest of the (appropriately modified versions of) SPIN Sources,
to fetch the EASN executable, that can then parse the cEASN Spec.

EASN

EASN-pan: The EASN-generated pan.[thmcb] files should

be compiled & linked with the sources generated by the Translator,
and the generated Compaction-Information, and one additional
State-Vector Compnent module, to fetch the Protocol-ANalyser.

EASN-pan

However, since the simulator engine has no knowledge of the specific ASN.1
types that might be used in different EASN specifications, these data operations
must be carried out using the ASN.1/C++ Generic Data Interface that supports
operations on objects conforming to the ASN.1 data-model.

The Generated Validator: SPIN generates C code that is compiled to obtain
the validator. EASN, however, generates C++ code that has to be linked with
the code generated by the ASN.1/C++ translator, the code generated by the
Compaction information generator and the compaction infrastructure to obtain
the validator.

The compaction information is a set of C++ functions that export all infor-
mation about value-constraints expressed in the original ASN.1 spec, through
the C++ interface as required by the generic compaction infrastructure module.
Through these two additional components of our framework, we implement in-
crementally the computation of the linearised representation of the state of the
system that needs to be stored into the hash-table, and also the hash-value of
the bucket in the table.

RLC/ABP Examples: We have used EASN to validate a simplified RLC in
the W-CDMA (3G GSM) stack. It uses less memory but more time than SPIN.
Further details of the performance of EASN have been submitted to the FMICS
workshop. Due to its length, we present a much simpler ABP protocol in figure
2. Note that the state vector for EASN is half the size of SPIN’s.

Correctness of Implementation vis-a-vis SPIN: In crafting EASN from
SPIN, we identified the following invariant that could be a necessary and suffi-
cient condition to convince oneself that our implementation is sane:

Given a Promela spec. s and a cEASN spec. e, derived from s by changing
its variable types to equivalent ASN.1 types (defined in an ASN.1 module



386

1
2
3
4
5
6
7
8

9

10
11
12

Vivek K. Shanbhag et al.

appropriately imported into EASN): A. Simulation runs of SPIN over s
and of EASN over e should select identical sequence of state-transitions,
for the same seed value; B. The sequence in which the reachable states of
the system are visited by the generated validators (by SPIN for s and by
EASN for e) must be identical (for exhaustive searches), with/without
partial-order reduction or never-claims.

EASN preserves this invariant for all the tests that we have tried so far.

/* mtype = { msg0, msgl, ack0, ackl }; */

chan sender = [1] of { asn::MtypeAbp };
chan receiver = [1] of { asn::MtypeAbp };

inline recv(cur_msg, cur_ack, Ist_msg, Ist_ack) {

do

:: receiver?cur_msg -> sender!cur_ack; break
:: receiver?lst_msg -> sender!Ist_ack

od;
}

do

:: sender?bad_ack
:: timeout ->
if
it receiver!msg;
21 fi;

od
23 )

13 inline phase(msg, good_ack, bad_ack) { 25

:: sender?good_ack -> break

<2 skip /* lose message */

active proctype Sender() {
do
:: phase(msg], ackl, ack0);
phase(msg0, ack0, ack1)
od

26
27

30 )
active proctype Receiver() {
do
::recv(msgl, ackl, msg0, ack0);
recv(msg0, ack0, msgl, ackl)
od
36 )

1
2
3
4
5
6
7
8
9

Easn DEFINITIONS ::=

BEGIN

MtypeAbp ::= ENUMERATED {
msg0, msgl, ack0, ackl

}

END

@

State-vector 24 byte, depth reached 9, errors: 0
12 states, stored
3 states, matched
15 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

(max size 218 states)

©)

State-vector 12 byte, depth reached 9, errors: 0
12 states, stored
3 states, matched
15 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

(max size 2718 states)

©

1: The cEASN Spec.

2: The dEASN Spec.

The original Promela Spec. can be recovered from

3: The SPIN-pan output. 4: The EASN-pan output. the cEASN Spec, by uncommenting line # 1.

Fig.1. ABP in SPIN and EASN.

References

®

Holzmann, Gerald J., Doron Peled, “The state of SPIN”, CAV ’96.

Shanbhag, Vivek K., K. Gopinath, “A Spin based model checker for telecommu-
nication protocols”, May 2001, 8th Intl SPIN Workshop on Model Checking of
Software.

G. Gerth, D. Peled, M. Y. Vardi, P. Wolper, “Simple On-the-fly Automatic Veri-
fication of Linear Temporal Logic”, PSTV94.

Holzmann, G.J., Design and Validation of Computer Protocols, Prentice Hall, 1992.
Information Technology - Abstract Syntax Notation One (ASN.1): Specification
of Basic Notation, ITU-T Rec. X.680 (1994); Information Object Specification,
ITU-T Rec. X.681 (1994); Constraint Specification, ITU-T Rec. X.682 (1994);
Parametrization of ASN.1 specifications, ITU-T Rec. X.683 (1994).

ASN.1/C++ Application Programming Interface, Part 1: Base Classes & Specific
Interface, NMF 040-1; Part 2: Generic Interface, NMF 040-2, Issue 1.0, Feb. 1998
Holzmann, G.J., SPIN Sources, Version 3.4.6, 29th March. 2001.

J.Geldenhuys, PJA de Villiers, ‘Runtime Efficient State Compaction in SPIN,’ 5th
Intl SPIN Workshop on Theoretical Aspects of Model Checking, ed. D. Dams, M.
Massnik.



	Introduction
	EASN, the Verification Tool

