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Abstract. We demonstrate that the public key cryptosystems using the
modular group suggested in [4,5] are vulnerable to very simple ciphertext-
only attacks. Consequently, in the present form both of these systems
cannot be considered as sufficiently secure for cryptographic purposes.

1 Introduction

At PKC’98 A. Yamamura proposed a public key cryptosystem using the so-called
modular group (see [4]). In this cryptosystem the ciphertext consists of a 2× 2
matrix with entries from C[X]. At ACISP’99 he proposed another public key
cryptosystem using the modular group where the ciphertext is represented by a
single complex number.

In this paper we show that with the given specifications both of these cryp-
tosystems are vulnerable to ciphertext-only attacks. We give several examples
which illustrate that it is often possible to decrypt a ciphertext by means of the
public data alone, i. e., without requiring the private key. The essential idea is
to exploit the message expansion occurring in both of these cryptosystems.

More detailed, the paper is organized as follows: in the next section we shortly
recall the set-up of the cryptosystem suggested in [4] to the extent needed for our
attack. In Section 3 we describe our attack and demonstrate its practicability
through some examples. Thereafter we show how a modification of our attack
can be applied successfully to the public key cryptosystem suggested in [5].

2 A Public Key Cryptosystem Using SL2(Z)

In this section we shortly recall the ingredients of the public key cryptosystem
suggested in [4] to the extent necessary for describing our attack—for a complete
description we refer to the original work [4].
As usual, for an integral domain R we denote by

SL2(R) :=
{(

a b
c d

)
∈ R2×2 : ad− bc = 1

}
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the group of all 2× 2 matrices over R with determinant 1; SL2(Z) is also known
as the modular group. To derive a public key we first need generators A, B of
SL2(Z) subject to the relations

A6 = B4 = A3B−2 =
(

1 0
0 1

)
.

As is shown in [4] one can derive such generators by choosing a matrix N ∈
SL2(Z) arbitrarily and setting

A := N−1 ·
(

0 −1
1 1

)
·N, B := N−1 ·

(
0 −1
1 0

)
·N.

Next, one has to choose two products V1, V2 ∈ {A, B}∗ subject to certain re-
quirements described in [4]. According to Yamamura’s paper a concrete instance
satisfying these requirements can be obtained by setting

V1 := (BA)i, V2 := (BA2)j with i, j ∈ N positive integers.

Finally, for constructing a public key we also need a non-singular 2×2 matrix M
with complex entries, i. e., M ∈ GL2(C) and two 2 × 2 matrices F1(X), F2(X)
whose entries are taken from the polynomial ring over the complex numbers
C[X]. The matrices F1(X), F2(X) are to be chosen in such a way that for some
a ∈ C we have F1(a) = V1 and F2(a) = V2. In other words, evaluating the entries
of F1(X), F2(X) at X = a yields the matrices V1, V2—here V1, V2 ∈ {A, B}∗ are
identified with the 2× 2 matrix obtained by “multiplying the letters A, B”.

With these conventions the private key is the pair (M, a) ∈ GL2(C)×C, and
the public key consists of two matrices W1(X), W2(X) which are constructed as
follows:

(W1(X), W2(X)) := (M−1 · F1(X) ·M, M−1 · F2(X) ·M)

In order to encrypt the bitstring b1 . . . bn ∈ {0, 1}∗ with the public key (W1(X),
W2(X)) one has to compute the matrix product

C(X) := W2(X) ·
n∏

i=1

(W1(X)bi+1W2(X)). (1)

From the ciphertext C(X) and the private key (M, a) the original bitstring
b1 . . . bn can be recovered by means of a procedure described in [4].

3 Attacking the System

Denote by C(X) the ciphertext obtained by encrypting the bitstring b1 . . . bn ∈
{0, 1}∗ according to the rule (1). Then the entries of the matrix

D(X) := W2(X)−1 · C(X) =
n∏

i=1

(W1(X)bi+1W2(X))
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are contained in C[X], and by construction also the entries of the matrix(
W1(X)b1+1 ·W2(X)

)−1 · D(X) are polynomials with complex coefficients. So
if at least one of the entries of(

W1(X)2 ·W2(X)
)−1 ·D(X)

involves a non-constant denominator then we can conclude b1 = 0. This obser-
vation motivates the following näıve procedure which either after n iterations of
the while-loop yields the correct plaintext or does not terminate:

Procedure 1

In: Public key (W1(X), W2(X))
Ciphertext C(X) = W2(X) ·∏n

i=1(W1(X)bi+1W2(X))
Out:⊥ or the plaintext b1 . . . bn

begin
# remove superfluous factorD(X)←W2(X)−1 · C(X)

# number of plaintext bit to be processed nextl← 1
# decryption incompletewhile D(X) is not the identity do
# Should left-most bitD′(X)← (

W1(X)2 ·W2(X)
)−1 ·D(X)

# be set?
if D′(X) contains a non-polynomial entry

# no → strip off (W1(X) ·W2(X))−1then bl ← 0
# yes → strip off (W1(X)2 ·W2(X))−1else bl ← 1

fi
D(X)← (

W1(X)bl+1 ·W2(X)
)−1 ·D(X)
# proceed with next bit of plaintextl← l + 1

od
return b1 . . . bl−1

end

Of course, one may think of elaborating the approach taken in Procedure 1 by
overriding the decision for certain plaintext bits in the while-loop—e. g., based
on the part of the plaintext which has been recovered already. However, the
following examples illustrate that already this simple version works quite well;
as always in the sequel for the computations we use the computer algebra system
MAGMA V2.5-1 (see [1]) on a Linux platform with 800 MHz:

Example 1. This example is based on matrices F1(X), F2(X) taken from [4]:
setting

V1 :=
(−1 0

1 −1

)

V2 :=
(−1 1

0 −1

)
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F1(X) :=
( −1 (X −√3)(X − 2

√
3)

1
3 (X −

√
3)2 −1

)

F2(X) :=
( −1 1

3 (X −
√

3)2

(X −√3)(X − 2
√

3) −1

)
(2)

we obtain F1(2
√

3) = V1 and F2(2
√

3) = V2. Moreover, we choose the matrix M
as

M :=
(−5 1

2
3 − 14

)
.

Finally, we define W1(X) := M−1 · F1(X) · M , W2(X) := M−1 · F2(X) · M
and use these parameters to encrypt the bitstring corresponding to the ASCII
representation of the text “A small example.” (128 bit) with the encryption
rule (1): we obtain a matrix C(X) whose entries are (dense) polynomials of
degree 626. As already each of the constant terms of the diagonal entries is
an integer with 225 decimal digits, we do not write down the matrix C(X)
explicitly here (in particular this example supports the hypothesis from [4] that
the public key cryptosystem under consideration is only of limited practical
value). Nevertheless, applying Procedure 1 to C(X) yields the correct plaintext
within a few minutes.

Example 2. Setting

V1 :=
( −1 0
−35 −1

)

V2 :=
(−1 −61

0 −1

)

F1(X) :=
(

X2−86X+1847 X3−126X2+5297X−74298
5X4−840X3+52920X2−1481767X+15558739 X2−88X+1931

)

F2(X) :=
(

X3−126X2+5297X−74299 X4−168X3+10588X2−296688X+3118691
X2−86X+1848 X3−126X2+5288X−73921

)

we obtain F1(42) = V1 and F2(42) = V2. Moreover, we choose the matrix M as

M :=
(−1 2

1 −3

)
.

Finally, we define W1(X) := M−1 · F1(X) · M , W2(X) := M−1 · F2(X) · M
and use these parameters to encrypt the bitstring corresponding to the ASCII
representation of the text “a secret message” (128 bit) with the encryption rule
(1): we obtain a matrix C(X) whose entries are (dense) polynomials of degree
1150. Again, applying Procedure 1 to C(X) yields the correct plaintext within
a few minutes.
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In [4] the possibility is mentioned to replace the univariate polynomial ring
C[X] with a multivariate polynomial ring C[X1, . . . , Xr]. Obviously, this modi-
fication does not vitiate the above attack, and the question arises which public
keys are not vulnerable to the approach of Procedure 1. An obvious way to pre-
vent this kind of attack is to impose an appropriate restriction on the choice of
W1(X), W2(X): if both W1(X), W2(X) and W1(X)−1

, W 2(X)−1 are contained
in SL2(C[X]) already, then Procedure 1 does not terminate, as no non-constant
denominators can occur when multiplying D(X) with

(
W1(X)2 ·W2(X)

)−1.
Unfortunately, this condition is not sufficient to guarantee the security of

the cryptosystem either, as the above attack can be adapted easily: again, the
basic idea is to strip off the plaintext from C(X) bit by bit. The loophole we
can exploit to do this is the message expansion occurring during encryption:
in the cryptosystem under consideration one can expect that a short plaintext
encrypts to a matrix with “simple” polynomials and a long plaintext encrypts
to a matrix with “complicated” polynomials. Taking the number of terms in
a polynomial for a measure of its complexity this idea motivates the following
variant of Procedure 1 (for a matrix A we denote by Ai,j the entry of A in row
i and column j):

Procedure 2

In: Public key (W1(X), W2(X))
Ciphertext C(X) = W2(X) ·∏n

i=1(W1(X)bi+1W2(X))
Out:⊥ or the plaintext b1 . . . bn

begin
# remove superfluous factorD(X)←W2(X)−1 · C(X)

# number of plaintext bit to be processed nextl← 1
# decryption still incompletewhile D(X) is not the identity do

D′(X)← (W1(X) ·W2(X))−1 ·D(X)
# number of terms if left-n0 ←

∑
1≤i,j≤2 |Terms(D′(X)i,j)|

# most bit is assumed to be 0
D′(X)← (

W1(X)2 ·W2(X)
)−1 ·D(X)

# number of terms if left-n1 ←
∑
1≤i,j≤2 |Terms(D′(X)i,j)|

# most bit is assumed to be 1
# Should left-most bit be reset?if n0 < n1

# yes → strip off (W1(X) ·W2(X))−1then bl ← 0
# no → strip off (W1(X)2 ·W2(X))−1else bl ← 1

fi
D(X)← (

W1(X)bl+1 ·W2(X)
)−1 ·D(X)
# proceed with next bit of plaintextl← l + 1

od
return b1 . . . bl−1

end
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The next example demonstrates that this simple procedure can indeed be
applied successfully to the cryptosystem under consideration:

Example 3. Setting

V1 :=
(−1 −3

0 −1

)

V2 :=
(

1 0
2 1

)

F1 :=
(−X2 + 2X + 3 −X4 + 4X3 + X2 − 10X − 7
−X2 + 2X + 4 −X4 + 4X3 + 2X2 − 12X − 9

)

F2 :=
(

5X2 − 10X − 19 5X2 − 10X − 20
5X2 − 10X − 18 5X2 − 10X − 19

)

M :=
(−5 2

1 4

)

we obtain F1(
√

5 + 1) = V1, F2(
√

5 + 1) = V2, and the public key computes to

W1(X) :=
1
11
·
(

X4−4X3−5X2+18X+15 4X4−16X3+2X2+28X+16

−3X4+12X3+ 41
2 X2−65X− 167

2 −12X4+48X3+16X2−128X−81

)

W2(X) :=
1
11
·
(

20X2−40X−79 −30X2+60X+124

−60X2+120X+215 90X2−180X−339

)
.

Encrypting the bitstring corresponding to the ASCII representation of the text
“This is the plaintext.” (176 bit) with this public key according to the encryption
rule (1) yields a matrix C(X) whose entries are (dense) polynomials of degree
1366. By means of Procedure 2 we can recover the plaintext from C(X) within
a few minutes—without requiring the private key (M,

√
5 + 1).

In summary, we conclude that the public key cryptosystem suggested in [4]
in the present form is not secure, as no possibility for constructing public keys
which are immune to the described attacks is provided.

4 Attacking Another Cryptosystem
Using the Modular Group

At ACISP’99 A. Yamamura suggested another public key cryptosystem using
the modular group which has some similarity with the system considered above.
For a full description of this system we refer to the original paper [5]. Here we
only recall the aspects of the system which are relevant for the attack described
below: as in the cryptosystem of [4], for constructing a public key one starts by
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choosing appropriate matrices V1, V2 ∈ SL2(Z). Moreover, a suitable complex
number p ∈ C and some non-singular matrix M ∈ GL2(R) have to be chosen.
Then the two matrices

W1 := M−1 · V1 ·M ∈ SL2(R), W2 := M−1 · V2 ·M2 ∈ SL2(R)

and the complex number p are made public. To encrypt the bitstring b1 . . . bn ∈
{0, 1}∗ with the public key one starts by computing the matrix product C :=∏n

i=1(Wbi+1) ∈ SL2(R). Then the ciphertext c is given by the complex number

c :=
C1,1 · p + C1,2
C2,1 · p + C2,2

.

Equivalently, we can also start by computing

cn :=
Wbn+11,1 · p + Wbn+11,2

Wbn+12,1 · p + Wbn+12,2

cn−1 :=
Wbn−1+11,1 · cn + Wbn−1+11,2

Wbn−1+12,1 · cn + Wbn−1+12,2

...

and continue in this way until we finally obtain the ciphertext

c = c1 :=
Wb1+11,1 · c2 + Wb1+11,2

Wb1+12,1 · c2 + Wb1+12,2
.

Now the question arises whether we can recover the plaintext b1 . . . bn ∈ {0, 1}∗
efficiently from the ciphertext c and the public data alone. As all the matrices
involved are contained in SL2(R) it seems worthwhile to have a look at Proce-
dure 2 again. The essential idea in this procedure was to exploit the message
expansion occurring during encryption. To measure this expansion we used the
number of terms occurring in the matrix. In the cryptosystem from [5] there is
a similar phenomenon: for a long plaintext we expect the matrix C resp. the
resulting ciphertext c to be “more complicated” than for a short plaintext.

In order to define a suitable measure of complexity (in analogy to the number
of terms used above) it is helpful to have some information about the possible
coefficients which can occur—for computational reasons it is not practical to
consider coefficients which are arbitrary real or complex numbers. Motivated by
the discussion in the last section of [5] here we will restrict our attention to
the case that all the real numbers occurring are contained in some number field
Q(α) = Q[α] already. Hence, we can express each element η ∈ Q[α] uniquely in
the form η =

∑r
i=0 ai ·αi where a0, . . . , ar ∈ Q and α0, . . . , αr is a vector space

basis of Q[α] over Q.
Using this representation we can regard the number of binary digits required

for expressing the absolute value of the occurring numerators resp. denominators
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as a measure for the “complexity” of the number η. This motivates the following
procedure:

Procedure 3

In: Public data (W1, W2, p) with W1, W2 ∈ SL2(Q[α]) and p ∈ Q[α]
Ciphertext c = C1,1·p+C1,2

C2,1·p+C2,2
where C =

∏n
i=1Wbi+1

Out:⊥ or the plaintext b1 . . . bn

begin
# partially decrypted ciphertextd← c

# number of plaintext bit to be processed nextl← 1
# decryption still incompletewhile d �= p do

# “complexity” if left-most bit is assumed to be 0D ←W1
−1

a0 + a1 · α + . . . + ar · αr ← D1,1·d+D1,2
D2,1·d+D2,2

n0 ←
∑

ai �=0 log2 |Numerator(ai) ·Denominator(ai)|
# “complexity” if left-most bit is assumed to be 1D ←W2

−1

a0 + a1 · α + . . . + ar · αr ← D1,1·d+D1,2
D2,1·d+D2,2

n1 ←
∑

ai �=0 log2 |Numerator(ai) ·Denominator(ai)|
# Should left-most bit be reset?if n0 < n1

# yes → strip off W−1
1then (bl, D)← (0, W−1

1 )
# no → strip off W−1

2else (bl, D)← (1, W−1
2 )

fi
d← D1,1·d+D1,2

D2,1·d+D2,2

# proceed with next bit of plaintextl← l + 1
od
return b1 . . . bl−1

end

To check the relevance of Procedure 3 we apply it to some examples:

Example 4. Setting

V1 :=
( −1 0

123 −1

)

V2 :=
(−1 321

0 −1

)

M :=
(

1 3
2 −1

)

p := −9
5
·
(

ζ57 + ζ47 + ζ37 + ζ27 + ζ7 +
13
9

)
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(where ζ7 is a primitive 7-th root of unity) the public matrices W1, W2 compute
to

W1 =
1
7
·
(

362 1107
−123 −376

)

W2 =
1
7
·
(

635 −321
1284 −649

)
.

Encrypting the bitstring corresponding to the ASCII representation of “Yet an-
other plaintext ...” (200 bit) with these parameters yields a ciphertext c, and by
applying Procedure 3 to c we obtain the correct plaintext within a few minutes.

Example 5. Setting

V1 :=
(

1 0
−32 1

)

V2 :=
(−1 11

0 −1

)

M :=
(

3 2
−√−11 1

)

p := − 1
10
· √−11 +

12
5

the public matrices W1, W2 compute to

W1 =
1
53
·
(−384 · √−11 + 629 −256 · √−11 + 384

576 · √−11− 864 384 · √−11− 523

)

W2 =
1
53
·
( −33 · √−11− 295 −22 · √−11 + 33
−242 · √−11 + 363 33 · √−11 + 189

)
.

Encrypting the bitstring corresponding to the ASCII representation of “Unfor-
tunately, it is not necessary to know the private key for reading this.” (608 bit)
with these parameters yields a ciphertext c. Applying Procedure 3 to c yields
the correct plaintext within a few seconds.

Analogously as in the previous section, one may think of elaborating the ap-
proach taken in Procedure 3 by overriding the decision for certain plaintext bits
in the while-loop—e. g., based on the part of the plaintext which has been re-
covered already. However, the above examples illustrate that already this crude
variant works quite well.

5 Related Work and Conclusions

It is worth mentioning that the attacks described in this paper are somewhat
reminiscent of a property of the SL2(F2n) hashing scheme of J.-P. Tillich and
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G. Zémor [3]. In the latter the hash value of a bitstring is given by a matrix in
SL2(F2n), and similarly as above for very short bitstrings it is possible to recover
the original bitstring from its hash value “bit by bit” (cf. [2, Proposition 2]).

The reason for the vulnerability of the cryptosystems in [4,5] to this kind of
attack is the possibility to exploit the message expansion occurring in both of
these cryptosystems. Consequently, as the given specifications do not rule out
such an attack we conclude that in the present form the public key cryptosystems
described in [4,5] must be considered as insecure.
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