
Cryptanalysis of PKP: A New Approach

Éliane Jaulmes and Antoine Joux

DCSSI
18, rue du Dr. Zamenhoff

F-92131 Issy-les-Mx Cedex
France

eliane.jaulmes@wanadoo.fr
Antoine.Joux@ens.fr

Abstract. Quite recently, in [4], a new time-memory tradeoff algorithm
was presented. The original goal of this algorithm was to count the num-
ber of points on an elliptic curve, however, the authors claimed that
their approach could be applied to other problems. In this paper, we de-
scribe such an application and show a new way to attack the Permuted
Kernel Problem. This new method is faster than any previously known
technique but still requires exponential time. In practice, we find that
attacking PKP for the original size proposed by Shamir in [6] could be
done on a single PC in 125 years.

1 Introduction

The Permuted Kernel Problem was introduced in cryptography by Shamir at
Crypto 1989 [6]. This NP–complete problem can be stated as follows:

– Given a m × n matrix, a n vector V and a prime p
– Find a permutation π such that the permuted vector Vπ is in the kernel of

the matrix modulo p.

Any instance of the problem with this choice of parameters will be denoted as a
PKPp(m,n) problem. Without loss of generality, the left part of m × n matrix
can be turned into the identity sub-matrix, as explained in [6].

In [6], it was shown that this problem possesses a nice zero-knowledge proof
and can thus be turned into an authentification scheme. Moreover, when used in
practice the scheme offers a good level of security using only simple computations
which can be efficiently implemented, even in small portable devices. Since PKP
is so simple, and uses only basic linear algebra, it is extremely tempting to search
for it’s weaknesses. This led to many papers [3,1,2,5], which all concluded that
the original dimension proposed par Shamir are a bit too small, but the scheme
still resists all known attacks. All the proposed attacks combine exhaustive search
with some form of time-memory tradeoff. However, none of the classical time-
memory tradeoff techniques seems to apply to this problem, and thus specific
methods had to be developed in the previous papers. In this paper, we apply a

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 165–172, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

166 Éliane Jaulmes and Antoine Joux

new time-memory tradeoff from [4] to the permuted kernel problem. This new
technique was originally designed to replace the final baby-step/giant-step when
counting points on elliptic curves using the Schoof-Elkies-Atkies algorithm.

2 General Description of the Algorithm

In this section, we reformulate the algorithm from [4] in a general setting, without
any reference to the specific problem of point counting on elliptic curve. In our
general setting, we want to solve the following problem:

– Given a n vector P whose entries are primes, four sets S1, S2, S3 and S4 of
n vectors, and n sets D1, . . . , Dn

– Find v(1) ∈ S1, v
(2) ∈ S2, v

(3) ∈ S3, v
(4) ∈ S4, d1 ∈ D1, . . . , dn−1 ∈ Dn−1

and dn ∈ Dn such that:

∀i ∈ [1 · · ·n] : v
(1)
i + v

(2)
i + v

(3)
i + v

(4)
i ≡ di (mod Pi)

Clearly, this problem, which we note 4SET, can be solved by exhaustively
trying theN1N2N3N4 possible values of v(1), v(2), v(3) and v(4), whereNi denotes
the cardinality of Si. We propose here a time-memory tradeoff that allows to
solve this problem faster than exhaustive search. Without loss of generality, we
assume that: |D1|

P1
≤ |D2|

P2
≤ · · · ≤ |Dn|

Pn
,

where |Di| denotes the size of Di. Then, let αi =
|Di|
Pi

, choose k a positive integer
smaller than n and let

Ψ =
k∏

i=1

αi and Φ =
k∏

i=1

Pi

The algorithm then consists of a precomputation phase and of a main loop
containing two enumeration phases, one involving v(1) and v(2), the A-phase,
and one involving v(3) and v(4), the B-phase.

Algorithm for solving 4SET
– Precomputation step: Sort the two sets S2 and S4, according to the lex-

icographical order on the vector coordinates.
In the sequel, this will permit to quickly find vectors in one of these sets
given its first k coordinates.

– Main loop:
For M1 ∈ [0 · · ·P1 − 1], M2 ∈ [0 · · ·P2 − 1], . . .Mk ∈ [0 · · ·Pk − 1] do:

• A phase:
∗ For each Θ ∈ D1 × · · · × Dk,

∗ For v(1) ∈ S1 and v(2) ∈ S2 such that the first k coordinates1 v
(1)
i +

v
(2)
i match Θi − Mi modulo Pi,

1 Thanks to the precomputation step, such v(2) can be accessed quickly by computing
Θi −Mi −v

(1)
i (mod Pi) before searching the matching entries in the sorted set S2.

Cryptanalysis of PKP: A New Approach 167

∗ For all � > k compute and store the following set:

HΘ,v(1),v(2),� = {θ − v
(1)
� − v

(2)
� |θ ∈ D�}.

• B phase:
∗ For each v(3) ∈ S3 and v(4) ∈ S4 such that the first k coordinates

v
(3)
i + v

(4)
i match Mi,

∗ If there exists Θ ∈ D1 × · · · ×Dk, v
(1) ∈ S1 and v(2) ∈ S2 such that

for every � > k, v
(3)
� + v

(4)
� (mod P�) is in HΘ,v(1),v(2),�,

∗ Then v
(1)
i + v(2) + v

(3)
i + v(4) is a solution of the 4SET problem.

Terminate

2.1 Practical Considerations

In practice, building the sets HΘ,v(1),v(2),� in the A-phase and checking their
intersections in the B-phase can be done very efficiently. Indeed, all these sets
can be stored in a single array of bits. This array has

∑n
�=k+1 P� lines and one

column for each pair (v(1), v(2)). Each line of this array can also be seen as a bit
string B�,τ where τ ∈ {0, . . . , P� − 1}. During the A-phase, we store a 1 in B�,τ

in the position corresponding to (v(1), v(2)) if τ ∈ HΘ,v(1),v(2),� and a 0 otherwise.
Note that all strings B�,τ have the same length, however this length may vary
from one round of the main loop to the next. On average, this length is ΨN1N2.

During the B-phase, to check whether τ� = v
(3)
� + v

(4)
� (mod P�) is in

HΘ,v(1),v(2),� for every � and some pair (v(1), v(2)), we simply perform a logi-
cal AND between the strings B�,τ�

. If the resulting string is non-nil we have a
solution, since any bit equal to 1 in this string corresponds to a pair (v(1), v(2))
such that v(1) + v(2) + v(3) + v(4) is a solution of the 4SET problem.

Note that, when the expected number of solutions of a 4SET problem is
much smaller than 1, it is worthwhile not to test the last conditions. Indeed,
in that case, one can simply remove the useless components and build a similar
problem with fewer conditions. In fact, this approach was implicitly used in [4]
since some of the conditions found by the SEA algorithm where discarded for
the final step. On the contrary, PKP problems are usually built in such a way
that all conditions are useful and cannot be discarded (see section 4).

2.2 Analysis of the Algorithm

– Precomputation step : The number of operations required to sort S2 is
O(N2 log(N2)) and to sort S4 it is O(N4 log(N4)). Thus the time needed
is O(max(N2, N4) log(max(N2, N4))). The total memory required in this
precomputation step is O(max(N1, N2, N3, N4)

∑
i log(Pi)) because S1 and

S3 must also be stored, and because each vector can be represented with∑
i log(Pi) bits.

168 Éliane Jaulmes and Antoine Joux

– Phase A : Clearly, the average number of pairs (v(1), v(2)) constructed in
each execution of phase A is ΨN1N2. To do this construction, we enumerate
all possible values of Θ and v(1) and search for matching values of v(2). This
requires O(N1 log(N2)ΨΦ) operations. Then for each valid pair (v(1), v(2)),
n − k bits are to be set, the total number of operations for this step is
O((n − k)ΨN1N2). All in all, the number of operations required is:

O(max(N1 log(N2)ΨΦ, (n − k)ΨN1N2)).

The total memory needed to store all the sets is O(ΨN1N2
∑n

i=k Pi).
– Phase B : In each execution of phase B, N3N4/Φ pairs (v(3), v(4)) are

constructed. This construction requires O(N3 log(N4)) operations. Then for
each pair the logical AND of n − k of the strings constructed in phase A is
computed. Since on average the length of the strings is ΨN1N2 the number
of operations is O((n−k)ΨN1N2N3N4/Φ). All in all, each iteration of phase
B costs :

O(max(N3 log(N4), (n − k)ΨN1N2N3N4/Φ)).

In term of memory complexity, phase B does not require any memory not
already used in the precomputation or in phase A.

When the choice of parameters is reasonable, the time complexity is domi-
nated by phase B and can be expressed as :

O((n − k)ΨN1N2N3N4).

Without going too far into the analysis of the parameters, let say that a choice
is reasonable if all the Ni are of the same order N , if Ψ ≈ 1/N and if Φ does not
become too large. Moreover, in that case the memory needed is:

O(N
n∑

i=k

Pi).

Note: With the algorithm as presented here Φ should not become larger than
N3/2. However, if we slightly modify it be transferring half of Θ from phase A
to phase B, Φ can grow up to N2. Moreover, this transformation reduces the
amount of memory needed, by shortening the sets stored during phase A. Since
we still need to store the sets, the memory requirement becomes:

O(N
n∑

i=1

log(Pi)).

3 Application to PKP

In order to apply the algorithm of the previous section to PKP, we need to build
sets S1, S2, S3, S4 and D1, D2, . . . , Dn from a PKP instance. Before doing

Cryptanalysis of PKP: A New Approach 169

that, we will slightly transform the PKP instance. Following [3], we can add one
more linear equation to the PKP instance. This new equation stems from the
simple fact that the sum σ of the coordinates of the solution vector does not
depend on the permutation π. Applying Gaussian elimination to the extended
linear system, we find that the solution vector Vπ must verify:

(
A0 Im+1

)
Vπ =




σ
0
0
...
0




,

where A0 is a (m+1)×(n−m−1) matrix and Im+1 is the (m+1)×(m+1) identity
matrix. Clearly, in order to find a solution to the permuted kernel problem
thus written, it suffices to try all the possible values of the components of Vπ

that enters A0, to find the remaining components by Gaussian elimination and
to check that the vector found is indeed a permutation of V . This algorithm
requires n!/(n − m − 1)! trials. In the sequel, we will refer to it as being the
exhaustive search technique for PKP, and we will completely forget the simple
minded search where one tries all possible values for π, which requires n! trials.

We can now divide A0 into four roughly equal parts, and we find:

(
A1A2A3A4 Im+1

)
Vπ =




σ
0
0
...
0




,

where Ai is a (m+ 1) × ni matrix and n1 + n2 + n3 + n4 = n − m − 1.
We then build the sets Si by computing the product of Ai by all possible

choices of the corresponding ni bits. Clearly, the size of Si is Ni = n!/(n − ni)!.
Once these sets are constructed, we can apply the algorithm from section 2.

Note: In fact, the algorithm from section 2 can be further refined in the
case of PKP. The idea is that while merging together an element of S1 and an
element of S2 in phase A or an element of S3 and an element of S4 in phase B, one
should check their compatibility, i.e. verify that put together they form a correct
subset of V , which is true if and only if they have no nontrivial intersection
(assuming that V contains no double). This reduces the term N1N2 and N3N4
in the complexities respectively to n!/(n − n1 − n2)! and n!/(n − n3 − n4)!.

4 Asymptotical Analysis

In order to make an asymptotical analysis of our algorithm, we first need to
describe an asymptotical version of PKP. For defining this version, we will follow
the two following criteria:

170 Éliane Jaulmes and Antoine Joux

– Building a strong instance of PKP, should be easy. More precisely, this means
that for any random matrix, finding a kernel vector with distinct coordinates
should be easy. Since kernel vectors are chosen at random when building a
PKP problem, this implies that the probability of a random kernel vector to
have all distinct coordinates should not be too low. Taking in account the
birthday paradox, this means that n should be no larger that O(

√
p).

– As explained in [6], the expected number of solutions of a PKP instance
should be as near to 1 as possible. This leads to the condition pm ≈ n!.

Following these criteria let p = O(n2), then:

m ≈ n log n/ log p
≈ n/2

Using these two criteria, we propose PKPp(n, �n/2�) as a reasonable asymp-
totic choice, where p is a prime near n2. With this choice of parameters, an
exhaustive search attack on PKP takes roughly n!/m! = O((2n/e)n/2) trials.
For the attack described in section 3, we need to choose the parameter k and
thus the value of Ψ . A particularly interesting choice is to use the same amount
of storage for the sets Si and the strings. Assuming that N1 = N2 = N3 = N4,
this leads to Ψ ≈ 1/N1. Since N1 = O((((8/7)7)(n/e))n/8), we find that the time
complexity of the algorithm is

O((((8/7)7)(n/e))3n/8+ε)

and the space complexity is

O((((8/7)7)(n/e))n/8+ε).

The value ε in the exponent offers a simple replacement for the non exponential
terms that should appear in these two formulas, and permits a simpler expres-
sion.

In fact, if we further take into account the note at the end of section 3, we
can somewhat reduce the constant (8/7)7 appearing in the time complexity.

5 Practical Results

In practice, it turns out that the previous ideas lead to a faster attack against
PKP, than all previously known techniques. The best previous theoretical at-
tacks against PKP are those from [2] and an implementation of these attacks is
described in [5]. In the rest of this section we compare the available data for this
attack with our results.

In [2], the following results are found:

Results from [2] Time needed Memory needed (in tuples)
PKP251(16, 32) 254 217 6–tuples

252 224 10–tuples
PKP251(37, 64) 2123 227

2119 252

2116 265

Cryptanalysis of PKP: A New Approach 171

In order to make the same kind of evaluation for our algorithm, we first need
to compute the size of the sets S1, S2, S3, S4. Starting with PKP (16, 32), we
take n1 = n2 = n4 = 4 and n3 = 3, we find N1 = N2 = N4 = 863040 and
N3 = 29760. In order to have Ψ ≈ 1/N1, we take k = 6 and find Ψ = (24/251)6.
With these choice, the space needed is dominated by the storage of the four
sets Si, and 32 × (N1 + N2 + N3 + N4) ≈ 226 bytes are needed. This may
seem larger than the 224 in the above table, however this size was not in bytes
but in 10–tuples, and thus both sizes are equivalent. The basic time estimate
is ΨN1N2N3N4 ≈ 254. However, recalling the note from section 3 it becomes
Ψn!2/((n − n1 − n2)!(n − n3 − n4)!) ≈ 252. Once again, this does not seem
better than the value 252 in the above table. However, remember than our basic
operation is a bit operation and that on most computers we can pack 32 or even
64 bit operations in a single word operation, thus lowering the complexity to
246.

As the size increases, the advantage of the new algorithm becomes much
clearer. Indeed, for PKP (37, 64), we can take n1 = n3 = 6, n2 = n4 = 7 and
k = 17. Then Ψ = (48/251)k, the space needed becomes 248.5 and the time
needed 2106. However, while better that the estimates from [2], these values are
completely unreachable. The following table shows the results of the new attack
for various dimensions of PKP.

New Results k Time needed Memory needed
PKP251(16, 32) 6 246 226 bytes
PKP251(15, 32) 6 251 227 bytes
PKP251(24, 48) 12 285 235 bytes
PKP251(37, 64) 17 2106 248.5 bytes

In [5], the attack described in [2] was truly implemented, and experiments
were made. At that time, a single workstation would have taken 2000 years
for PKP (16, 32). In a private communication, the author from [5] told us than
on current machines, experiment showed that this estimate was lowered to 700
years. The ratio between the two figures is much worse than expected because all
these computations heavily rely on memory usage. Since the speed of memory
access did not increase as quickly as the speed of processors, this accounts for the
low ratio. By comparison, on the same machine (Pentium II, 400MHz), the new
attack would take 125 years (at most) to find the secret key of PKP (16, 32).
Quite strangely, in a practical implementation, phase A takes proportionally
much longer then phase B because in the former case we make random memory
access (on single bits) while in the latter we read the memory in sequential
order. Consequently, phase B is cache friendly while phase A isn’t. Moreover, we
cannot use the theoretically optimal choice for k, because the code that controls
the loop then becomes predominant. Thus our practical choices were n1 = 3,
n2 = 4, n3 = 3, n4 = 5 and k = 4. With these choices, each iteration of the main
loop took just under a second, and the total memory needed was 250 megabytes.
Since 2514 iterations of the main loop are needed, a total running time of 125
years is expected.

172 Éliane Jaulmes and Antoine Joux

6 Conclusion

In this paper, we showed that the time-memory tradeoff technique for [4] could
be applied to the PKP problem. Very curiously, this leads to an algorithm
which presents similarities with the algorithm from [2]. In practice, this new
algorithm can attack PKP(16,32) about five times faster than all previous at-
tacks. However, this attack would still require 125 years on a 450MHz PC. Since
the algorithm is straightforward to parallelized, this computation is feasible
and PKP(16,32) can no longer be considered as secure. Moreover, PKP(15,32)
which takes about 24 times as long, is potentially endangered and should no
longer be used for long-term applications. However, slightly larger problems such
PKP(24,48) or PKP(37,64) are completely out of reach.

References

1. T. Baritaud, M. Campane, P. Chauvaud, and H. Gilbert. On the security on the
permuted kernel identification scheme. In CRYPTO92, volume 740 of LNCS, pages
305–311, 1992.

2. P. Chauvaud and J. Patarin. Improved algorithms for the permuted kernem prob-
lem. In CRYPTO93, volume 773, pages 391–402, 1994.

3. J. Georgiades. Some remarks on the security of the identification scheme based on
permuted kernels. Journal of Cryptology, 5:133–137, 1992.

4. A. Joux and R. Lercier. “Chinese & Match”, an alternative to atkin’s “match and
sort” method used in the SEA algorithm. Mathematics of Computation, 1999. To
appear.

5. G. Poupard. A realistic security analysis of identification schemes based on combi-
natorial problems. European transactions on telecommunications, 8:471–480, 1997.

6. A. Shamir. An efficient identification scheme based on permuted kernels. In
CRYPTO89, volume 435 of LNCS, pages 606–609, 1989.

	Introduction
	General Description of the Algorithm
	Practical Considerations
	Analysis of the Algorithm

	Application to PKP
	Asymptotical Analysis
	Practical Results
	Conclusion

