
A Fast Bisimulation Algorithm

Agostino Dovier1, Carla Piazza2, and Alberto Policriti2

1 Dip. di Informatica, Univ. di Verona
Strada Le Grazie 15, 37134 Verona, Italy

dovier@sci.univr.it
2 Dip. di Matematica e Informatica, Univ. di Udine

Via Le Scienze 206, 33100 Udine, Italy
{piazza,policriti}@dimi.uniud.it

Abstract. In this paper we propose an efficient algorithmic solution to
the problem of determining a Bisimulation Relation on a finite structure.
Starting from a set-theoretic point of view we propose an algorithm that
optimizes the solution to the Relational coarsest Partition problem given
by Paige and Tarjan in 1987 and its use in model-checking packages is
briefly discussed and tested. Our algorithm reaches, in particular cases,
a linear solution.
Keywords: Bisimulation, non well-founded sets, automata, verification.

1 Introduction

It is difficult to accurately list all the fields in which, in one form or another, the
notion of bisimulation was introduced and now plays a central rôle. Among the
most important ones are: Modal Logic, Concurrency Theory, Formal Verification,
and Set Theory.

Several existing verification tools make use of bisimulation in order to min-
imize the state spaces of systems description. The reduction of the number of
states is important both in compositional and in non-compositional model check-
ing. Bisimulation serves also as a means of checking equivalence between tran-
sition systems. The verification environment XEVE [5] provides bisimulation
tools which can be used for both minimization and equivalence test. In gen-
eral, in the case of explicit-state representation, the underlying algorithm used
is the one proposed by Kanellakis and Smolka [17], while Bouali and de Simone
algorithm [6] is used in the case of symbolic representation. The Concurrency
Factory project [8] tests bisimulation using techniques based on the Kanellakis
and Smolka algorithm. As for the criticism on the use of bisimulation algorithms,
Fisler and Vardi observe in [10] that “bisimulation minimization does not ap-
pear to be viable in the context of invariance verification”, but in the context of
compositional verification it “makes certain problems tractable that would not
be so without minimization” [2,21].

The first significant result related to the algorithmic solution of the bisim-
ulation problem is in [16], where Hopcroft presents an algorithm for the mini-
mization of the number of states in a given finite state automaton. The problem
is equivalent to that of determining the coarsest partition of a set stable with

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 79–90, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

80 Agostino Dovier, Carla Piazza, and Alberto Policriti

respect to a finite set of functions. A variant of this problem is studied in [20],
where it is shown how to solve it in linear time in case of a single function.
Finally, in [19] Paige and Tarjan solved the problem for the general case (i.e.,
bisimulation) in which the stability requirement is relative to a relation E (on a
set N) with an algorithm whose complexity is O(|E| log |N |).

The main feature of the linear solution to the single function coarsest par-
tition problem (cf. [20]), is the use of a positive strategy in the search for the
coarsest partition: the starting partition is the partition with singleton classes
and the output is built via a sequence of steps in which two or more classes
are merged. Instead, Hopcroft’s solution to the (more difficult) many functions
coarsest partition problem is based on a (somehow more natural) negative strat-
egy: the starting partition is the input partition and each step consists of the
split of all those classes for which the stability constraint is not satisfied. The
interesting feature of Hopcroft’s algorithm lies in its use of a clever ordering (the
so-called “process the smallest half” ordering) for processing classes that must
be used in a split step. Starting from an adaptation of Hopcroft’s idea to the
relational coarsest partition problem, Paige and Tarjan succeeded in obtaining
their fast solution [19]. The algorithm presented in [4] is based on the näıve
negative strategy, but on each iteration it stabilizes only reachable blocks with
respect to all blocks. This is improved in [18], where only reachable blocks are
stabilized with respect to reachable blocks only.

In this paper we present a procedure that integrates positive and negative
strategies to obtain the algorithmic solution to the bisimulation problem and
hence to the relational coarsest partition problem. The strategy we develop is
driven by the set-theoretic notion of rank of a set. The algorithm we propose
uses [20] and [19] as subroutines and terminates in linear time in many cases,
for example when the input problem corresponds to a bisimulation problem on
acyclic graphs (well-founded sets). It operates in linear time in other cases as
well and, in any case, it runs at a complexity less than or equal to that of the
algorithm by Paige and Tarjan [19]. Moreover, the partition imposed by the rank
allows to process the input without storing the entire structure in memory at
the same time.

The paper is organized as follows: in the next section we introduce the set-
theoretic formulation of the bisimulation problem. The subsequent Section 3
contains the algorithm for the well-founded case. Section 4 presents the basic idea
of our proposed algorithm and its optimizations are explained in the following
section. In Section 6 we show how our results and methods can be adapted to the
multi-relational coarsest partition problem (i.e., bisimualtion on labeled graphs)
and in Section 7 we discuss some testing results. Some conclusions are drawn in
Section 8. Detailed proofs of all the statements in this paper can be found in [9].

2 The Problem: A Set-Theoretic Perspective

One of the main features of intuitive (näıve) Set Theory is the well-foundedness
of membership. As a consequence, standard axiomatic set theories include the
foundation axiom that forces the membership relation to form no cycles or infi-
nite descending chains. In the 80’s the necessity to consider theories that do not

A Fast Bisimulation Algorithm 81

assume this strong constraint (re-)emerged in many communities; hence vari-
ous proposals for (axiomatic) non well-founded set theories (and universes) were
developed (see [11,1,3]).

Sets can be seen as nothing but accessible pointed graphs (cf. Definition 1).
Edges represent membership, m → n means that m has n as an element, and
the nodes in the graph denote all the sets which contribute in the construction
of the represented set.

Definition 1. An accessible pointed graph (apg) 〈G, n〉 is a directed graph G =
〈N, E〉 together with a distinguished node n ∈ N such that all the nodes in N
are reachable from n.

The resulting set-theoretic semantics for apg’s, introduced and developed in [1],
is based on the natural notion of picture of an apg. The extensionality axiom—
saying that two objects are equal if and only if they contain exactly the same
elements—is the standard criterion for establishing equality between sets. If
extensionality is assumed it is immediate to see that, for example, different
acyclic graphs can represent the same set. However, extensionality leads to a
cyclic argument (no wonder!) whenever one tries to apply it as a test to establish
whether two cyclic graphs represent the same non well-founded set (hyperset).
To this end a condition (bisimulation) on apg’s can be stated in accordance with
extensionality: two apg’s are bisimilar if and only if they are representations of
the same set.

Definition 2. Given two graphs G1 = 〈N1 , E1〉 and G2 = 〈N2, E2〉, a bisimu-
lation between G1 and G2 is a relation b ⊆ N1 × N2 such that:

1. u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)
2. u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

Two apg’s 〈G1, n1〉 and 〈G2, n2〉 are bisimilar if and only if there exists a bisim-
ulation b between G1 and G2 such that n1 b n2.

We can now say that two hypersets are equal if their representations are
bisimilar. For example the apg 〈〈{n}, ∅, 〉, n〉 represents the empty set ∅. The
hyperset Ω, i.e. the unique hyperset which satisfies the equation x = {x} (see [1]),
can be represented using the apg 〈〈{n}, {〈n, n〉}〉, n〉. Any graph such that each
node has at least one outgoing edge can be shown to be a representation of
Ω. It is clear that for each set there exists a collection of apg’s which are all
its representations. It is always the notion of bisimulation which allows us to
find a minimum representation (there are no two nodes representing the same
hyperset). Given an apg 〈G, n〉 that represents a set S, to find the minimum
representation for S it is sufficient to consider the maximum bisimulation ≡
between G and G. Such a bisimulation ≡ always exists and is an equivalence
relation over the set of nodes of G. The minimum representation of S is the apg
〈G/ ≡, [n]〉 (see [1]) which is usually called bisimulation contraction of G.

An equivalent way to present the problem is to define the concept of bisim-
ulation as follows.

82 Agostino Dovier, Carla Piazza, and Alberto Policriti

Definition 3. Given a graph G = 〈N, E〉, a bisimulation on G is a relation
b ⊆ N × N such that:

1. u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ ∃v2(v1 b v2 ∧ 〈u2, v2〉 ∈ E)
2. u1 b u2 ∧ 〈u2, v2〉 ∈ E ⇒ ∃v1(v1 b v2 ∧ 〈u1, v1〉 ∈ E).

A bisimulation on G is nothing but a bisimulation between G and G. The prob-
lem of recognizing if two graphs are bisimilar and the problem of determin-
ing the maximum bisimulation on a graph are equivalent. Two disjoint apg’s
〈〈N1, E1〉, ν1〉 and 〈〈N2, E2〉, ν2〉 are bisimilar if and only if ν1 ≡ ν2, where ≡ is
the maximal bisimulation on 〈〈N1 ∪ N2 ∪ {µ}, E1 ∪ E2 ∪ {〈µ, ν1〉, 〈µ, ν2〉}〉, µ〉,
with µ a new node. We consider the problem of finding the minimum graph
bisimilar to a given graph, that is, the bisimulation contraction of a graph.

The notion of bisimulation can be connected to the notion of stability :

Definition 4. Let E be a relation on the set N , E−1 its inverse relation, and P
a partition of N . P is said to be stable with respect to E iff for each pair B1, B2

of blocks of P , either B1 ⊆ E−1(B2) or B1 ∩ E−1(B2) = ∅.
Given a set N , k relations E1, . . . , Ek on N , and a partition P of N , the multi-
relational coarsest partition problem consists of finding the coarsest refinement
of P which is stable with respect to E1, . . . , Ek. As noted in [17], the algorithm
of [19] that determines the coarsest partition of a set N stable with respect to
k relations solves exactly the problem of testing if two states of an observable
Finite States Process (FSP) are strongly equivalent. Our bisimulation problem
is a particular case of observable FSPs strong equivalence problem (k = 1).
In Section 6 we show how the case of bisimulation over a labeled graph (multi-
relational case) can be linearly reduced to our bisimulation problem. This means
that the problem of finding the bisimulation contraction of a graph is equivalent
to the multi-relational coarsest partition problem.

3 The Well-Founded Case

We start by considering the case of acyclic graphs (well-founded sets). Similarly
to what is done in the minimization of Deterministic Finite Automata, it is
possible to to determine the coarsest partition P stable w.r.t. E through the
computation of a greatest fixpoint. A “negative” (and blind with respect to
the relation) strategy is applicable: start with the coarsest partition P = {N},
choose a class B (the splitter) and split all the classes using B whenever P is not
stable. The complexity of the algorithm, based on a negative strategy, presented
in [19] for this problem is O(|E| log |N |).

We will take advantage of the set-theoretic point of view of the problem in
order to develop a selection strategy for the splitters depending on the relation
E. Making use of the ordering induced by the notion of rank we will start from
a partition which is a refinement of the coarsest one; then we will choose the
splitters using the ordering induced by the rank. These two ingredients allow to
obtain a linear-time algorithm.

A Fast Bisimulation Algorithm 83

Definition 5. Let G = 〈N, E〉 be a directed acyclic graph. The rank of a node
n is recursively defined as follows:

{
rank (n) = 0 if n is a leaf
rank (n) = 1 + max{rank (m) : 〈n, m〉 ∈ E} otherwise

The notion of rank determines a partition which is coarser than the maximum
bisimulation.

Proposition 1. Let m and n be nodes of an acyclic graph G. If m ≡ n, then
rank (m) = rank (n).

The converse, of course, is not true. Let P be a partition of N such that for each
block B in P it holds that m, n ∈ B implies rank (m) = rank (n); then every
refinement of P fulfills the same property. Hence, we can assign to a block B the
rank of its elements.

Algorithm 1 (Well-Founded Case).

1. for n ∈ N do compute rank (n); — compute the ranks
2. ρ := max{rank (n) : n ∈ N};
3. for i = 0, . . . , ρ do Bi := {n ∈ N : rank (n) = i};
4. P := {Bi : i = 0, . . . , ρ}; — P is the partition to be refined initialized with the Bi’s
5. for i = 0, . . . , ρ do

(a) Di := {X ∈ P : X ⊆ Bi}; — determine the blocks currently at rank i
(b) for X ∈ Di do

G := collapse(G, X); — collapse nodes at rank i
(c) for n ∈ N ∩ Bi do — refine blocks at higher ranks

for C ∈ P and C ⊆ Bi+1 ∪ . . . ∪ Bρ do
P := (P \ {C}) ∪ {{m ∈ C : 〈m, n〉 ∈ E}, {m ∈ C : 〈m, n〉 /∈ E}};

Step 1 can be performed in time O(|N | + |E|) by a depth-first visit of the
graph. Collapsing nodes a1, . . . , ak, as in step 5(b), consists in eliminating all
nodes but a1 and replacing all edges incident to a2, . . . , ak by edges incident to
a1. Despite the nesting of for-loops the following holds.

Proposition 2. The algorithm for the well-founded case correctly computes the
bisimulation contraction of its input acyclic graph G = 〈N, E〉 and can be im-
plemented so as to run in linear time O(|N |+ |E|).
An example of computation of the above algorithm can be seen in Figure 1. In

Fig. 1. Minimization Process.

all the examples we present, the computation steps proceed from left to right.

84 Agostino Dovier, Carla Piazza, and Alberto Policriti

Those who are familiar with OBDDs ([7]) or with k-layered DFA’s ([15]) can
read our algorithm for the well-founded case as a generalization of the minimiza-
tion algorithm for k-layered DFA. In the well-founded case we admit that a node
at the i-th layer may reach a node at the j-th layer with j > i.

4 Basic Idea for the General Case

The presence of cycles causes the usual notion of rank (cf. Definition 5) to be
not adequate: an extension of such a notion must be defined.

Definition 6. Given a graph G = 〈N, E〉, let Gscc = 〈Nscc, Escc〉 be the graph
obtained as follows:

N scc = {c : c is a strongly connected component in G}
Escc = {〈c1, c2〉 : c1 6= c2 and ∃n1 ∈ c1, n2 ∈ c2(〈n1, n2〉 ∈ E)}

Given a node n ∈ N , we refer to the node of Gscc associated to the strongly
connected component of n as c(n).

Observe that Gscc is acyclic and if G is acyclic then Gscc is G itself.
We need to distinguish between the well-founded part and the non-well-

founded part of a graph G.

Definition 7. Let G = 〈N, E〉 and n ∈ N . G(n) = 〈N(n), E � N(n)〉 is the
subgraph of G of the nodes reachable from n. WF (G), the well-founded part of
G, is WF (G) = {n ∈ N : G(n) is acyclic}.

Observe that 〈G(n), n〉 is an apg; if n ∈ WF (G) then it denotes a well-
founded set.

Definition 8. Let G = 〈N, E〉. The rank of a node n of G is defined as:



rank (n) = 0 if n is a leaf in G
rank (n) = −∞ if c(n) is a leaf in Gscc and n is not a leaf in G
rank (n) = max({1 + rank (m) : 〈c(n), c(m)〉 ∈ Escc, m ∈ WF (G)} ∪

{rank (m) : 〈c(n), c(m)〉 ∈ Escc, m 6∈ WF (G)}) otherwise

Since Gscc is always acyclic, the definition is correctly given. If G is acyclic then
G = Gscc and the above definition reduces to the one given in the well-founded
case (Def. 5). Nodes that are mapped into leaves of Gscc are either bisimilar to
∅ or to the hyperset Ω. For a non-well-founded node different from Ω the rank
is 1 plus the maximum rank of a well-founded node reachable from it (i.e., a
well-founded set in its transitive closure).

We have explicitly used the graph Gscc to provide a formal definition of the
notion of rank. However, the rank can be computed directly on G by two visits
of the graph, avoiding the explicit construction of Gscc.

A Fast Bisimulation Algorithm 85

Proposition 3. Let m and n be nodes of a graph G:

1. m ≡ Ω if and only if rank (m) = −∞;
2. m ≡ n implies rank (m) = rank (n).

The converse of Proposition 3.2 is not true. Moreover, the rank of c(n) in Gscc

(that can be computed using Def. 5) is not necessarily equal to the rank of
n in G.

Given a graph G = 〈N, E〉 with ρ = max{rank (n) : n ∈ N}, we call the
sets of nodes B−∞, B0, . . . , Bρ, where Bi = {n ∈ N : rank (n) = i}, the rank
components of G.

Since we proved in the previous section that the bisimulation contraction
can be computed in linear time on well-founded graphs, it is easy to see that we
can use the algorithm for the well-founded case in order to process the nodes in
WF (G) for the general case. Hence, we can assume that the input graph for the
general case does not contain two different bisimilar well-founded nodes.

Algorithm 2 (General Case).

1. for n ∈ N do compute rank (n); — compute the ranks

2. ρ := max{rank (n) : n ∈ N};
3. for i = −∞, 0, . . . , ρ do Bi := {n ∈ N : rank (n) = i};
4. P := {Bi : i = −∞, 0, . . . , ρ}; — P partition to be refined initialized with the Bi’s

5. G := collapse(G, B−∞); — collapse all the nodes of rank −∞
6. for n ∈ N ∩ B−∞ do — refine blocks at higher ranks

for C ∈ P and C 6= B−∞ do
P := (P \ {C}) ∪ {{m ∈ C : 〈m, n〉 ∈ E}, {m ∈ C : 〈m, n〉 /∈ E}};

7. for i = 0, . . . , ρ do

(a) Di := {X ∈ P : X ⊆ Bi}; — determine the blocks currently at rank i
Gi := 〈Bi, E � Bi〉; — isolate the subgraph of rank i
Di := Paige-Tarjan(Gi, Di); — process rank i

(b) for X ∈ Di do
G := collapse(G, X); — collapse nodes at rank i

(c) for n ∈ N ∩ Bi do — refine blocks at higher ranks
for C ∈ P and C ⊆ Bi+1 ∪ . . . ∪ Bρ do

P := (P \ {C}) ∪ {{m ∈ C : 〈m, n〉 ∈ E}, {m ∈ C : 〈m, n〉 /∈ E}};

In steps 1–4 we determine the ranks and we initialize a variable P representing
the computed partition using the ranks. The collapse operation (steps 5 and 7(b))
is as in the well-founded case. Splits of higher rank blocks is instead done in steps
6 and 7(c). Step 7 is the core of the algorithm, where optimizations will take
place. For each rank i we call the procedure of [19] on Gi = 〈Bi, E � Bi〉, with a
cost O(|E � Bi| log |Bi|) and we update the partition P on nodes of rank greater
than i. From these observations:

Proposition 4. If G = 〈N, E〉 is a graph, then the worst case complexity of the
above algorithm is O(|E| log |N |). The algorithm for the general case on input G
correctly computes the bisimulation contraction of G.

86 Agostino Dovier, Carla Piazza, and Alberto Policriti

Proof. (Sketch) The global cost is no worse than (for some c1, c2 ∈ N):

c1(|N |+ |E|) +
ρ∑

i=1

c2(|E � Bi| log |Bi|) = O(|E| log |N |). (1)

The complexity of the method sketched above is asymptotically equivalent to
that of Paige and Tarjan. However, as for the well-founded Algorithm 1, we take
advantage of a refined initial partition and of a selection strategy of the blocks
to be setected for splitting blocks of higher ranks. In a single rank, the negative
strategy of the Paige-Tarjan algorithm is applied to the rank components which,
in general, are much smaller than the global graph. In particular, for families of
graphs such that ρ is Θ(|N |) and the size of the each rank component is bounded
by a constant c the global cost becomes linear (cf. formula (1)).

5 Optimizations in the General Case

We present here two situations in which we are able to optimize our algorithm.
In some cases, a linear running time is reached. Other possible optimizations are
presented in [9].

First Optimization. This optimization makes use of the Paige-Tarjan-Bonic
procedure [20]. Such a procedure can be used in some cases to solve the coarsest
partition problem in linear time adopting a “positive” strategy. Its integration
in our algorithm produces a global strategy that can therefore be considered as
a mixing of positive and negative strategies.

Definition 9. A node n belonging to a rank component Bi ⊆ N is said to be a
multiple node if |{m ∈ Bi : 〈n, m〉 ∈ E}| > 1.

Whenever Bi has no multiple nodes, we can replace the call to Paige-Tarjan
in step 7(a) with a call to Paige-Tarjan-Bonic. This allows us to obtain a linear
time performance at rank i (in the formula (1) the term c2(|E � Bi| log |Bi|) can
be replaced by c3(|E � Bi| + |Bi|) for some c3 ∈ N).

Proposition 5. The optimized algorithm for the general case on input G cor-
rectly computes the bisimulation contraction of G. If G = 〈N, E〉 is a graph with
no multiple nodes, then its worst case complexity is O(|N | + |E|).

In Figure 2 we show an example of a graph on which the above optimization
can be performed and the overall algorithm turns out to be linear.

Second Optimization. The crucial consideration behind the second optimization
we propose is the following: the outgoing edges of a node u allow one to establish
to which other nodes of the same rank component it is bisimilar. If we have some
means to know that u is not bisimilar to any other nodes of its rank component,
we can simply delete all edges outgoing from u. The deletion of a set of edges
splits a rank component (i.e., we can recalculate the rank) and makes it possible

A Fast Bisimulation Algorithm 87

Fig. 2. Example of the First Kind of Optimization.
to recursively apply our algorithm on a simpler case. The typical case in which
the above idea can be applied occurs when, at a given iteration i, there exists a
block X in the set Di of the blocks of rank i which is a singleton set {n}: then
all the outgoing edges from the node n can be safely deleted. In next section we
show the usefulness of this optimization in cases coming from formal verification.

6 Labeled Graphs

In several applications (e.g., Concurrency, Databases, Verification) graphs to be
tested for bisimilarity have labels on edges (typically, denoting actions) and,
sometimes, labels on nodes (typically, stating a property that must hold in a
state). If only edges are labeled, we are in the context of the multi-relation
coarsest partition problem. The definition of bisimulation has to be refined in
order to take into consideration the labels on nodes and the labels on edges.

Definition 10. Let L be a finite set of labels and A be a finite set of actions.
Given a labeled graph G = 〈N, E, `〉, with E ⊆ N × A × N (we use u

a→ v ∈ E
for 〈u, a, v〉 ∈ E) and ` : N −→ L, a labeled bisimulation on G is a symmetric
relation b ⊆ N × N such that:
• if u1 b u2, then `(u1) = `(u2);
• if u1 b u2 and u1

a→ v1 ∈ E, then there is an edge u2
a→ v2 ∈ E and v1 b v2.

Let us analyze how our algorithm can solve the extended problem. To start,
assume that only nodes are labeled. The only change is in the initialization
phase: the partition suggested by the rank function must be refined so as to
leave in the same block only nodes with the same label. Then the algorithm can
be employed without further changes. Assume now that edges can be labeled.

m
a−→ n ⇒ m −→ µ −→ n

`(m) `(n) `(m) `(µ) = 〈m, a〉 `(n)

Fig. 3. Removing Edges Labels.

We suggest the following encoding: for each pair of nodes m, n and for each label
a such that there is an edge m

a→ n ∈ E (see also Fig. 3):

– remove the edge m
a→ n;

– add a new node µ, labeled by the pair 〈m, a〉;
– add the two (unlabeled) new edges m → µ, µ → n.

88 Agostino Dovier, Carla Piazza, and Alberto Policriti

Starting from G = 〈N, E, `〉 we obtain a new graph G′ = 〈N ′, E′, `〉, with E′ ⊆
N ×N , where |N ′| = |N |+ |E| = O(|N |2) and |E′| = 2|E|. Thus, our algorithm
can run in O(|E′| log |N ′|) = O(|E| log |N |).
Proposition 6. Let G = 〈N, E, `〉 be a graph with labeled edges and nodes, ≡ be
its maximum labeled bisimulation, and G′ the graph with labeled nodes obtained
from G. Then, m ≡ n if and only if m and n are in the same class at the end
of the execution of Algorithm 2 on G′ with the initial partition (Step 4) further
split using node labels.

7 Testing

To the best of our knowledge there is no “official” set of benchmarks for testing
an algorithm such as the one we propose in our paper. We decided to test our
implementation in the context of formal verification using model checkers and
considering the transition graphs they generate from a given program. In par-
ticular, we have considered the transition systems generated by the examples in
the SPIN package [14]: built using ideas from [13], their aim is to check that the
implementation of a protocol verifies a formal specification. Usually, the graphs
generated consist of a unique strongly connected component and the set of pos-
sible labels is huge. When we rewrite them into unlabeled graphs, we usually
obtain graphs on which we can perform the second optimization proposed in
Section 5. Such an optimization allows us to delete edges in the graphs, obtain-
ing graphs on which the algorithm runs in linear time. In Figure 4 we show the
graph obtained for the process Cp0 of the Snooping Cache protocol. From left
to right are depicted: the labeled graph generated, its corresponding unlabeled
graph, the graph after our optimization, and, finally, its bisimulation contraction
that can be computed in linear time.

119 119 119

118 120 121

119 119 119

118 120 121

119 119 119

118 120 121

119

118 120 121

Fig. 4. Bisimulation Contraction of Cp0 from Snoopy.

These considerations about the “topology” of verification graphs suggested
us some examples on which compare the performances of our algorithm with
that of Paige and Tarjan. Details about the implementation (both in C and in
Pascal), the machine used for the tests together with the code and the results of
further tests are available at http://www.sci.univr.it/~dovier/BISIM. The
graphs for Test 1 (cf. Figure 5) we present here are transitive closures of binary
trees. The graphs for Test 2 are obtained by linking with cycles nodes at the

http://www.sci.univr.it/~dovier/BISIM

A Fast Bisimulation Algorithm 89

Test1 Test2
Nodes 8191 16383 32767 65535 8204 16397 32782 65551
Edges 90114 196610 425896 917506 102411 221196 475149 1015822

PT .22 .49 1.09 2.91 .49 1.10 2.47 5.77
Alg .06 .12 .33 .71 .23 .55 1.25 2.86

Fig. 5. Two Tests (Time in Seconds).

same level of the graphs of the first test. Then the “even” nodes of these cycles
are connected by an edge to a node of an acyclic linear graph.

8 Conclusion and Further Developments

We proposed algorithms to determine the minimum, bisimulation equivalent,
representation of a directed graph or, equivalently, to test bisimilarity between
two directed graphs. The algorithms are built making use of algorithmic solution
to the relational and single function coarsest partition problem as subroutines.
In the acyclic case the performance of the sketched algorithm is linear while,
in the cyclic case turns out to be linear when there are no multiple nodes. In
general its performance is no worse than that of the best known solution for the
relational coarsest partition problem.

In [10], Fisler and Vardi compare three minimization algorithms with an in-
variance checking algorithm (which does not use minimization) and argue that
the last is more efficient. The minimization algorithms they consider are those
of Paige and Tarjan [19], of Bouajjani, Fernandez and Halbwachs [4], and of Lee
and Yannakakis [18]. An important conclusion they draw is that even if the last
two algorithms are tailored to verification contexts, while the Paige and Tarjan
one is not, the latter performs better. This suggests that “minimization algo-
rithms tailored to verification settings should pay attention to choosing splitters
carefully”. We have presented here an algorithm, which is not specifically tai-
lored to verification, but whose main difference w.r.t. the Paige and Tarjan’s
one is that it performs better choices of the splitters and of the initial partition
thanks to the use of the notion of rank. In some cases we obtain linear time runs,
moreover the initial partition we use allows to process the input without storing
the entire structure in memory at the same time.

Our next task will be the integration of this algorithm with the symbolic
model-checking techniques. Further studies relative to the applicability of the
circle of ideas presented here to the problem of determining simulations (cf. [12])
are also under investigation.

Acknowledgements

We thank Nadia Ugel for her C implementation and the anonymous referees for
useful suggestions. The work is partially supported by MURST project: Certifi-
cazione automatica di programmi mediante interpretazione astratta.

90 Agostino Dovier, Carla Piazza, and Alberto Policriti

References

1. P. Aczel. Non-well-founded sets, volume 14 of Lecture Notes, Center for the Study
of Language and Information. Stanford, 1988.

2. A. Aziz, V. Singhal, G. Swamy, and R. Brayton. Minimizing interacting finite
state machines: a compositional approach to language containment. In Proc. Int’l
Conference on Computer Design, 1994.

3. J. Barwise and L. Moss. Vicious Circles. On the Mathematics of non-well-founded
phenomena. Lecture Notes, Center for the Study of Language and Information.
Stanford, 1996.

4. A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation. In
E. Clarke and R. Kurshan, editors, Proc. Int’l Conference on Computer-Aided
Verification CAV’90, volume 531 of LNCS, pages 197–203. Springer, 1990.

5. A. Bouali. XEVE, an ESTEREL verification environment. In A. J. Hu and M. Y.
Vardi, editors, Proc. Int’l Conference on Computer-Aided Verification CAV’98,
LNCS, pages 500–504. Springer, 1998.

6. A. Bouali and R. de Simone. Symbolic bisimulation minimization. In Proc. Int’l
Conference on Computer-Aided Verification CAV’92, volume 663 of LNCS, pages
96–108. Springer, 1992.

7. R.E. Bryant. Graph based algorithms for Boolean function manipulation. IEEE
Transaction on Computers, C-35(8):677–691, 1986.

8. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of concurrent systems. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 15(1):36–72, 1993.

9. A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. TR
UDMI/14/00/RR, Dip. di Matematica e Informatica, Univ. di Udine, 2000.
http://www.dimi.uniud.it/~piazza/bisim.ps.gz.

10. K. Fisler and M.Y. Vardi. Bisimulation and model checking. In Proc. Correct
Hardware Design and Verification Methods, volume 1703 of LNCS, pages 338–341.
Springer, 1999.

11. M. Forti and F. Honsell. Set theory with free construction principles. Annali
Scuola Normale Superiore di Pisa, Cl. Sc., IV(10):493–522, 1983.

12. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on
finite and infinite graphs. In Proc. 36th IEEE Symp. on Foundations of Computer
Science, FOCS 1995, pages 453–462, 1995.

13. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.
14. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5), 1997.
15. G.J. Holzmann and A. Puri. A minimized automaton representation of reachable

states. Software Tools for Technology Transfer, 2(3):270–278, November 1999.
16. J.E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In

Theory of Machines and Computations, Ed. by Zvi Kohavi and Azaria Paz, pages
189–196. Academic Press, 1971.

17. P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, 1990.

18. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc.
24th ACM Symposium on Theory of Computing, pages 264–274, May 1992.

19. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973–989, 1987.

20. R. Paige, R.E. Tarjan, and R. Bonic. A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science, 40(1):67–84, 1985.

21. F. Rahim. Property-dependent modular model checking application to VHDL with
computational results. In Proc. Int’l Workshop HLDVT, 1998.

http://www.dimi.uniud.it/~piazza/bisim.ps.gz

	Introduction
	The Problem: A Set-Theoretic Perspective
	The Well-Founded Case
	Basic Idea for the General Case
	Optimizations in the General Case
	Labeled Graphs
	Testing
	Conclusion and Further Developments

