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Abstract. From some perspectives Automated Collaborative Filtering (ACF) 
appears quite similar to Case-Based Reasoning (CBR). It works on data 
organised around users and assets that might be considered case descriptions. In 
addition, in some versions of ACF, much of the induction is deferred to run 
time – in the lazy learning spirit of CBR. On the other hand, because of its lack 
of semantic descriptions it seems to be the antithesis of case-based reasoning – 
a learning approach based on case representations. This paper analyses the 
characteristics shared by ACF and CBR, it highlights the differences between 
the two approaches and attempts to answer the question “When is it useful or 
valid to consider ACF as CBR?”. We argue that a CBR perspective on ACF can 
only be useful if it offers insights into the ACF process and supports a transfer 
of techniques. In conclusion we present a case retrieval net model of ACF and 
show how it allows for enhancements to the basic ACF idea. 

1. Introduction  

In recent years there has been some discussion on whether Automated Collaborative 
Filtering (ACF) should be considered a form of Case-Based Reasoning (CBR). It 
appears that many see CBR-like characteristics in ACF. For instance, entities (users 
and assets) can be considered to be cases. In addition, some of the reasoning is often 
deferred to run-time in the lazy manner of CBR. In contrast, others view ACF as a 
very different approach to CBR, considering ACF to be ‘representationless’ in 
contrast to the semantic descriptions in a case representation (Smyth & Cotter, 1999) 
(%DOEDQRYL��	�6KRKDP������). 

In this paper, we present brief descriptions of case-based reasoning, content-based 
recommendation and automated collaborative filtering. Then the shared 
characteristics and differences between ACF and CBR are considered with a view to 
answering the question “When is it useful or valid to consider ACF as CBR?” 

The conclusion of the paper is that this CBR perspective on ACF is useful and this 
is illustrated in section 5 where we illustrate how ACF may be implemented using a 
case retrieval net. 
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2. Characteristics of CBR 

CBR is a problem solving technique that reuses previous problem solving episodes 
in solving new problems. Previous problem solving episodes are stored as cases in a 
case-base and typically each case has a case specification part and a solution part. In a 
diagnosis domain for instance, the specification might describe fault symptoms and 
fault context and the solution describes the cause of the fault. CBR can also be used in 
situations where this problem-solving vocabulary is not appropriate. More generally, 
it can be viewed as a means of determining outcomes associated with situation 
descriptions. With CBR, instead of attempting to model the causal interactions that 
link outputs to inputs the idea is to retrieve and adapt cases when solving new 
problems. This is described in Figure 1 where SP is a specification of a problem that 
needs to be solved, SL is a solution to that problem and FP is some hypothetical First 
Principles reasoning that would infer the appropriate solution for the problem 
description SP. The idea in CBR is to avoid having to model this First Principles 
reasoning by instead retrieving a case with a similar description SP’ and adapting the 
solution to that case (SL’) to fit the problem in hand. The implication is that this 
retrieval and adaptation process is simpler to implement than the First Principles 
reasoning.  

 

SL 

SP 

SL’ 

SP’ 

FP 

Retrieve 

Adapt 

 

Fig. 1. The case based reasoning process; SP is a specification of a target problem and SL is a 
solution to that problem, SP’ and SL’ form a case that is retrieved to solve for this new problem 
(Cunningham, Finn & Slattery, 1994). 

In this view, the special thing about CBR is its ability to avoid the knowledge 
engineering problem of modeling FP. Instead the problem solving knowledge is 
stored in the cases.  

 

2.1. CBR as Lazy Learning 

In the context of ACF, the other important characteristic of case-based reasoning is 
that it is a lazy learning technique. This means that induction is delayed to run-time, a 
factor that can have some important benefits. For instance, in dynamic environments 
where data is changing continuously, alternative eager approaches have the 
disadvantage that models (e.g. d-trees or neural nets) can quickly go out of date. 
Whereas, with the lazy approach of CBR, the induction at run-time reflects the latest 
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data available. Also the lazy approach of CBR has the advantage that it can model 
local phenomena well compared to eager techniques that tend to focus on more global 
models. It will be clear in section 3 that these two advantages of CBR are shared by 
ACF.  

2.2 CBR as Case Completion 

The key idea in CBR is that similar problems have similar solutions. This has led to a 
tendency to view cases as being composed of two parts – a problem specification part 
and a distinct solution part. This representation is usually adequate for problem 
scenarios where the problem part is fully specified for a target case and the goal is to 
retrieve cases with similar problem specifications and use or adapt their solutions for 
the target problem. This model suggests that the problem specifications are available 
all at once and that there is no dependency on the order in which problem features are 
used. 

In dialog based CBR there is recognition that a complete problem specification 
may not be available, and that the order in which the descriptors make themselves 
available may be important. An example of dialog – based CBR would be the CBR-
NET system (Doyle & Cunningham, 2000) where the online user is posed a series of 
discriminating questions based on the information tendered to date. The system’s goal 
is classification – to recommend a laptop based on the constraints incrementally 
tendered by the user. In the Nodal system, electronic fault diagnosis is performed by 
having the tester incrementally perform and submit diagnostic tests. (Cunningham, 
Smyth & Bonzano, 1998) In both cases the system suggests the next test to perform 
by carrying out an information theoretic analysis on the subset of cases remaining 
after submission of the previous test result.  

This type of dialogue based CBR is not very different from the conventional model 
described above. Cases still have distinct specification and solution parts, the 
difference is that the specification part is filled out during the problem solving 
process.  

Dialog driven CBR 
However, for certain types of dialog driven CBR the eliciting of a series of problem 
features is not only a pre-requisite but is in fact the goal or solution. In these domains 
the CBR system is a tool to aid problem-solving processes where the objective is to 
find the next step in a process considering the steps taken to date. An initial case 
would represent a task or process where very little information is available initially. 
The CBR system must suggest the steps whereby the task may be completed and the 
target case filled out.  

Burkhard has defined CBR case completion as an elaboration of the target task by 
collecting case relevant information (Burkhard, 1998). This definition highlights the 
interactive nature of the case completion process and the requirement for incremental 
feedback from the real world. The feedback in this scenario is of course an extended 
example of the revise phase of the typical CBR cycle (Aamodt & Plaza, 1994). In 
case completion the CBR cycle is traversed several times, each period having a 
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retrieve, reuse and revise phase until the target case is complete. The retain phase will 
not be engaged (if at all) until case completion is achieved. 

 An interesting specialization on case completion is that of information completion 
where the information to complete the case is gathered only from cases in the case 
base (Lenz et al., 1998) (Waszkiewicz et al., 1999). In both examples the target case 
represents an instance in time of a process and the goal is to find cases that suggest 
possible completion scenarios. Whereas in dialog based CBR the user provides the 
information to complete the cases, in this case completion process the information to 
complete the cases is inferred from the case-base. 

It should be obvious that the typical case representation of problem part and 
solution part is inappropriate for cases where case completion is the goal. If the 
objective is to find the next step in a problem solving process with consideration of 
the steps taken to date it does not make sense to have a specified solution part. There 
will be no case solution that is distinct from the case specification. 
 

 

Fig. 2. A general view of the case completion process. 

For case completion scenarios Burkhard and Lenz suggest that case representation 
should not be confined by the standard specification-solution structure. They propose 
a case as a view upon the raw data. They define the term Information Entity as the 
basic unit of information in a case. A case is composed of a number of information 
entities, one of which may be designated as a solution. This representation caters for 
cases where information is missing, and where case completion is the goal. 
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2.3. Content-Based Recommendation 

In the next section ACF, a representation-less recommendation process, is 
introduced; before that, we will describe a CBR-like content-based recommendation 
system that we can use for comparison purposes. 

Table 1 shows a case-like description of a film (movie) and Table 2 shows the 
corresponding description of a user of the recommendation system. In this scenario 
recommendation is based on how well a film matches a user’s profile. In producing 
recommendations for a user, the matching score for each film in turn would be 
determined and the highest scoring films not already viewed would be recommended. 
As will be clear in the next section, this process has advantages over ACF in working 
well for assets of minority interest or for new assets and users. However, the major 
drawback is the problem of coming up with appropriate descriptors such as Genre. 

Table 1. A case-like description of a film for content based recommendation 

4W&1F 
Title:  Four Weddings and a Funeral 
Year: 1994 

Genre: Comedy, Romance 
Director: Mike Newell? 
Starring: Hugh Grant, Andie MacDowell 
Runtime: 116 
Country: UK 

Language: English 
Certification: USA:R (UK:15) 

Table 2. A case-like description of a user’s interests 

JB-7 
Name:  Joe Bloggs 

Preferred Era: 1988 → 
Genre: Thriller, Comedy, War, Romance 

Director: S. Spielburg, F. F. Coppola. 
Actors: Sharon Stone, Sylvester Stallone, Julia 

Roberts, Keanu Reeves, Liam Neeson, 
Andie MacDowell 

Runtime: < 150 
Country: UK, US 

Language: English 
Certification: Any 

3. Automated Collaborative Filtering 

The basic idea of ACF can be shown using Figure 3. In this figure three users have all 
shown an interest in assets A, B & C (for instance they have all rented videos A B C). 
This high level of overlap indicates that these users have similar tastes. Further it 
seems a safe bet to recommend assets D and E to User 1 because they are ‘endorsed’ 
by Users 2 and 3 that have similar interests to User 1.  
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Fig. 3. A Venn diagram showing interests of three users in assets ABCDEF 

One of the great strengths of ACF is that, if enough data is available, good quality 
recommendations can be produced without needing representations of the assets being 
recommended. The amount of data required depends to some extent on type of data 
available. In this context, there are two distinct approaches to the ACF idea that are 
termed invasive and non-invasive. With the invasive approach the user is explicitly 
asked to rate assets. This is the approach adopted by PTV (ptv.ucd.ie) for instance and 
clearly the data contains more information (see Table 3). Non-invasive data contains 
less information and can be noisy in the sense that customers may not like some of the 
items they have used. This can be seen in Table 4, which is a non-invasive version of 
Table 3. The information that User 2 dislikes asset D is lost in the non-invasive 
approach. Because of this data noise and loss of information more data is needed to 
produce good recommendations with the non-invasive approach.  

Table 3. Data for use in ACF where users have explicitly rated assets.  

 A B C D E F G 
User 1 0.6 0.6 0.8   0.8 0.5 
User 2  0.8 0.8 0.3 0.7   
User 3 0.6 0.6 0.3 0.5  0.7 0.5 
User 4      0.7 0.8 0.7 
User 5 0.6 0.6 0.8   0.7  
User 6  0.8 0.8 0.7 0.7   
User 7 0.7 0.5   0.7   
User 8     0.7 0.7 0.8 

Table 4. ACF data from Table2 where users have not explicitly rated assets. 

 A B C D E F G 
User 1 1 1 1   1 1 
User 2  1 1 1 1   
User 3 1 1 1 1  1 1 
User 4     1 1 1 
User 5 1 1 1   1  
User 6  1 1 1 1   
User 7 1 1   1   
User 8     1 1 1 
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Whether the data available is binary (non-invasive scenario) or contains an explicit 

rating, the basic structure of the recommendation process will have two distinct 
phases: 
1. First the neighbourhood of users that will produce the recommendations must be 

determined. 
2. Then recommendations must be produced based on the behaviour of these users. 

Determining the neighbourhood of users requires a similarity metric and some 
examples are presented in the next section. This management of neighbourhoods can 
be done eagerly in an offline clustering process. Or it can be done semi-eagerly as in 
GroupLens (Konstan et al., 1997) where a correlations data-base of pair-wise 
similarities is maintained and used to identify neighbours and build recommendations 
at run-time. This correlation data-base is updated every 24 hours. In the next 
subsection we will show the detail of the operation of a lazy ACF system. 

3.1. ACF – The Lazy model 

(Shardanand & Maes, 1995) evaluate a selection of similarity metrics that may be 
used for identifying neighbours in ACF. A simple similarity metric could be based on 
least-squares: 
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where Uf is user U’s rating for asset f. This could be the basis for clustering users in 
an eager version of ACF or it could be used at run-time to idetify neighbours within a 
threshold. These neighbours can then be used to produce ratings for a series of assets. 
The expected value of U’s rating for asset x is: 
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where the Raters of x are neighbours that have rated asset x, an asset that would be 
new to U. In this process an expected value for U’s rating is aggregated from his 
neighbours. In the aggregation their ratings are normalized using their average rating, 
J  and weighted using their similarity to U, UJσ  (Billsus & Pazzani, 1998). 

For binary data, the similarity of two users could be measured as: 

JU

JUInCommon
UJ +

=
),(

σ  
(3) 

and the rating for an asset could be based on its frequency among neighbours 
identified with this metric. Clearly binary data is less rich and more data will be 
needed to produce good recommendations (compare Table 3 & Table 4)  
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ACF: Criticisms and Simple Extensions 
“Amazon.com, the poster child of personalisation, will start recommending 
needlepoint books to you as soon as you order that ideal gift for your great aunt.” 

(www.shorewalker.com) 
In fact Amazon.com does not make this mistake because the extreme 

representation-less view of ACF is unlikely to be pursued in practice. This mistake 
can be avoided by annotating assets with simple category descriptors in order to allow 
recommendations to be made in context. Such as simple extension will prevent 
knitting pattern recommendations leaking into a core interest in computing books for 
instance.  This would also address the latency problem in ACF whereby new assets 
cannot be recommended until they have been rated by a number of users. 

So the extreme representation-less version of ACF as described above is too 
restrictive. The addition of basic semantic tags adds considerable value and moves 
representation of assets and users (customers) more towards CBR-like cases.  

ACF & CBR 
So a continuum exists with extreme representation-less ACF at one end and CBR at 
the other. ACF can move toward CBR by attaching semantic descriptors to assets. 
Also, some k-Nearest Neighbour implementations will determine similarity with no 
reference to the semantics of the case features in a manner that is in the same spirit as 
the ACF similarity described above.  

So the representation issue is not such a defining difference between ACF and 
CBR. The difference in representation is only one of degree. Each ACF user profile 
represents a history of that user’s consumption along with either explicit or implicit 
ratings. Each ACF profile is a record of the users consumption of items to date, the 
goal being to recommend the next step the user should take in his/her listening or 
reading behaviour. This temporal perspective on ACF has been neglected to date. As 
such we suggest that ACF should be viewed as an attempt to model usage patterns 
where the goal is to suggest the next step in an ongoing process of use.  

With these ideas in mind we have come to view ACF as analogous to a dialog 
driven CBR process. In the next sections we will present our ideas on how closely 
ACF parallels CBR, and describe our current work on developing a CBR based 
memory model for ACF. We will describe the benefits of such a system. 

4. ACF as dialog driven CBR 

ACF is a successful methodology for managing the long-term resource requirements 
of the online user. The user’s interaction with an ACF based recommender system is 
usually of a sustained nature and may last from a few minutes to a few years in the 
case of a successful retail portal like Amazon.com. A target profile is much like a case 
– it is composed of a number of feature value pairs, where each feature refers to the 
item consumed and the rating assigned by the user. An ACF case is an incomplete one 
– it is essentially one row in the user–item matrix and will usually be quite sparsely 
populated. The key idea in viewing ACF as CBR is to recognize that the goal in ACF 
is case completion – an incremental elaboration of the user profile based on feedback 
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given by the user. The system uses the information it has to hand to retrieve similar 
user profiles and extract completion information for the case profile which is then 
offered to the user. Negative user feedback may move the user toward a different set 
of neighbour profiles which are then used to make the next set of recommendations. 

So in ACF we have an iterative recommendation process whereby the items 
recommended for inclusion in the user profile are determined by the feedback to date. 
The parallel with incremental case completion is obvious. Whilst incremental case 
completion might generally have a stopping point, in ACF the recommendation cycle 
is traversed indefinitely, each period having a retrieve (similar profiles), reuse and 
revise phase. Of course we work with the assumption that there are so many items 
that the user could not possibly review each, hence the recommendation cycle is 
repeated continuously.  

The adaptation phase in the ACF system is the actual process of information 
completion, of choosing those components of neighbour profiles that are suitable for 
recommendation to the target user. As described in section 3.1 ACF uses weighted 
majority voting or the weighted aggregation of the scores of nearest neighbours to 
produce the recommended components for the target user profile. This may easily be 
compared to simple CBR adaptation techniques such as producing a solution by 
weighted majority voting of the k-nearest neighbours. 

5. Using Case Retrieval Nets for ACF 

In the previous section we examined how the typical ACF approach is similar to a 
lazy case completion process. Since the ACF process involves an extended dialog 
with many users the amount of information in the system will increase very quickly. 
Hence, it is appropriate to examine whether we should use our data to build eager 
structures that may work in conjunction with the lazy ACF process. In this section we 
introduce our design of an ACF memory model based on Case Retrieval Nets 
(CRNs). We will firstly describe basic case retrieval nets, then our implementation of 
them in an ACF context and finally we will describe why CRNs are an appropriate 
memory structure for extending ACF systems. 

5.1 Case Retrieval Nets 

Our initial investigation of CRNs was motivated by their use in domains where 
missing case information is typical and where the ‘problem–solution’ case 
representation is inappropriate. Indeed Lenz suggests that CRNs are designed 
specifically for information completion processes (Lenz et al., 1998). Secondly, new 
cases and case features can be added without having to rebuild the memory structure 
which is necessary for ACF where the user ‘case base’ and the case profiles 
themselves are growing. Firstly, we give a brief summary of CRNs. The reader is 
referred to Lenz (Lenz, 1999) for a formal definition of the CRN model. 

A CRN is a memory model that builds a net instead of a tree from the case base. It 
uses organizational features derived from associative memory structures 
(Shank, 1982) and a spreading activation process similar to that used in connectionist 
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models. In contrast to the latter, however, all the nodes and arcs in the net should have 
precise meaning.  
The components of a basic case retrieval net are as follows: 

Information Entities nodes: CRNs have a node for each Information Entity (IE) 
observed in the domain (see fig. 4). Information Entities are any basic knowledge 
item such as a particular attribute-value pair. Cases will typically be made up of a 
number of IEs. In order to facilitate the spreading activation process IE nodes are 
connected by similarity arcs. 

Case nodes: each case in the case base has a case node which is reachable from its 
constituent IE nodes via relevance arcs. 

By varying the arc weights we can express differing degrees of similarity and 
relevance between nodes. Case retrieval using a CRN has three stages: 
1. Initial Activation: this involves activating the IEs in the query. Given the query, 

the initial activation is determined for all IE nodes. 
2. Similarity Propagation: the second step involves incrementally propagating the 

activation through the net of IEs. The amount of activation depends on arc 
weights.  

3. Relevance Propagation: the final step entails collecting the achieved activation in 
the associated case nodes. This is done using the relevance arcs which connects 
each case node to its constituent IE nodes.  

The result of the retrieval process is a set of cases ranked in order of decreasing 
activation.  

 

Fig. 4. A portion of a case retrieval net showing two case nodes and a selection of IE nodes. 
This illustrates the type of CBR data collected during the ptv project (Smyth & Cotter, 1999); 

5.1 ACF and CRNs 

If we view ACF profiles as incomplete cases as described in section 4 it is clear how 
we may implement a CRN based ACF system in which the Information Entities nodes 
represent item-value pairs and the case nodes represent the user profile identifiers. 
Figure 5 illustrates a simple example using a portion of a user profile in the 
smart radio domain (Hayes & Cunningham, 2000). What makes the spreading 
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activation a little more complicated in ACF is that whereas in the CBR model 
similarity arcs tend to extend between IE nodes in which the feature descriptor part is 
the same, there is no reason why this should be the case in the ACF model. A 
similarity arc may extend between two different item types such as items 1959 and 
1968 in figure 5. 

 

 

Fig. 5. ACF implemented as a CRN  

However, figures 4 and 5 also illustrate the weakness of the basic CRN model we 
have outlined, namely the requirement for explicit similarity arcs between IE nodes. 
Where the number of nodes is large it may be infeasible to define similarity arcs in 
such a way. One way to address this is to replace direct connections to IE nodes with 
connections to a set of more abstract nodes representing concepts or micro-features in 
the domain. There may be some descriptive information already on hand. For 
instance, in the smart radio data there are some basic attributes available such as 
artist, album and genre. However, most genre category information is simply not 
discriminating enough (i.e. rock, pop), though some such categories such as folk or 
electronic may be a little better. This free information may form a layer of micro-
feature nodes below the IE layer, linking several IE nodes in one go. This schema has 
a direct corollary in Lenz’s description of micro-features in the Cabatta system 
(Lenz, 1999).  

 

 

Fig. 6.   Example of micro-features describing relationships between different IE nodes 
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5.2 Embedding discovered knowledge in CRNs 

The standard ACF system learns in a very simple way – it collects use-data and lazily 
produces new recommendations. Since the relationship is an extended one, a smarter 
system would seek  to learn the patterns informing a user’s resource requirements at 
any time and to determine the relationships between assets that are not apriori given. 
As we suggested at the top of this section it is possible to find rules and relationships 
between information entities in an ACF system using knowledge discovery 
techniques. The relatively expensive information found using these techniques may be 
incrementally added to the CRN memory structure without having to rebuild it. 

We can do this using an extension to the basic case retrieval net model called 
conceptual case retrieval nets (Lenz, 1999). The key idea is to introduce additional 
nodes into the net which do not represent actual attribute-value pairs, but more 
abstract domain knowledge. These concept nodes allow us to link several IE nodes as 
shown in fig 8. During the retrieval process the initially activated nodes pass 
activation according to their similarity functions as usual, but also pass activation to 
connected concepts nodes, which in turn distribute activation to connected  IE nodes. 
As such we begin to address the problem in CRNs of defining similarity relations 
between each pair of IE nodes. By reducing the explicit number of similarity relations 
between IE nodes we reduce maintenance and computational expense. 

Some domain knowledge may in certain circumstances be freely available as 
mentioned in the previous section, but more generally it will require expert analysis of 
the domain to find deeper structures.  However, it may be infeasible to have an expert 
keep track of the shifting concepts informing a particular domain. Where we have a 
lot of use-data it makes sense to employ well established knowledge discovery 
techniques to mine the concepts.  
  Fig. 7 presents three simple examples of concepts mined from smart radio data. 
These examples which relate artists in the data set were produced using Cobweb, 
Fisher’s incremental concept formation algorithm (Fisher, 1987).  

 
C410 ['Martyn, John', 'Orton, Beth', 'Guthrie, Arlo '] 
C438 ['The Beatles', 'Raitt, Bonnie', 'Fitzgerald, Ella', 'Simone, Nina', 'Lennox, 
Annie',  'Amos, Tori'] 
C1066 ['Hill, Lauryn', 'Scott-Heron, Gil', 'Van Morrison', 'Getz-Gilberto', 'Evans, 
Bill'] 

Fig. 7. An example of some basic artist concepts found using Fisher’s Cobweb algorithm on 
smart radio data. 

A second source of information which can be used in the CRN model are association 
rules. Typically used in market basket analysis, the key idea is to find interesting 
relationships between different items in a given data set. By mining association rules 
we can build similarity arcs between associated IE nodes, thus boosting the activation 
of connected cases. This activation would not have spread to these cases without the 
use of discovered association rules. 
In the smart radio domain (Hayes & Cunningham 2000), for instance, users build 
music playlists and are in turn recommended other people’s playlists. Running the 
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Apriori algorithm on these lists allows us to find association rules between tracks and 
between artists (Agrawal et al. 1996).  

 

 

Fig. 8. Embedding concepts in an ACF CRN. The figure illustrates a hierarchal concept 
structure as produced by a concept formation algorithm like Cobweb.  

5.3 Benefits for ACF 

A case retrieval net memory model caters to the unbounded nature of the ACF 
process. Initially, we can make recommendations using a sparse memory structure 
similar to that shown in figure 5. As the amount of information in the system grows 
we can incrementally derive rules and concepts which we can add to the case retrieval 
net as shown in figure 8. This eagerly derived information is used to augment the 
essentially lazy ACF recommendation process, particularly in areas where it is a weak 
such as the latency period mentioned in section 3. This sort of additional information 
is not fixed but shifting and would need to be run periodically to keep up with the 
level of activity in the community. Secondly, we surmise that this additional 
information will allow us to reduce the number of user profiles in the case retrieval 
net. Choosing which profiles are members would involve developing a theory of ACF 
coverage. In the concluding section we address some of the issues involved. 

Finally, Lenz et al. propose that the CRN caters for a bottom up search which is 
appropriate in a situation where information is missing. Apart from the difficulties 
encountered with missing information with an inductively derived model, they argue 
that cognitive science would tend to support a memory model that is reconstructive 
rather than purely search oriented: i.e. humans tend to start with a sparse 
representation and gather more information until a clearer picture is built. (Lenz et al., 
1998) These ideas can be found in memory models proposed for early CBR (Schank, 
1982) (Kolodner, 1993). Whereas ACF has often been regarded as being on the 
periphery of AI, using a CRN approach pushes it much closer to the center. 
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6. Conclusions and further work 

We have put forward the idea that ACF is very similar to dialog–driven CBR. Both 
approaches are involved in the process of case completion. We have then sought to 
unify both approaches by suggesting Case Retrieval Nets as a suitable memory 
structure for ACF. Since ACF involves an extended dialog with the user, CRNs offer 
the advantage of allowing us to incrementally add eagerly learned rules and content.  

However, the amount of raw data generally required by ACF may complicate 
matters. The general claim for a reduction in knowledge engineering in CBR assumes 
that the case instances are readily available. A CBR system may require careful 
authoring of its cases which can require a substantial amount of ‘expensive’ 
knowledge (Aha, 2001, Aha 1997). If we are to consider ACF in CBR terms, we must 
examine whether we can  author or ‘prune’ user profiles, and whether it is possible to 
apply techniques of case coverage to remove ‘redundant’ profiles. 
Case base maintenance is an important issue in CBR both for reasons of efficient 
retrieval and to ensure the problem space is sufficiently covered. A key research issue 
is whether we can choose component user profiles of the CRN using case coverage 
criteria (Smyth & McKenna 1998). Thus, though all case profiles are kept in a case-
base, the subset that best covers the user space and the asset space would be used in 
the Case Retrieval Net. We would need also to take into account a measure of which 
profiles consistently produce good recommendations.  

The idea of coverage in ACF is complicated by the fact that user profiles 
themselves are growing. We are left with the option to leave the ‘raw data’ of the 
profile alone and lazily make recommendations, or to seek to reduce this data into 
cases profiles. This would necessitate reducing the ACF profile by summarising some 
of the data, by finding key items that will differentiate one user group from another.  

Current coverage models assume a single-shot CBR system. A case either covers a 
problem or it does not. There is no partial coverage. Now in many CBR scenarios we 
have multiple-cases retrieved to solve a problem much as we do in ACF. A CBR 
coverage model that takes into account partial coverage situations would of course fit 
the ACF model very well. 
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