Skip to main content

Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2123))

  • 1251 Accesses

Abstract

We derive optimal radial kernel in the radial basis function network applied in nonlinear function learning and classification.

This research was supported by the Alexander von Humboldt Foundation and Natural Science and Engineering Research Council of Canada

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems 2 (1988) 321–323.

    MATH  MathSciNet  Google Scholar 

  2. K. B. Davis, Mean integrated error properties of density estimates, Annals of Statistics 5, (1977) 530–535.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Devroye, A note on the usefulness of superkernels in density estimation, Annals of Statistics 20 (1993) 2037–2056.

    Article  MathSciNet  Google Scholar 

  4. L. Devroye, A Course in Density Estimation, Birkhauser, Boston, 1987.

    MATH  Google Scholar 

  5. L. Devroye, A. Krzyzak, An equivalence theorem for L1 convergence of the kernel regression estimate, J. of Statistical Planning and Inference 23 (1989) 71–82.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Devroye, L. Györfi and G. Lugosi, Probabilistic Theory of Pattern Recognition, Springer, 1996.

    Google Scholar 

  7. F. Girosi, G. Anzellotti, Rates of converegence for radial basis functions and neural networks, in: R. J. Mammone (Ed.), Artificial Neural Networks for Speech and Vision, Chapman and Hall, London, 1993, 97–113.

    Google Scholar 

  8. U. Grenander. Abstract Inference. Wiley, New York, 1981.

    MATH  Google Scholar 

  9. T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York, 1972.

    MATH  Google Scholar 

  10. A. Krzyżak, The rates of convergence of kernel regression estimates and classification rules, IEEE Trans. on Information Theory 32 (1986) 668–679.

    Article  MATH  Google Scholar 

  11. A. Krzyżak, On exponetial bounds on the Bayes risk of the kernal classification rule, IEEE Transactions on Information Theory 37 (1991) 490–499.

    Article  Google Scholar 

  12. A. Krzyżak, T. Linder, G. Lugosi, Nonparametric estimation and classification using radial basis function nets and empirical risk minimization, IEEE Transactions on Neural Networks 7 (1996) 475–487.

    Article  Google Scholar 

  13. A. Krzyżak, T. Linder, Radial Basis Function Networks and Complexity Regu-larization in Function Learning, IEEE Transactions on Neural Networks 9 (1998) 247–256.

    Article  Google Scholar 

  14. D. F. McCaffrey, A. R. Gallant, Convergence rates for single hidden layer feedforward networks, Neural Networks 7 (1994) 147–158.

    Article  Google Scholar 

  15. J. Moody, J. Darken, Fast learning in networks of locally-tuned processing units, Neural Computation 1 (1989) 281–294.

    Article  Google Scholar 

  16. J. Park, I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Computation 3 (1991) 246–257.

    Article  Google Scholar 

  17. J. Park, I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Computation 5 (1993) 305–316.

    Article  Google Scholar 

  18. M. J. D. Powell, Radial basis functions for multivariable approximation: a review, in J. C. Mason and M. G. Cox (Eds.), Algorithms for Approximation, Oxford University Press, 1987, 143–167.

    Google Scholar 

  19. G. S. Watson, M. R. Leadbetter, On the estimation of the probability density, I, Annals of Mathematical Statistics 34 (1963) 480–491.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Xu, A. Krzyżak, A. L. Yuille, On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size, Neural Networks 7 (1994) 609–628.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krzyżak, A. (2001). Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-44596-X_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42359-1

  • Online ISBN: 978-3-540-44596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics