
Efficient Implementation of Elliptic Curve
Cryptosystems on the TI MSP430x33x Family

of Microcontrollers

Jorge Guajardo1�, Rainer Blümel2, Uwe Krieger2, and Christof Paar1

1 ECE Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
{guajardo,christof}@ece.wpi.edu

2 cv cryptovision gmbh, Munscheidstr. 14, 45886 Gelsenkirchen, Germany
{Rainer.Bluemel,Uwe.Krieger}@cryptovision.com

Abstract. This contribution describes a methodology used to efficiently
implement elliptic curves (EC) over GF (p) on the 16-bit TI MSP430x33x
family of low-cost microcontrollers. We show that it is possible to im-
plement EC cryptosystems in highly constrained embedded systems and
still obtain acceptable performance at low cost. We modified the EC
point addition and doubling formulae to reduce the number of interme-
diate variables while at the same time allowing for flexibility. We used
a Generalized-Mersenne prime to implement the arithmetic in the un-
derlying field. We take advantage of the special form of the moduli to
minimize the number of precomputations needed to implement inversion
via Fermat’s Little theorem and the k-ary method of exponentiation. We
apply these ideas to an implementation of an elliptic curve system over
GF (p), where p = 2128 − 297 − 1. We show that a scalar point multipli-
cation can be achieved in 3.4 seconds without any stored/precomputed
values and the processor clocked at 1 MHz.

1 Introduction

It is widely recognized that data security will play a central role in the design of
future IT systems. Until a few years ago, the PC had been the major driver of the
digital economy. PCs have processors with large RAM memories and fast CPUs
that make most cryptographic algorithms practical from a user’s satisfaction
point of view. Recently, however, there has been a shift towards IT applications
realized as embedded systems. In fact, 98% of all microprocessors sold today
are embedded in household appliances, vehicles, and machines on factory floors
[12,6]. Not only are embedded devices already ubiquitous in our lives, but it is
predicted that in the very near future, we will be able to add to these devices
two simple technologies: reliable wireless communication and sensing and actu-
ation functions [6]. On the other hand, these new applications represent many
challenges among which security and privacy will play an important role [6].

� Part of this work was performed while the author was at cv cryptovision gmbh.

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 365–382, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

366 Jorge Guajardo et al.

Embedded devices are very different from PCs from the computational re-
sources and memory availability point of view. Generally, embedded computers
possess CPUs with very slow clock rates and a relatively small pool of memory. In
addition, embedded systems are usually designed to consume small amounts of
energy. Despite these constraints, we want to be able to run the same (or similar)
types of applications that we run today in a fast computer. These applications
often need to talk to each other and transmit information over wireless channels
which are insecure by nature. Thus, cryptographic algorithms, which are com-
putationally intensive by design, are imperative for embedded applications. In
particular, it is important to show that it is feasible to implement cryptographic
algorithms in constrained environments and, at the same time, be able to obtain
acceptable levels of performance.

Our contribution deals with the implementation of Elliptic Curve (EC) cryp-
tosystems [25,20] on the TI MSP430x33x family of devices. These 16-bit micro-
controllers are one example of embedded device used for extremely low-power
and low-cost applications, running at a maximum frequency of 3.8 MHz. Elliptic
curves, on the other hand, are a particularly attractive option because of their
relatively short operand length as compared to RSA and systems based on the
discrete logarithm (DL) in finite fields.

The remaining of this contribution is organized as follows. Section 2 gives
a survey of previous implementations of public-key algorithms on embedded
processors. Section 3 describes the choice of parameters used in our EC imple-
mentation and a modification to the point addition and doubling algorithms
which allow for a reduction in the memory requirements. The architecture of
the TI MSP430x33x family of devices is covered in Section 4. In Section 5, we
modify the k-ary algorithm to take advantage of the special form of the moduli
and compute the inverse of an element in GF (p) via Fermat’s Little theorem. We
also describe ways to tailor multiplication, squaring, and modular reduction al-
gorithms to the architecture of the processor, thus, making the algorithms more
efficient. Finally, Sections 6 and 7 summarize our implementation results and
provide recommendations for possible enhancements.

2 Previous Work

Most of the cryptographic research conducted to date has been independent of
hardware platforms, and little research has focused on algorithm optimization
for specific processors. In the following, we will review previous implementations
of public-key algorithms on embedded processors.

In [5], the Barret modular reduction method is introduced. The author imple-
mented RSA on the TI TMS32010 DSP. A 512-bit RSA exponentiation took on
the average 2.6 seconds running at the DSP’s maximum speed of 20 MHz. Ref-
erence [11] describes the implementation of a cryptographic library designed for
the Motorola DSP56000 which was clocked at 20 MHz. The authors focused on
the integration of modular reduction and multi-precision multiplication accord-
ing to Montgomery’s method [26,7]. This RSA implementation achieved a data

Efficient Implementation of Elliptic Curve Cryptosystems 367

rate of 11.6 Kbits/s for a 512-bit exponentiation using the Chinese Remainder
Theorem (CRT) and 4.6 Kbits/s without using it.

The authors in [16] described an ECDSA implementation over GF (p) on the
M16C, a 16-bit 10 MHz microcomputer. Reference [16] proposes the use of a field
of prime characteristic p = e2c ± 1, where e is an integer within the machine
word size and c is a multiple of the machine word size. This choice of field allows
to implement multiplication in GF (p) in a small amount of memory. Notice that
[16] uses a randomly generated curve with the a coefficient of the elliptic curve
equal to p − 3. This reduces the number of operations needed for an EC point
doubling. They also modify the point addition algorithm in [29] to reduce the
number of temporary variables from 4 to 2. This contribution uses a 31-entry
table of precomputed points to generate an ECDSA signature in 150 msec. On
the other hand, scalar multiplication of a random point takes 480 msec and
ECDSA verification 630 msec. The whole implementation occupied 4 Kbyte of
code/data space.

In [17], two new methods for implementing public-key cryptography algo-
rithms on the 200 MHz TI TMS320C6201 DSP are proposed. The first method
is a modified implementation of the Montgomery variant known as the Finely
Integrated Operand Scanning (FIOS) algorithm [7] suitable for pipelining. The
second approach suggests a method for reducing the number of multiplications
and additions used to compute 2mP , for P a point on the elliptic curve and
m some integer. The final code implemented RSA and DSA combined with
the k-ary method for exponentiation, and ECDSA combined with the improved
method for multiple point doublings, sliding window exponentiation, and signed
binary exponent recoding. The total instruction code was 41.1 Kbytes. They
achieved 11.7 msec for a 1024-bit RSA signature using the CRT (1.2 msec for
verification assuming a 17-bit exponent) and 1.67 msec for a 192-bit ECDSA
signature over GF (p) (6.28 msec for verification and 4.64 msec for general point
multiplication).

Recently, two papers have introduced fast implementations on 8-bit proces-
sors over Optimal Extension Fields (OEFs), originally introduced in [3]. Ref-
erence [9] reports on an ECC implementation over the field GF (pm) with p =
216 − 165, m = 10, and f(x) = x10 − 2 is the irreducible polynomial. The au-
thors use the column major multiplication method for field multiplication and
squaring, for the specific case in which f(x) is a binomial. They achieve better
performance than when using Karatsuba multiplication because in this processor
additions and multiplications take the same number of cycles. Modular reduc-
tion is done through repeated use of the division step instruction. For inversion,
they use the variant of the Itoh and Tsujii Algorithm [18] proposed in [4]. For
EC arithmetic they combine the mixed coordinate system methods of [10] and
[22]. These combined methods allow them to achieve 122 msec for a 160-bit point
multiplication on the CalmRISC with MAC2424 math coprocessor running at
20 MHz. The second paper [34] describes a smart card implementation over the
field GF ((28 − 17)17) without the use of a coprocessor.

368 Jorge Guajardo et al.

Reference [34] focuses on the implementation of ECC on the 8051 family
of microcontrollers, popular in smart cards. The authors compare three types
of fields: binary fields GF (2k), composite fields GF ((2n)m), and OEFs. Based
on multiplication timings, the authors conclude that OEFs are particularly well
suited for this architecture. A key idea of this contribution is to allow each of
the 16 most significant coefficients resulting from a polynomial multiplication
to accumulate over three 8-bit words instead of reducing modulo p = 28 − 17
after each 8-bit by 8-bit multiplication. Fast field multiplication allows the im-
plementation to have relatively fast inversion operations following the method
proposed in [4]. This, in turn, allows for the use of affine coordinates for point
representation. Finally, the authors combine the methods above with a table of
9 precomputed points to achieve 1.95 sec for a 134-bit fixed point multiplica-
tion and 8.37 sec for a general point multiplication using the binary method of
exponentiation.

3 Elliptic Curves over GF (p)

In this paper, we will only be concerned with non-supersingular elliptic curves
over GF (p), p > 3. Thus, an elliptic curve E will be defined to be the set of
points P = (x, y) with x, y ∈ GF (p) and satisfying the cubic equation y2 =
x3 + ax2 + b, where a, b ∈ GF (p) with 4a2 + 27b2 �= 0 (mod p), together with
the point at infinity O. The points (x, y) form an abelian group under “addition”
where the group operation is defined as in [23]. It is a well known fact that in
affine representation, one needs to compute the inverse of an element in GF (p)
to perform an addition or a doubling of a point P ∈ E. Inversion can be a
very time consuming operation (when compared to multiplication, addition, and
subtraction in the finite field) and thus, to avoid inversion in the group operation,
one can represent points in projective coordinates. Given a point P = (x, y)
in affine coordinates, one obtains the projective coordinate representation of
P = (X,Y, Z) by:

X = x; Y = y; Z = 1 (1)

On the other hand, the projective coordinates of a point are not unique and
they require more bandwidth. Thus, for transmission/exchange of data, affine
coordinate representation is the method of choice. Given a point P = (X,Y, Z)
in projective coordinates, the corresponding affine coordinate representation of
P = (x, y) is given by:

x =
X

Z2
y =

Y

Z3
(2)

where we have chosen the Jacobian representation [8,10].

3.1 Addition and Doubling Formulae in Jacobian Representation

Using the representation in (1) and (2) is equivalent to using a curve equation
of the form:

E : Y 2 = X3 + aXZ4 + bZ6 (3)

Efficient Implementation of Elliptic Curve Cryptosystems 369

Then, one can define addition and doubling of points as follows. Let P0 =
(X0, Y0, Z0), P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) ∈ E, then if P0 = P1:

P2 = 2P1 =




X2 = M2 − 2S
Y2 = M(S −X2)− T
Z2 = 2Y1Z1

(4)

where M = 3X2
1 + aZ21 , S = 4X1Y 21 , and T = 8Y 41 . On the other hand, if

P0 �= P1:

P2 = P0 + P1 =




X2 = R2 − TW
2Y2 = V R−MW 3

Z2 = Z0Z1W
(5)

where W = X0Z
2
1 − X1Z

2
0 , R = Y0Z

3
1 − Y1Z

3
0 , T = X0Z

2
1 + X1Z

2
0 , M =

Y0Z
3
1 + Y1Z

3
0 , and V = TW 2 − 2X2.

Based on (4) and (5) one can implement doubling of EC points using 5
temporary variables and addition of EC points using 7 temporary variables [29].
The number of temporary variables used in the addition and doubling operation
can further be reduced to 2 temporary variables and 3 output variables if one
follows the ideas proposed in [16].

3.2 Elliptic Curve Arithmetic Implementation

Our point addition and doubling routines follow closely the formulae in [29]
combined with modifications similar to the ones proposed in [16]. In particular,
we follow a similar idea to minimize the number of temporary variables used in
performing a point addition or a point doubling. Our implementation requires
5 temporary variables but it also allows for greater flexibility. We perform the
following computation P2 ← P0 + P1 as opposed to P0 ← P0 + P1 as described
in [16]. Another difference is that whenever we have to multiply by 2,3, or 8 in
the algorithms, we substitute the multiplication by one, two or three additions
respectively. As it will be seen in Section 6 one modular multiplication time is
about 10 modular addition times, thus it makes sense to exchange multiplica-
tions for additions whenever possible. Similarly, we have used a special squaring
routine whenever possible since squaring is 24% more efficient than regular mul-
tiplication. Finally, notice that because point addition and doubling will never
occur simultaneously, it is possible to use the temporary memory space available
for the point addition routine in the point doubling routine, effectively reducing
the memory required by a factor of 2.

For scalar point multiplication, which is the most important operation in
ECDSA [2,27] signature generation or verification operation we implemented
the binary method for exponentiation [19] which is simple to implement and
minimizes memory requirements. It is important to point out that signature
generation times can be further improved by using point precomputation since
the base point in ECDSA is a system parameter. However, this method has the
drawback of increasing the memory required for the implementation.

370 Jorge Guajardo et al.

3.3 Elliptic Curve Parameters

In this contribution, we consider two 128-bit elliptic curves, both specified in [31].
Notice that the set of parameters recommended in [31] is also identical to the
set of parameters recommended in [1]. Both curves presented in this section are
defined over GF (p) and their parameters are verifiable generated at random. The
parameters are a sextuple T = (p, a, b, n, h,G), where a, b are the elliptic curve
coefficients as defined in (3), G is a base point of prime order n and represented
in affine coordinates, and h is the cofactor #E(GF (p))/n, where #E(GF (p))
denotes the number of points in the curve E. We also include the seed S used
to choose E according to [2].

Parameters secp128r1.

p = (FFFFFFFD FFFFFFFF FFFFFFFF FFFFFFFF)16 = 2128 − 297 − 1

a = (FFFFFFFD FFFFFFFF FFFFFFFF FFFFFFFC)16 = p− 3

b = (E87579C1 1079F43D D824993C 2CEE5ED3)16
n = (FFFFFFFE 00000000 75A30D1B 9038A115)16
h = (01)16
G = ((161FF752 8B899B2D 0C28607C A52C5B86)16,

(CF5AC839 5BAFEB13 C02DA292 DDED7A83)16) = (x, y)

S = (000E0D4D 696E6768 75615175 0CC03A44 73D03679)16

Parameters secp128r2.

p = (FFFFFFFD FFFFFFFF FFFFFFFF FFFFFFFF)16 = 2128 − 297 − 1

a = (D6031998 D1B3BBFE BF590C9B BFF9AEE1)16
b = (5EEEFCA3 80D02919 DC2C6558 BB6D8A5D)16
n = (3FFFFFFF 7FFFFFFF BE002472 0613B5A3)16
h = (04)16
G = ((7B6AA5D8 5E572983 E6FB32A7 CDEBC140)16,

(27B6916A 894D3AEE 7106FE80 5FC34B44)16) = (x, y)

S = (004D696E 67687561 517512D8 F03431FC E63B88F4)16

4 The TI MSP430x33x Family of Microcontrollers

The TI MSP430x33x is a 16-bit RISC based family of microcontrollers with
a 16-by-16, 16-by-8, 8-by-16, and 8-by-8 bit hardware multiplier. This family
of devices is commonly used in low-cost and low-power applications involving
electronic gas, water, and electric meters and other sensor systems that capture

Efficient Implementation of Elliptic Curve Cryptosystems 371

analog signals, convert them to digital values, and then process, display, or trans-
mit the data to a host system. It is important to point out that they have been
specially designed for ultra-low power applications. Family members include the
MSP430C336 with 24 Kbytes of ROM and the MSP430C337, MSP430P337A,
MSP430P337A and PMS430E337A with 32 Kbytes of ROM (or EPROM/OTP).
All of the MPS430x33x family members include 1 Kbyte of on-chip RAM and
can be clocked to a maximum frequency of 3.8 MHz. The total addressable space
is 64 Kbytes [32].

Instruction fetches from program memory (ROM) are always 16-bit access,
whereas data memory can be accessed using 16-bit (word) or 8-bit (byte) in-
structions. In addition to program code, data can also be placed in the ROM
area of the memory map and it can be accessed using word or byte instructions.
This is useful for storing data tables, for example. At the top of the 64 kilobytes
of addressable space 16 words of memory are reserved for the interrupt and reset
vectors. The remaining address space (after ROM, RAM, and interrupts) is used
for peripherals.

The architecture of the MSP430 family is based on a memory-to-memory
architecture, a common address space for all functional blocks and a reduced in-
struction set. The MSP430 RISC CPU includes sixteen 16-bit registers R0−R15.
Registers R0−R3 are special function registers or SFRs and have the dedicated
functions of Program Counter, Status Register, Constant Generator, and Stack
Pointer. The remaining registers (R4 − R15) are general purpose registers and
have no restrictions in their usage. All registers except for the Constant Gener-
ator can be accessed using the complete instruction set. This includes 27 core
instructions and 24 additional emulated instructions (instructions that make
programming simpler and that are substituted for core instructions by the as-
sembler). All instructions are single or double operand instructions. The MSP430
devices support 7 different addressing modes. They include: register mode, in-
dexed mode, symbolic mode, absolute mode, indirect register mode, indirect
auto-increment, and immediate mode. Depending on the addressing mode the
instructions take between 1 cycle and 6 cycles to execute. As a final remark,
notice that the result of a multiply instruction is available one clock cycle after
loading the two operands into the hardware multiplier [33].

5 Finite Field Arithmetic

In this section we summarize the rational behind some of our design choices.
We emphasize the description of a new inversion algorithm specially suited for
primes of special form. We also describe how our implementation was tailored to
take the most advantage of the architecture of the MSP430 family of processors.

5.1 Modular Reduction

Reduction Modulo p = 2128 − 297 − 1. One of the critical operations
when implementing finite field arithmetic is modular reduction. We chose the

372 Jorge Guajardo et al.

field GF (p) where p = 2128 − 297 − 1, for the underlying arithmetic of our
EC implementation. The first thing to notice is that p is a generalized Mersenne
prime and that this type of fields allow for efficient reduction as described in [28].
Following [28], we first notice that any number A ∈ GF (p) such that A < p2 can
be written as:

A =
i=15∑
i=0

ai216i 0 ≤ ai ≤ 216 − 1 (6)

where we have chosen 216 − 1 to be the maximum digit value because of the
MSP430 16-bit based architecture. Then, it is easy to see that only the 8 most
significant digits ai need to be modulo reduced. Using the fact that p = 2128 −
297 − 1, one obtains the following identities:

a82128 ≡ 2a8296 + a8 (mod p) (7)
a92144 ≡ 2a92112 + a9216 (mod p) (8)
a102160 ≡ 4a10296 + a10232 + 2a10 (mod p) (9)
a112176 ≡ 4a112112 + a11248 + 2a11216 (mod p) (10)
a122192 ≡ 8a12296 + a12264 + 2a12232 + 4a12 (mod p) (11)
a132208 ≡ 8a132112 + a13280 + 2a13248 + 4a13216 (mod p) (12)
a142224 ≡ (16 + 1)a14296 + 2a14264 + 4a14232 + 8a14 (mod p) (13)
a152240 ≡ (16 + 1)a152112 + 2a15280 + 4a15248 + 8a15216 (mod p) (14)

Adding up the first 8 words from A, relations (7) through (14), and reducing
modulo p, one readily obtains A mod p. Notice that one only needs single preci-
sion additions to perform this operation. In general, whenever a product of the
form 2iaj happens in relations (7) through (14), it is more efficient to compute
the product and then add it to the partial result than adding aj (2i − 1)-times.
Notice that the final result after adding relations (7) through (14) and the first
8 words of A, only needs nine 16-bit words to be represented and that one will
need at most 2 subtractions to reduce this result modulo p. Thus, we kept all
the partial sums in 9 of the 12 general purpose registers to minimize the fetches
to memory during the modular reduction operation.

Modular Reduction for Arbitrary p. In both ECDSA signature and ECDSA
verification operations, one needs to perform modular reductions modulo the or-
der of the base point G. In general, ord(G) = n is not of special form and, thus,
one needs to implement modular reduction for arbitrary moduli. We used Mont-
gomery modular reduction [26]. In particular, we implemented the Separated
Operand Scanning (SOS) method as proposed in [7]. Algorithm 1 summarizes
the SOS method for Montgomery reduction.

Algorithm 1 SOS Method of Montgomery Reduction

INPUT: t = a · b = (a · r mod n) · (b · r mod n) = (t2s−1, . . . , t0)
n = (ns−1, . . . , n0)

Efficient Implementation of Elliptic Curve Cryptosystems 373

r = 2sw and w is typically the word size of the processor
n′0 where n′ = (n′s−1, . . . , n

′
0), satisfies (r)(r−1) + (−n)(n′) = 1

OUTPUT: c = (cs−1, . . . , c0) = a · b · r mod n

01 for i = 0 to s− 1
02 c = 0
03 m = ti · n′0 mod 2w

04 for j = 0 to s− 1
05 (c, ti+j) = ti+j + m · nj + c
06 endfor
07 while (c �= 0)
08 (c, ti+s) = ti+s + c
09 i = i + 1
10 endwhile
11 endfor
12
13 for j = 0 to s
14 uj = tj+s

15 endfor
16
17 if u ≥ n
18 return c = u− n
19 else
20 return c = u
21 endif

First, we notice that in our particular implementation s = 128/16 = 8, thus
it is possible to load all of n into 8 of the 12 general purpose registers. This
simple observation saves 2 cycles per iteration when loading nj in line 05 of
Algorithm 1 into the multiplier. Since the j-loop executes s-times and this in
turn is executed s-times by the i-loop, it gives a total of 8 · 8 · 2 = 128 cycles
in savings. In addition, since m stays constant within the j-loop, we can load m
into the multiplier before starting the execution of the j-loop and only load nj

each time we execute line 05 in Algorithm 1. This observation saves 4 ·8 ·7 = 224
cycles.

5.2 Multiplication and Squaring

Multiplication and squaring operations for long number arithmetic are described
in [24]. For completeness Algorithm 2 summarizes the school-book method for
multiplication. We notice Algorithm 2 has a similar structure to that of Algo-
rithm 1. In particular, in line 04, for a fixed word ai we compute s inner products.
Thus, the same optimizations that were applied to Algorithm 1 are applicable
to Algorithm 2. Finally, we notice that a squaring operation is 24% cheaper to
compute than a regular multiplication because, in the squaring case, we do not
need to fetch from memory the words from the second operand.

Algorithm 2 School-book Method for Multiplication

374 Jorge Guajardo et al.

INPUT: A = (as−1, . . . , a0)
B = (bs−1, . . . , b0)

OUTPUT: C = (c2s−1, . . . , c0) = a · b

01 for i = 0 to s− 1
02 c = 0
03 for j = 0 to s− 1
04 (c, ti+j) = ti+j + ai · bj + c
05 endfor
06 ti+s = c
07 endfor

5.3 Modular Addition and Subtraction

We followed the methods described in [24] to implement modular addition and
modular subtraction. Given two elements A,B ∈ GF (p), C = A+B mod p can
be obtained by first adding A and B and reducing modulo p. This last step can
be accomplished by simply subtracting p from the partial result A + B, rather
than using the method described in Section 5.1. The same comments apply to
modular subtraction.

5.4 A New Inversion Algorithm for Moduli of Special Form

Several methods to compute the inverse of an element in GF (p) exist. They
include methods based on the extended Euclidean algorithm [19] such as the bi-
nary Euclidean algorithm and the Almost Inverse algorithm [30], methods based
on Itoh and Tsujii’s inversion algorithm and its variants [18,14,4], and methods
based on Fermat’s Little theorem. Despite the fact that on the average Fermat
based inversion is slower than methods based on the Euclidean algorithm, it has
several advantages. First, Fermat based inversion is easier to implement and it
allows for implementations that occupy less code space than those implementa-
tions based on Euclid’s algorithm. Second, in an ECC implementation that uses
projective coordinates, inversion is not time critical.

The new inversion algorithm is based on Fermat’s Little theorem, i.e., on
the observation that for any non-zero element A ∈ GF (p), A−1 ≡ Ap−2 mod
p. In particular, the algorithm that we are proposing in this section is only
applicable to the computation of inverses when p is a Mersenne or Generalized-
Mersenne prime. Despite this apparent constraint on the applicability of the
algorithm, it is our opinion that the algorithm is highly relevant given the recent
parameter recommendations by NIST [28] and SECG [31], both of which include
Generalized-Mersenne primes. The basic idea of the new algorithm is to minimize
the number of precomputations in the k-ary method for exponentiation [24,13]
used to compute the inverse via Fermat’s Little theorem. This is possible because
of the special form of Mersenne and Generalized-Mersenne primes and, as a
consequence, of p−2. Algorithm 3 describes the k-ary method for exponentiation.

Efficient Implementation of Elliptic Curve Cryptosystems 375

Algorithm 3 k-ary Method for Exponentiation

INPUT: A ∈ GF (p)
e = (eses−1 . . . e1e0)b, where b = 2k for some k ≥ 1

OUTPUT: C = Ae

01 Precomputation
02 A0 = 1
03 for i = 1 to (2k − 1)
04 Ai = Ai−1 ·A (Thus, Ai = Ai)
05 endfor
06 A = 1
07 for i = s down to 0
08 A = A2k

09 A = A ·Aei

10 endfor
11 C = A

Notice that given a window size k, the precomputation stage of Algorithm 3
computes all the possible values Ai for i = 1, . . . , 2k − 1 (observe that the Im-
proved k-ary algorithm can reduce the number of precomputed values in half
[24]). These values are then used in line 09 of the k-ary algorithm. In addition,
the number of precomputed values (i.e., k) is determined by two factors: the
amount of RAM memory (or the size of the cache) available in the processor
and the number of operations (multiplications) used to compute the table val-
ues . In particular, the table of precomputed values should fit in RAM memory
(or in the cache), if we want to ensure that memory accesses to the table are
fast. Reference [13] also gives the following complexity formula for the number
of multiplications (assuming squarings and multiplications take the same time)
performed in the k-ary method, in the worst case:

#Multiplications = 2k − 2 +
(
1 +

1
k

)

log2 e� (15)

Equation (15) gives an easy way to find the optimum value of k for a given
exponent size. In particular, k = 4 minimizes (15) for a 128-bit exponent. We also
notice that in general not all the precomputed values will be used. In particular,
only the values Aei which correspond to the ei digits happening in the exponent
will be used. For the case k = 4 these values correspond to the hexadecimal
digits present in the exponent when e is in radix-16 representation. The above
discussion leads us to believe that it would be of great help if we find a way to
reduce the number of precomputations performed in the k-ary method.

Next, we turn our attention to the exponent. Notice, that to compute the
inverse of any element in GF (p) we need to raise to the p − 2 power, where p
is a Mersenne prime or Generalized-Mersenne prime. Thus, our exponent has a
very special form. We first consider the case in which p = 2r − 1.

Theorem 1. Let p = 2r − 1 be a prime. Then, one can compute the inverse of
an element A ∈ GF (p) using Algorithm 3, with only two precomputed values.

376 Jorge Guajardo et al.

Proof. If p = 2r−1, then p−2 = 0xFF . . . FFD in hexadecimal representation.
But, the hexadecimal representation of p−2 (the exponent) corresponds exactly
to the values that will be used in line 09 of Algorithm 3, which for the case k = 4
are A13 and A15. Thus, we only need to precompute and store 2 values. �

For the Generalized-Mersenne prime used here the case is very similar.

Theorem 2. Let p = 2r − 2t − 1 be a prime, with r = 4 · d for some d. Then,
one can compute the inverse of an element A ∈ GF (p) using Algorithm 3, with
at most 3 precomputed values.

Proof. If p = 2r−2t−1 with r = 4·d then we can rewrite it as p = 2r−2u ·24·v−1
where u = 0, 1, 2, 3, t = u + 4 · v, and v is any positive integer less than d − 1.
Notice that the value 2r − 1 can be written as

∑i=r/4−1
i=0

(
24 − 1

)
24·i Then, it

follows that we can write p− 2 as:
(
24 − 1

)
2r−4 +

(
24 − 1

)
2r−8 + · · ·+ (

24 − 2u − 1
)
24·v +(

24 − 1
)
24·v−4 + · · ·+ (

24 − 1
)
24 +

(
24 − 3

)
Looking at the coefficients of the powers of 24, we see that there are three: 24−1,
24 − 2u − 1, and 24 − 3. This ends the proof. �

Notice, that Theorems 1 and 2 suggest an improved algorithm to compute the
inverse of a non-zero element A ∈ GF (p). Algorithm 4 describes the new algo-
rithm.

Algorithm 4 Inversion Algorithm for Mersenne and Generalized-Mersenne
Primes

INPUT: A ∈ GF (p) with p = 2r − 1 (Mersenne) or
p = 2r − 2u24·v − 1 (Generalized-Mersenne prime
From Theorem 2)

e = (eses−1 . . . e1e0)b = p− 2, with b = 24 and 0 ≤ ei ≤ 24 − 1
OUTPUT: C = A−1 = Ae

01 Precomputation
02 if p = 2r − 1
02 A13 = A13

03 A15 = A15

04 if p = 2r − 2u · 24·v − 1
05 A24−2u−1 = A24−2u−1

06 A13 = A13

07 A15 = A15

08 A = 1
09 for i = s down to 0
10 A = A24

11 A = A ·Aei

12 endfor
13 C = A

Efficient Implementation of Elliptic Curve Cryptosystems 377

5.5 A Word about the Security of a 128-bit EC Implementation

In recent work, Lenstra and Verheul show that under particular assumptions,
952-bit RSA and DSS systems may be considered to be of equivalent security to
132-bit ECC systems [21]. The authors further argue that 132-bit ECC keys are
adequate for commercial security in the year 2000. This notion of commercial
security is based on the hypothesis that a 56-bit block cipher offered adequate
security in 1982 for commercial applications.

This estimate has more recently been confirmed by the breaking of the
ECC2K-108 challenge [15]. First, note that the field GF (2128 − 297 − 1) has
an order of about 2128. Breaking the Koblitz (or anomalous) curve cryptosystem
over GF (2108) required slightly more effort than a brute force attack against
DES. Hence, an ECC over a 128-bit field which does not use a subfield curve
is by a factor of

√
108 ·

√
220 ≈ 10000 harder to break than the ECC2K-108

challenge or DES. Thus, based on current knowledge of EC attacks, the system
proposed here is roughly security equivalent to a 69-bit block cipher. This im-
plies that an attack would require about 10000 times as much effort as breaking
DES. Note also that factoring the 512-bit RSA challenge took only about 2% of
the time required to break DES or the ECC2K-108 challenge. This implies that
an ECC over the proposed field GF (2128− 297− 1) offers far more security than
the 512-bit RSA system which has been popular, for example, for fielded smart
card applications. We would also like to point out that due to the shorter size
of the operands (128 bits vs. 160 bits) one could potentially attack a signature
scheme by trying to find collisions in the hash function. Nevertheless, we feel that
our selection of field order provides medium-term security which is sufficient for
many applications intended for the MSP430x33x family of microcontrollers.

6 Implementation and Results

6.1 Software Architecture

The EC arithmetic library for the MSP430x33x devices was designed with mod-
ularity in mind. Thus, the design consists of three levels as depicted in Figure 1.
Level 1 includes basic arithmetic functions such as addition, subtraction, multi-
plication, and squaring routines; modulo arithmetic functions such as modular
reduction for p = 2128 − 297 − 1, addition and subtraction modulo p, Mont-
gomery reduction; and other support routines such as memory copying and set-
ting routines, long number comparisons (>,<,=), and shift-right operations. It
is important to point out that many of the modular arithmetic routines were
optimized for the prime that we chose. Level 2 consists of macros. The assembly
language for the TI MSP430 allows the programmer to use macros which are
substituted by the compiler at compile time. This enables the programmer to
write the Level 3 routines in terms of the macros from Level 2, thus, making the
elliptic curve arithmetic routines independent of the chosen field. In the future,
this will allow us to change the underlying arithmetic without changing the top
level routines. It is important to point that this could have been accomplished

378 Jorge Guajardo et al.

Arithmetic
Modulo p
Arithmetic

Arithmetic Macros

Elliptic Curve
Arithmetic Functions

Support
Functions

General Integer

LEVEL 3

LEVEL 2

LEVEL 1

Fig. 1. Library Architecture

by using functions in Level 2 but this would increase the overhead (5 cycles per
function call) which would impact negatively on the performance of our imple-
mentation. Finally, Level 3 routines included addition and doubling of elliptic
curve points and scalar point multiplication.

6.2 Timings

The critical functions of the elliptic curve library were timed using the MSP430
TI Simulator version 2.30. The code was compiled using the MSP430 TI Macro
Assembler version 1.08 and the MSP430 COFF TI Linker version 1.01. These
tools are all part of the TI MSP-EVK430S330 Evaluation Kit which includes
the PMS430E337HFD (UV EPROM) chip. Arithmetic is always assumed to be
for 128-bit long operands. The actual timings are calculated for two frequencies:
1 MHz which seems to be a commonly used frequency in applications and 3 MHz
which is close to the highest frequency that the MSP430 device can be clocked
at. Table 1 summarizes the timings corresponding to basic arithmetic operations.

Some of the times reported are exact times. These include the execution
times for multiplication and squaring Montgomery reduction. On the other hand,
the times reported for modular addition, modular subtraction, and inversion
modulo p = 2128 − 297 − 1 using the modified k-ary method were computed
by averaging out the worst and best times observed during the execution of
these routines. Modular addition and modular subtraction, for example, perform
the modular reduction by subtracting p from the intermediate result. In some
cases, one can obtain the final result with only one subtraction, other times two
subtractions are necessary. Best and worst case timings correspond to one or
two subtractions performed in the reduction step, respectively. The remaining
timings in Table 1 are the result of performing several computations with a
given routine (Montgomery reduction, Montgomery exponentiation, etc.) and
then averaging over the total number of operations performed. Finally, notice
that the timings do not include the loading of the operands onto the registers
where the routines expect their inputs. However, this operation can at most take
6 cycles for routines with 3 operands, so its impact on the overall performance

Efficient Implementation of Elliptic Curve Cryptosystems 379

Table 1. Timings for basic arithmetic operations with 128-bit long operands.

Arithmetic Average Timing Average Timing
Operation @ 1 MHz(usec) @ 3 MHz(usec)
addition modulo p = 2128 − 297 − 1 164 55
subtraction modulo p = 2128 − 297 − 1 156 52
multiplication 1425 475
squaring 998 333
reduction modulo p = 2128 − 297 − 1 343 114
Montgomery reduction 1626 542
inversion modulo p = 2128 − 297 − 1 235.9 msec 78.6 msec
via modified k-ary method.

of an elliptic curve operation is negligible. Table 2 presents the timings for the
elliptic curve operations. The point doubling timings depend on whether the
coefficient a of the elliptic curve is equal to p − 3 or not. So both timings have
been included. The longer timing corresponds to the case a �= p − 3. The point
addition timings depend on whether the Z coordinate of the second point is equal
to 1 or not. If it is equal to one then the number of operations is smaller and,
thus, the addition operation takes less time. In this case we have also included
both timings. The fulladd operation (a wrapper routine that can perform both
point addition and point doubling) if used only for adding (P0 �= P1) takes
less time than when a doubling (P0 = P1) is performed. The reason for this
is that fulladd first performs an add and if the output is P0 + P1 = (0, 0, 0)
(which is not a point on the elliptic curve but rather a pointer indicating that
the doubling routine must be used), it performs a point doubling. Only timings
for the case P0 �= P1 are included. It is important to point out that this is the
case of most relevance in practice since one can always make the Z coordinate
of the second operand equal to 1. In fact, it should not occur that we perform a
double with a fulladd when implementing point multiplication using the binary,
k-ary, sliding window, or addition-subtraction algorithms since the point G is
usually of prime order and in general the multiplier is chosen to be less than
the order of G. In all cases, it makes no sense to average the two values because
the timings correspond to situations which will not occur at the same time or
in the same implementation. For example, one either chooses a curve with the a
coefficient equal to p− 3 or one does not. Finally, the timings for 128-bit point
multiplication were computed using a 128-bit long exponent.

7 Conclusions

In this contribution, we have described a practical implementation of an EC cryp-
tosystem over a prime field, where the prime is a Generalized-Mersenne prime,
on the TI MSP430x33x family of low-cost and low-power microprocessors. We
show how the special form of the Generalized-Mersenne prime can be used to

380 Jorge Guajardo et al.

Table 2. Timings for elliptic curve operations assuming a 128-bit base field.

Elliptic Curve Average Timing Average Timing
Operation @ 1 MHz (msec) @ 3 MHz (msec)
point doubling a = p− 3 15.1 5.0
point doubling a �= p− 3 17.7 5.9
point addition Z = 1 20.7 6.9
point addition Z �= 1 29.1 9.6
point fulladd (P0 �= P1) Z = 1 21.1 7.0
point fulladd (P0 �= P1) Z �= 1 29.5 9.8
point subtraction (P0 �= P1) Z = 1 21.2 7.2
point multiplication using the binary 3.4 sec 1.1 sec
method of exponentiation (a = p− 3)
point multiplication using the binary 3.8 sec 1.3 sec
method of exponentiation (a �= p− 3)

implement a new inversion algorithm, based on Fermat’s Little theorem and the
k-ary method for exponentiation, which minimizes the number of precomputed
values, thus, also minimizing the memory requirements of the inversion opera-
tion. We would like to point out that even though k = 4 minimizes (15), this
value might not be the optimum for our algorithm. Since we only required two
(or three) precomputed values it is possible to increase the size of k, thus making
the algorithm more efficient. In fact, it is easy to verify that a value of k = 16 will
reduce in half the number of multiplications required to perform the inversion.

In addition, we tailor the field arithmetic algorithms to the processor archi-
tecture to achieve acceptable timings for a scalar point multiplication. Running
at 1 MHz we can perform a 128-bit random point multiplication in 3.4 sec using
projective coordinates (this time includes transforming back to affine coordi-
nates) using the binary method for exponentiation. Notice that these timings
can be further improved by using addition-subtraction methods. Finally, it is
possible to dramatically reduce the time required for a point multiplication if
the point is known ahead of time, like in the ECDSA signature generation op-
eration. This can be accomplished by using precomputation methods. However,
these methods require additional memory which in embedded systems is not
always freely available.

References

1. ANSI X9.62-1-xxxx. Public Key Cryptography for the Financial Services Industry:
the Ellip tic Curve Digital Signature Algorithm (ECDSA) (Revised). Technical
report, American Bankers Association, October 1999.

2. ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm. Technical
report, ANSI, 1999.

Efficient Implementation of Elliptic Curve Cryptosystems 381

3. D. V. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-
Key Algorithms. In H. Krawczyk, editor, Advances in Cryptology — CRYPTO ’98,
volume LNCS 1462, pages 472–485, Berlin, Germany, 1998. Springer-Verlag.

4. D. V. Bailey and C. Paar. Inversion in Optimal Extension Fields. In A. Odlyzko,
G. Walsh, and H. Williams, editors, Conference on The Mathematics of Public
Key Cryptography, The Fields Institute for Research in the Mathematical Sciences,
Toronto, Canada, June 1999.

5. P. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In A. M. Odlyzko, editor,
Advances in Cryptology – CRYPTO ’86, volume LNCS 263, pages 311–323, Berlin,
Germany, August 1986. Springer-Verlag.

6. G. Borriello and R. Want. Embedded computation meets the world wide web.
Communications of the ACM, 43(5):59–66, May 2000.

7. Ç. K. Koç, T. Acar, and B. Kaliski. Analyzing and Comparing Montgomery Mul-
tiplication Algorithms. IEEE Micro, pages 26–33, June 1996.

8. D.V. Chudnovsky and G.V. Chudnovsky. Sequences of numbers generated by
addition in formal groups and new primality and factorization tests. Advances in
Applied Mathematics, 7:385–434, 1986.

9. Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee. Fast Implementation of
Elliptic Curve Defined over GF (pm) on CalmRISC with MAC2424 Coprocessor.
In Çetin K. Koç and Christof Paar, editors, Workshop on Cryptographic Hardware
and Embedded Systems — CHES 2000, pages 57–70, Berlin, 2000. Springer-Verlag.

10. Henry Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient Elliptic Curve Ex-
ponentiation Using Mixed Coordinates. In Kazuo Ohta and Dingyi Pei, editors,
Advances in Cryptology — ASIACRYPT’98, volume LNCS 1514, pages 51–65,
Berlin, 1998. Springer-Verlag.

11. S. R. Dussé and B. S. Kaliski. A Cryptographic Library for the Motorola
DSP56000. In I. B. Damg̊ard, editor, Advances in Cryptology — EUROCRYPT ’90,
volume LNCS 473, pages 230–244, Berlin, Germany, May 1990. Springer-Verlag.

12. D. Estrin, R. Govindan, and J. Heidemann. Embedding the Internet. Communi-
cations of the ACM, 43(5):39–41, May 2000.

13. D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129–146, 1998.

14. J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosystems.
In B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume LNCS 1294,
pages 342–356, Berlin, Germany, August 1997. Springer-Verlag.

15. R. Harley, D. Doligez, D. de Rauglaudre, and X. Leroy.
http://cristal.inria.fr/%7Eharley/ecdl7/.

16. Toshio Hasegawa, Junko Nakajima, and Mitsuru Matsui. A Practical Implemen-
tation of Elliptic Curve Cryptosystems over GF (p) on a 16-bit Microcomputer. In
Hideki Imai and Yuliang Zheng, editors, First International Workshop on Practice
and Theory in Public Key Cryptography — PKC’98, volume LNCS 1431, pages
182–194, Berlin, 1998. Springer-Verlag.

17. K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara. Fast Implemena-
tion of Public-Key Cryptography on a DSP TMS320C6201. In Çetin K. Koç and
Christof Paar, editors, Proceedings of the First Workshop on Cryptographic Hard-
ware and Embedded Systems — CHES’99, volume LNCS 1717, pages 61–72, Berlin,
Germany, August 1999. Springer-Verlag.

18. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Information and Computation, 78:171–177, 1988.

382 Jorge Guajardo et al.

19. D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Al-
gorithms. Addison-Wesley, Reading, Massachusetts, USA, 2nd edition, 1981.

20. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–
209, 1987.

21. Arjen Lenstra and Eric Verheul. Selecting cryptographic key sizes. In Hideki
Imai and Yuliang Zheng, editors, Third International Workshop on Practice and
Theory in Public Key Cryptography — PKC 2000, volume LNCS 1751, Berlin,
2000. Springer-Verlag.

22. Chae Hoon Lim and Hyo Sun Hwang. Fast Implementation of Elliptic Curve
Arithmetic in GF (pn). In Hideki Imai and Yuliang Zheng, editors, Third Inter-
national Workshop on Practice and Theory in Public Key Cryptography — PKC
2000, volume LNCS 1751, pages 405–421, Berlin, 2000. Springer-Verlag.

23. A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, Boston, Massachusetts, USA, 1993.

24. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.

25. V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,
Advances in Cryptology — CRYPTO ’85, volume LNCS 218, pages 417–426, Berlin,
Germany, 1986. Springer-Verlag.

26. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

27. U.S. Department of Commerce/National Institute of Standard and Technol ogy.
Digital Signature Standard (DSS), January 27 2000.

28. National Institute of Standard and Technology. Recommended elliptic curves for
federal government use. available at http://csrc.nist.gov/encryption, May 1999.

29. IEEE P1363 Standard Specifications for Public Key Cryptography, November 1999.
Last Preliminary Draft.

30. R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key exchange
with elliptic curve systems. In D. Coppersmith, editor, Advances in Cryptology —
CRYPTO ’95, volume LNCS 963, pages 43–56, Berlin, Germany, 1995. Springer-
Verlag.

31. Standards for Efficient Cryptography Group. SEC2: Recommended Elliptic Curve
Domain Parameters. Working draft, version 0.7, September 2000.

32. Texas Instruments, Inc., Dallas, Texas 75265 USA. MSP430C33x,MSP430P337A
Mixed Signal Microcontrollers, October 1999 (Revised June 2000).

33. Texas Instruments, Inc., Dallas, Texas 75265 USA. MSP430x3xx Family – User’s
Guide, July 2000.

34. A. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart
cards without coprocessors. In IFIP CARDIS 2000, Fourth Smart Card Research
and Advanced Application Conference, Bristol, UK, September 20–22 2000. Kluwer.

	Introduction
	Previous Work
	Elliptic Curves over $GF(p)$
	Addition and Doubling Formulae in Jacobian Representation
	Elliptic Curve Arithmetic Implementation
	Elliptic Curve Parameters

	The TI MSP430x33x Family of Microcontrollers
	Finite Field Arithmetic
	Modular Reduction
	Multiplication and Squaring
	Modular Addition and Subtraction
	A New Inversion Algorithm for Moduli of Special Form
	A Word about the Security of a 128-bit EC Implementation

	Implementation and Results
	Software Architecture
	Timings

	Conclusions

