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Abstract. The secret key of a forward-secure signature scheme evolves
at regular intervals, but the public key is fixed during the lifetime of
the system. This paper enhances the security of Abdalla and Reyzin’s
forward-secure signature scheme via threshold and proactive mecha-
nisms. In our threshold forward-secure signature scheme, we combine
multiplicative and polynomial secret sharing schemes to form a thresh-
old forward-secure signature scheme. We develop a special proof system
to prove robustness of our scheme.
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1 Introduction

Proactive cryptography combines the concepts of “distributing the secret” and
“refreshing the shares” to provide security against the mobile adversary, who
attacks the parties of a distributed cryptosystem dynamically. For an adversary,
we cannot assume that it cannot break into a particular party, who holds a
share of the secret, during the party’s lifetime. However, we can assume that the
adversary can break into at most t parties during a short period of time, say
an hour. Based on this observation, the proactive cryptography ”refreshes” each
party’s share periodically. It divides the time into time periods, starting at 0. At
the end of each time period, there is a “refresh phase” during which each party
refreshes its share, but the secret they share remains intact. We assume that the
mobile adversary can corrupt all parties during the lifetime of the cryptosystem;
nevertheless, it can corrupt at most t parties during a time period. The proactive
mechanism provides a high level of security for cryptosystems so that we would
like to proactivize important cryptographic primitives.

In this paper we are interested in proactivizing the forward-secure signa-
ture scheme of Abadalla and Reyzin [3]. The Abadalla and Reyzin’s forward-
secure signature scheme (See Appendix) is an improvement of the Bellare-Miner
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scheme [5] with a shorter public key. Abadalla, et. al. has proactivized the
Bellare-Miner forward-secure signature scheme [2]. They proposed two thresh-
old signature schemes in proactivizing Bellare-Miner forward-secure signature
scheme. One scheme uses multiplicative secret sharing and the other uses poly-
nomial secret sharing. In our scheme, we combine both secret sharing schemes for
efficiency. We use multiplicative secret sharing in signing a message in threshold
and polynomial secret sharing in sharing the signing secret. Our scheme is not
only robust, but also efficient.

It is worth mentioning that we propose a new scheme for multiplying two
secrets that are shared among parties [4,7,17]. Our multiplication scheme is
efficient since it uses the public channel and the private channel once only.

2 Preliminaries

Communication model. We assume that the involved n parties are connected by
a broadcast channel such that the messages over the channel cannot be blocked,
delayed or altered. Nevertheless, one can inject false messages. Any two parties
are connected by a private channel such that a third party cannot get messages
sent over the private channel. We also assume that the communication channel
is synchronous by rounds, that is, all parties send messages simultaneously in a
round.

Time. There is a universal clock such that each party knows the absolute
time. Therefore, we can divide time into time periods, starting at 0. Each time
period has two phases: the execution phase and the refresh phase. The refresh
phase follows the execution phase. The parties sign messages during the execu-
tion phase. During the refresh phase, all parties together run the share refresh
algorithm to refresh their shares.

Adversary. We consider the static adversary who chooses corrupted parties
at the beginning of each time period. The adversary runs three phases: the
chosen message attack phase (cma), the break-in phase (breakin), and the
forgery phase (forge). The breakin phase for the threshold signature scheme
is equivalent to the overthreshold phase of [2].

In the cma phase, the adversary can corrupt at most t parties for any period
of time. The adversary gets all information in the corrupted parties, including
their shares, random bits, etc. The adversary can query the signing oracle Sx,
where x is the secret signing key. Since we assume the random oracle model [6],
the adversary is allowed to query the random oracle H corresponding to the
collision-resistant hash function used in the scheme. At the end of the cma
phase, the adversary can stay in the current phase or enter the next breakin
phase. In the breakin phase, the adversary can corrupt more than t parties.
Let c be the period that the adversary enters the breakin phase and corrupts
more than t users. In this phase, the adversary can compute the master secret
(the signing key) of period c from the shares of corrupted parties. Then, the
adversary enters the forge phase, during which the adversary outputs a forged
signature of a new message which has not been queried to the signing oracle. We
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say that the adversary succeeds in attacking the scheme if it outputs a forged
signature for a prior time period c′, c′ < c, with non-negligible probability.

Forward security. A signature in the basic signature scheme is independent
of time. Once the secret signing key is exposed, one can sign arbitrary messages.
For forward-secure signature, the signing key evolves along time periods. At time
period j, the signing key is SKj . In the next time period j + 1, the signing key
is updated to SKj+1 and SKj is deleted immediately. Although, the signing key
evolves, the public key is the same for the whole lifetime. If one gets the signing
key SKc of time period c, he can fake the signatures of later time periods, but
cannot fake the signatures of earlier time periods. Bellare and Miner [5] proposed
the first forward-secure signature scheme based on difficulty of computing the
square roots modulus a Blum integer. The scheme is actually converted from Fiat
and Shamir’s identification scheme [13]. To achieve security strength of level l,
their scheme uses l public keys and l secret keys. Later, Abdalla and Reyzin [3]
proposed an improvement based on the 2l-th root problem [16,21,23,22]. With
the same level of security strength, their scheme uses one public key and one
secret key only.

Proactive security. Ostrovsky and Yung [24] proposed proactive security for
distributed cryptographic schemes to deter mobile adversaries. For proactive
security, the share in each party is refreshed at the end of each time period, but
the signing secret key the parties share is unchanged at all time. A proactive
cryptosystem remains secure as long as the adversary does not corrupt more
than t parties in each time period. The shares of corrupted parties become useless
when time enters the next time period. There is much literature about proactive
cryptosystems [1,14,15,19,18,10,11,25,12].

3 Building Blocks

The following system setting is used throughout the rest of the paper.

– Let p=4p′q′+1 be a prime, where p′ and q′ are large primes and p′ ≡ q′ ≡ 3
(mod 4).

– Let N = p′q′ and g a generator of the order-N subgroup of Z∗
p . All operations

hereafter will be over the order-N subgroup, unless stated otherwise.
– The involved parties are dealers Di, 1 ≤ i ≤ n.

(t, n)-VSS procedure. If dealer Di wants to share a random secret with
other dealers, it runs the following steps.

1. Select a random polynomial fi(x) of degree t over Z∗
N . The constant coeffi-

cient of fi(x) is the random secret.
2. Send share fi(j) to dealer Dj , j �= i via the private channel.
3. Publish the verification values 〈gai,0 , . . . , gai,t〉.
4. Dealer Dj verifies validity of its received share fi(j) by

∏k=t
k=0 g

ai,kjk

= gfi(j).

If the verification fails, Dj requests Di to publish fi(j). If Di does not cooperate
or posts an inconsistent fi(j), Di is disqualified.
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Recovery procedure.We use Lagrange’s interpolation method to recover
the secret with at least t+ 1 shares.
Proof-SS procedure. Given (g, t,N, F, T ), prover P wants to convince

verifier V two things: (1) a = logg F mod p = T 1/t mod N and (2) it knows this
a. This is a combination of proofs of membership and knowledge.

1. The prover P selects random w ∈ Z∗
N and sendsH = Fw and B = wt mod N

to V .
2. The verifier V selects a random challenge c ∈ {0, 1} and sends it to P .
3. The prover P sends r = acw mod N to V .
4. The verifier V checks (1) H = F r and B = rt mod N if c = 0; and (2)

H = gr and B = rt/T mod N if c = 1.

We use Proof-SS(g, t, ga, at) to denote the above interactive proof system.

Theorem 1. Proof-SS is complete, sound and zero-knowledge.

Proof. (Sketch) The completeness property can be verified easily. For sound-
ness of proof of knowledge, if any prover P ∗ can convince V with a non-negligible
probability ε, P ∗ and V together can compute a with an overwhelming prob-
ability. By a probabilistic argument, there is a set W of w’s of probability ε/2
such that for every w ∈ W , P ∗ can answer two different challenges c1 and c2
with probability ε/2. Therefore, we can get two responses r1 = ac1w mod N
and r2 = ac2w mod N for the same commitments H and B. We can compute
a = r2/r1 mod N assuming, without loss of generality, c1 = 0 and c2 = 1. For
soundness of proof of membership, we can easily show that if F and T are not
of right form, the probability that P ∗ can cheat V is 0.5 (and is negligible after
a polynomial number of rounds.)

For zero-knowledge, we construct a simulator S to simulate the view of any
verifier V ∗. S first selects c′ ∈ {0, 1} and r ∈ Z∗

N randomly and computesH = F r

and B = rt mod N if c′ = 0 and H = gr and B = rt/T mod N if c′ = 1. S
then simulates V ∗(H,B) to get c. If c = c′, S outputs (H,B, c, r); otherwise S
outputs ⊥. The output of S conditioned on that the output is not ⊥ and the
view of V ∗ are statistically indistinguishable. ✷

We convert Proof-SS into a non-interactive version by using a collision-
resistant hash function H : {0, 1}∗ → {0, 1}l to replace V [9], where l be the
security parameter. The message (c, r1, · · · , rl) sent by P for non-interactive
Proof-SS, denoted by NIProof-SS, satisfies

c = H(t||g||N ||F ||T ||H1||B1|| · · · ||Hl||Bl),

where || is the concatenation operator of strings. Let ci denote the i-th bit of c. If
ci is 1, Hi = gri and Bi = rt

i/T mod N ; otherwise Hi = F ri and Bi = rt
i mod N .

P can compute (c, r1, · · · , rl) by choosing wi ∈ Z∗
N for i = 1, · · · , l, computing

c = H(t||g||N ||F ||T ||Fw1 ||w1
t|| · · · ||Fwl ||wl

t), and setting ri = aciwi mod N .
NIProof-SS releases no useful information under the random oracle model
assuming hardness of discrete logarithm and factoring.
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Proof-DH proceture. Given (g,H, F ) and the prover P wants to convince
V that H = gs and F = gs2

are of right form and it knows the secret s. The
interactive proof system is as follows [8].

1. P randomly selects w ∈ Z∗
N and sends A = gw and B = Hw to V .

2. V sends a random challenge c ∈ {0, · · · , 2k − 1} to P .
3. P sends the response r = w + cs mod N to V .
4. V checks gr = A · Hc and Hr = B · F c.

The above Proof-DH procedure is complete, sound, and zero knowledge.
We use NIProof-DH to denote its non-interactive version.
SQ procedure. Let h(x) be a degree-t polynomial over Z∗

N with h(0) = s
and shared by the dealers Di, 1 ≤ i ≤ n. SQ’s goal is to make the dealers share
a degree-t polynomial h′(x) over Z∗

N with h′(0) = s2 mod N . SQ procedure is
as follows.

1. Dealer Di selects two degree-t polynomials fi(x) and ei(x) over Z∗
N at ran-

dom, where ei(0)=0. It sends shares fi(j) and ei(j) to Dj via the private
channel, 1 ≤ j ≤ n. Using (t, n)-VSS procedure, Dj checks if the re-
ceived shares are correct. If so, all dealers share two degree-t polynomial
F (x) =

∑n
i=1 fi(x) mod N and E(x) =

∑n
i=1 ei(x) mod N . Each dealer Di

holds shares F (i) and E(i).
2. Each dealer Di publishes ui = h(i)2 + F (i) mod N and NIProof-
DH(g, gh(i), gh(i)2) and checks validity of the published values of other deal-
ers by checking guj = gh(j)2 ·∏t

k=0 g
Akjk

, where gA0 , gA1 , . . . , gAt , computed
from the verification values of fi(x)’s, are the verification values of F (x).

3. Each dealer Di computes the degree-2t polynomial T (x)=h(x)2 + F (x) =∑2t
k=0 tkx

k over ZN from uj , 1 ≤ j ≤ n. Let T ′′(x) =
∑t

k=0 tkx
k, which is

h′′(x)+F (x) mod N for some degree-t polynomial h′′(x). Note that h′′(0) =
h(0)2 mod N .

4. Each dealer Di computes its share h′′(i) = T ′′(i) − F (i) mod N and ran-
domizes it to become h′(i) = h′′(i) + E(i). The hidden polynomial becomes
h′(x) = h′′(x) + E(x) mod N whose constant coefficient is still s2 mod N .

We use SQ(C, h(x), h′(x)) to denote the above procedure, where C is the
dealer set, h(x) is the shared polynomial initially and h′(x) is the shared poly-
nomial at the end.

Theorem 2. SQ procedure is correct, robust and secure if there are at most
n/3 corrupted dealers.

Proof. (Sketch) We can check correctness easily. Since there are at most t
corrupted dealers, t < n/3, honest dealers can smoothly finish the procedure.
This is guaranteed by the (t, n)-VSS procedure.

We present a simulator to show that a malicious adversary, who corrupts at
most t dealers, gets no information. Let B be the corrupted set of dealers.

Input: 〈gs, ga1 , · · · , gat〉, h(i) for every dealer Di ∈ B, where h(x) = s +∑t
k=1 akx

k;
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1. Randomly select degree-t polynomials f̂i(x) and êi(x) with êi(0) = 0, 1 ≤
i ≤ n. Let F̂ (x) =

∑n
i=1 f̂i(x) and Ê(x) =

∑n
i=1 êi(x).

2. Run (t, n)-VSS procedure.
3. For each Di �∈ B, randomly select ûi over Z∗

N , compute gh(i)2 = gûi/gF̂ (i),
and simulate NIProof-DH(g, gh(i), gh(i)2), where gh(i) = gs · ∏t

j=1 g
ajij

.
4. For each Di ∈ B, publish ui = h(i)2 + F̂ (i) mod N and simulate NIProof-
DH(g, gh(i), gh(i)2).

The above simulation produces a distribution computationally indistinguish-
able from that of the real run. ✷

Assume that the dealers share two degree-t polynomial h1(x) and h2(x) ini-
tially. We can modify the SQ procedure so that the dealers share a degree-t
polynomial h′(x) whose constant coefficient is h1(0)h2(0) mod N at the end. Let
Mult(C, h1(x), h2(x), h′(x)) denote the procedure of sharing a degree-t polyno-
mial h′(x) whose constant coefficient is h1(0)h2(0) mod N .

4 Our Threshold Forward-Secure Signature Scheme

Our threshold forward-secure signature scheme, denoted by TFSS, is a key-
evolving (t, s, n)-threshold signature scheme that consists of four procedures:
TFSS.key, TFSS.update, TFSS.sign, and TFSS.verify, where t is the max-
imum number of corrupted dealers, s is the minimum number of alive dealers so
that signature computation is possible, and n is the total number of dealers. In
our scheme, we set s = t + 1 and n ≥ 2t + 1. There is a manager presiding the
scheme.
TFSS.key: it generates the public key and each dealerDi’s initial secret-key

share Si,0 and public-key share PKi,0 at time period 0.

1. Select N as that in the system setting.
2. The manager randomly selects Si,0 ∈ Z∗

N , 1 ≤ i ≤ n and sets Ui,0 =
1/S2l(T+1)

i,0 mod N , S0 =
∏n

i=1 Si,0 mod N , and U = 1/S2l(T+1)

0 mod N .
3. The system’s initial secret key at time period 0 is SK0=(N,T, 0, S0) and the
public key PK = (N,U, T ).

4. Each dealer Di’s initial secret-key share is SKi,0 = (N,T, 0, Si,0) and public-
key share is PKi,0 = (N,Ui,0, T ).

5. Each dealer Di shares its Si,0 with other dealers by the (t, n)-VSS proce-
dure.

TFSS.update: at the end of time period j, each dealer updates its secret-key
and public-key shares from Si,j and PKi,j to Si,j+1 and PKi,j+1.

1. Each dealer Di randomly selects n− 1 numbers si,1, si,2, . . . , si,n−1 over Z∗
N

and computes si,n = Si,j/
∏n−1

k=1 si,k mod N .
2. Each dealer Di sends si,k to Dk privately and publishes ŝi,k =
1/s2l(T+1−j)

i,k mod N , 1 ≤ k ≤ n.
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3. Each dealer Dk checks validity of the published values by Ui,j =∏n
r=1 ŝi,r mod N , 1 ≤ i ≤ n, i �= k. Dealer Dk also checks validity of its

received secret si,k by 1/s2l(T+1−j)

i,k mod N = ŝi,k. If any of the checks fails,
all other dealers recover the secret Si,j by Recovery procedure.

4. Dealer Di’s new secret-key share is Si,j+1 = (
∏n

k=1 sk,i)2
l

mod N and the
corresponding public-key share is Ui,j+1 =

∏n
k=1 ŝk,i mod N .

5. Dealer Di shares Si,j+1 with other dealers by (t, n)-VSS procedure. We
use NIProof-SS(g, t, gSi,j+1 , St

i,j+1) to verify whether Di’s action is correct,
where t = −2l(T−j) and St

i,j+1 = Ui,j+1. If the proof is correct and (t, n)-
VSS procedure succeeds, all dealers delete their old secret-key shares;
otherwise, the secret of Di is reconstructed.

TFSS.sign: at time period j, all dealers sign a messages M in a distributed
way with the following steps.

1. Each dealer Di selects Ri ∈ Z∗
N randomly and publishes Yi = R2l(T+1−j)

i mod
N and NIProof-SS(g, 2l(T+1−j), gRi , Yi). Then, it shares Ri to other deal-
ers via (t, n)-VSS procedure with polynomial fi(x). If NIProof-SS or
(t, n)-VSS procedure fails, set Ri = 1 and run Recovery procedure to
recover the secret-key share Si,j of Di.

2. Each dealer Di computes Y =
∏n

i=1 Yi and σ = H(j, Y,M) and publishes
its partial signature Zi = RiS

σ
i,j mod N .

3. Each dealer Di verifies validity of another dealer Dk’s partial signature by
computing

Y ′
i = Z2l(T+1−j)

i Uσ
i,j mod N

and checking whether Y ′
i and Yi are equal. If the verification fails, all other

alive dealers run Recovery procedure to recover the secret-key share Sk,j

and Rk of Dk and compute the partial signature Zk.
4. Combine all partial signatures as a signature (j, Z, σ) forM at time j, where

Z =
∏n

i=1 Zi mod N . All dealers erase their Ri’s.

TFSS.verify: We can use the public key PK = (N,U, T ) of the system to
verify validity of a signature (j, Z, σ) for M .

1. If Z = 0, return ‘0’.
2. Otherwise, compute Y ′ = Z2l(T+1−j)

Uσ mod N and output ‘1’ if and only if
σ = H(j, Y ′,M).

5 Security Analysis

In this section, we show the correctness and security of our proposed scheme.

Theorem 3 (Correctness). Assume that SKj = (N,T, j, Sj) and PK =
(N,U, T ) are key pairs of the system at time period j. Each dealer Di holds the
secret-key share SKi,j = (N,T, j, Si,j) and public-key share PKi,j = (N,Ui,j , T ).
If (j, Z, σ) is generated by TFSS.sign for M , TFSS.verify(PK, j, Z, σ)) = 1.
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Proof. We have Sj =
∏n

i=1 Si,j mod N , U =
∏n

i=1 Ui,j mod N =
∏n

i=1 S
−2l(T+1−j)

i,j mod N , Y =
∏n

i=1 R
2l(T+1−j)

i mod N =
∏n

i=1 Yi mod N and
Z =

∏n
i=1 Zi mod N =

∏n
i=1 RiS

σ
i,j mod N . Since

Y ′ = Z2l(T+1−j)
Uσ mod N =

n∏

i=1

(RiS
σ
i,j)

2l(T+1−j)
n∏

i=1

Uσ
i,j mod N

=
n∏

i=1

[R2l(T+1−j)

i Sσ2l(T+1−j)

i,j Uσ
i,j ] mod N =

n∏

i=1

R2l(T+1−j)

i mod N

=
n∏

i=1

Yi mod N = Y,

we have H(j, Y ′,M) = H(j, Y,M) = σ. ✷

Theorem 4. TFSS.update procedure is secure against malicious adversaries.

Proof. (Sketch) We construct a simulator S to simulate TFSS.update proce-
dure assuming existence of malicious adversaries. Let B = {Db1 , . . . , Dbt} be the
set of corrupted servers at current time j. For simplicity, the secrets of corrupted
dealers are treated as inputs. S simulates each dealer Di’s behavior as follows.

Input: PK = (N,U, T ), Sbk,j , 1 ≤ k ≤ t, f̂k(bi), 1 ≤ i ≤ t, 1 ≤ k ≤ n,
PKi,j = (N,Ui,j , T ), 1 ≤ i ≤ n, and 〈gSi,j , gai,1 · · · , gai,t〉, 1 ≤ i ≤ n;

1. Randomly select ŝi,1, . . . , ŝi,(i−1), ŝi,(i+1), . . . , ŝi,n−1 from Z∗
N , compute

1/(ŝ2l(T+1−j)

i,i ) = Ui,j/

n∏

k=1,k �=i

1/(ŝ2l(T+1−j)

i,k ) mod N,

and publish Ŝi,k = 1/(ŝ2l(T+1−j)

i,k ) mod N for k = 1, . . . , n. Note that we do
not know the value ŝi,i for Di /∈ B.

2. Randomly select polynomial ĥi(x) over Z∗
N . Let ĥi(0) = S′

i,j+1,
which is a random value in Z∗

N for Di /∈ B. Simulate NIProof-
SS(g,−2l(T−j)), gS′

i,j+1 , Ui,j+1), where Ui,j+1 =
∏n

k=1 Ŝk,i mod N . For Di ∈
B, compute its new secret-key share Sbk,j+1 by

∏n
i=1 ŝ

2l

i,bk
mod N and

simulate NIProof-SS(g,−2l(T+1−(j+1)), gSbk,j+1 , Ubk,j+1), where Ubk,j+1 =∏n
i=1 Ŝi,bk

mod N . Then, simulate (t, n)-VSS procedure.

If Dj forces Di to disclose ŝi,j , since Dj has it, we can simulate ŝi,j . ✷

Theorem 5. The TFSS scheme is a key-evolving (t, s, n)-threshold signature
scheme for s = t+ 1 and n = 2t+ 1.

Proof. (Sketch) Since there are at most t corrupted servers, their secret-key
shares are not sufficient to recover the secret-key shares of honest dealers. The
others follow the scheme. ✷
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Theorem 6 (Forward secrecy). Let FS-DS denote the single-user signature
scheme in [3]. TFSS is a threshold forward-secure signature scheme as long as
FS-DS is a forward-secure signature scheme in the single-user sense.

Proof. (Sketch) Let F be the adversary who attacks TFSS successfully by
forging a signature (c′, Z, α). We construct an algorithm that uses this F to
forge a signature for the single-user FS-DS. As stated at Section 2, the attacking
procedure contains three phases: cma, breakin, and forge. Our algorithm can
query from the two oracles: the hashing oracle H and the singing oracle S.

In the cma phase, F guesses a particular time period c during which F

breaks more than t dealers and gets the secret Sc. Let U = 1/v2l(T+1−c)
and

PK = (N,U, T ), where v = Sc. We randomly select Ui,0, · · · , Un−1,0 ∈R Z∗
N

and compute public-key share Un,0 = U/
∏n−1

i=1 Ui,0 mod N . The public key is
PKi,0 = (N,Ui,0, T ), 1 ≤ i ≤ n. We simulate F by choosing a random tape
for F , feeding all public keys to F , and running F in the cma phase. F can
corrupt at most t dealers except the time period c. Since F can corrupt at most
t dealers except at time period c, we simply give all necessary secret-key shares
and exchanged shares as F ’s input. F decides either to stay at the cma phase
or to switch to the breakin phase, and then enter the forge phase.

We now we simulate the views of corrupted dealers during the key update
phase. Let B = {Db1 , · · · , Dbt} be the set of corrupted dealers at time period
j. The simulation is the same as that of Theorem 4, which simulates the key
update procedure. Note that the set of corrupted servers is decided in advance.

We can simulate the hash and signing oracles of F . For each query (j, Y,M)
made by F , we query H on the same input and return the answer to F . We
simulate the signing oracle of F by using S. Let M be the message queried to
S. We give the direct answer (j, Z, σ) of S to F .

Now, we simulate F ’s view of the signing procedure. The input consists all
secrets of the corrupted dealers and public information. For the inputM and its
signature (j, Z, σ)) seen by F , we construct the same probability distribution of
F ’s real view as follows.

1. For Di ∈ B, we directly choose Ri ∈ Z∗
N and publish Yi = R2l(T+1−j)

i mod N
and NIProof-SS(g, 2l(T+1−j), gRi , Yi). Then, we simulate (t, n)-VSS pro-
cedure to share Ri with other dealers. Furthermore, we computes the par-
tial signature Zi = RiS

σ
i,j mod N .

2. For Di �∈ B, we computes its partial signature as follows. Let Z ′ =
Z/

∏t
i=1 Zi mod N . We randomly select n − t − 1 numbers from Z∗

N , says
Zc1 , . . . , Zcn−t−1 . We compute Zcn−t

= Z ′/
∏n−t−1

i=1 Zci
mod N .

3. We compute Yci = Z2l(T+1−j)

ci
Uσ

ci,j
mod N for 1 ≤ i ≤ n − t, and randomly

select (n−t) numbers from Z∗
N , says Rc1 , · · · , Rcn−t . We simulate NIProof-

SS(g, 2l(T+1−j), gRci , R2l(T+1−j)

ci
) and run (t, n)-VSS procedure to share

Rci , 1 ≤ i ≤ n − t, with other dealers.
4. Finally, we compute Y =

∏t
i=1 Ybi

∏n−t
j=1 Ycj

mod N and setsH(j, Y,M) = σ.

We can show that the above simulated view is statistically indistinguishable
from the real view.
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Obtaining a forgery. Let c be the time period that F switches to the breakin
phase. We provide the secret key Sc to F and run F to output a forged signature
(c′, Z, α) forM ′, where c′ < c. (c′, Z, α) is the forged signature for the single-user
FS-DS, which is a contradiction. Therefore, our TFSS is secure. ✷

6 Discussion

Proactive security. We can easily add the proactive mechanism to
TFSS.update. The only difference is to compute ŝi,k = 1/s2l(T −j)

i,k in step 2,

instead of ŝi,k = 1/s2l(T −j+1)

i,k , and new secret-key share S′
i,j =

∏n
k=1 sk,i mod N

in the refresh phase. Furthermore, si,k can be encrypted and sent to dealer Dk

using Dk’s public-key share Pk,j . This saves the private channel.
New construction. We can use polynomial secret sharing in our scheme,

though it is less efficient. Our new construction is as follows. Initial setting is a bit
different from that in Section 4. Let f(x) be a degree-t polynomial with f(0) = S0
and shared by all dealers by (t, n)-VSS procedure. To update the key Sj to
Sj+1, all dealers compute the multiplication of two secrets for l times, where
l is the security parameter. The robustness property is achieved by our Mult
procedure. Mult procedure uses a proof to show that a dealer is honest.
To compute a signature for a message, all dealers compute l(T + 1− j) + log2 σ

times of distributed multiplication of secrets for Y = R2l(T+1−j)
mod N and

Z = RSσ
j mod N .

Efficiency. In our new construction based on polynomial secret sharing, deal-
ers perform l multiplications of shares to update the key. That is, they ex-
change messages l times and compute l proofs for Mult procedure. To com-
pute a signature, dealers exchange l(T + 1− j) + log2 σ messages and compute
l(T +1− j)+ log2 σ proofs. As we can see, the computation and communication
costs are quite expensive.

In our main scheme in Section 4, we combine the techniques of polynomial
secret sharing and multiplicative secret sharing to reduce the cost. Each dealer
exchanges messages twice in the key update stage, and once in the signing mes-
sage stage. Each dealer needs to compute one proof in both key update and
signing message stages. Therefore, our main scheme is quite efficient.

7 Conclusion

We have proposed a threshold forward-secure signature scheme, which is based
on the 2l-th root problem. Our scheme is robust and efficient in terms of the
number of rounds so that the amount of exchanged messages among dealers is
low. We show forward-secure security of our scheme based on that of the single-
user scheme.
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Appendix

Abdalla and Reyzin’s forward-secure signature scheme. It has four
procedures: key generation, key update, signing and verification. Let k and l
be security parameters, T the largest time period, and H : {0, 1}∗ → {0, 1}l a
collision-resistant hash function.

Key generation: generate the initial secret key SK0 and public key PK.

1. Select two large primes p and q such that p ≡ q ≡ 3 (mod 4), 2k−1 ≤
(p − 1)(q − 1), and pq < 2k. Let N = pq.

2. Randomly select S0 from Z∗
N and compute U = 1/S2l(T+1)

0 mod N .
3. Set the initial secret key SK0 = (N,T, 0, S0) and the public key PK =
(N,U, T ).

Key update: update the secret key SKj to SKj+1.

1. If j = T , set SKj = null; otherwise, set SKj+1 = (N,T, j + 1, S2l

j mod N),
where SKj = (N,T, j, Sj).

Signing: sign message M at time period j using key SKj .
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1. Randomly select R ∈ Z∗
N and compute Y = R2l(T+1−j)

mod N , σ =
H(j, Y,M), and Z = RSσ

j mod N .
2. The signature is (j, Z, σ).

Verification: verify validity of signature (j, Z, σ) for M .

1. If Z ≡ 0, return 0; otherwise compute Y ′ = Z2l(T+1−j)
Uσ mod N .

2. Output 1 if and only σ = H(j, Y ′,M).
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