Skip to main content

On the Use of Pairwise Comparison of Hypotheses in Evolutionary Learning Applied to Learning from Visual Examples

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2123))

Abstract

This paper is devoted to the use of genetic programming for the search of hypothesis space in visual learning tasks. The long-term goal of our research is to synthesize human-competitive procedures for pattern discrimination by means of learning process based directly on the training set of images. In particular, we introduce a novel concept of evolutionary learning employing, instead of scalar evaluation function, pairwise comparison of hypotheses, which allows the solutions to remain incomparable in some cases. That extension increases the diversification of the population and improves the exploration of the hypothesis space search in comparison with ‘plain’ evolutionary computation using scalar evaluation. This supposition is verified experimentally in this study in an extensive comparative experiment of visual learning concerning the recognition of handwritten characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bala, J.W., De Jong, K.A., Pachowicz, P.W.: Multistrategy learning from engineering data by integrating inductive generalization and genetic algorithms. In: Michalski, R.S., Tecuci, G. (eds.): Machine learning. A multistrategy approach. Volume IV. Morgan Kaufmann, San Francisco (1994) 471–187

    Google Scholar 

  2. Beasley, D., Bull, D.R., Martin, R.R.: A Sequential Niche Technique for Multimodal Function Optimization. Evolutionary Computation 1(2), (1993) 101–125

    Article  Google Scholar 

  3. Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by meta-learning. Proceedings of the Second International Conference on Information and Knowledge Management (1993)

    Google Scholar 

  4. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan, Ann Arbor (1975)

    Google Scholar 

  5. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Machine Learning, 13 (1993) 161–188

    Article  Google Scholar 

  6. Dubois, D., Prade, H.: Fuzzy sets and systems. theory and applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  8. Goldberg, D.E., Deb, K., Korb, B.: Do not worry, be messy. Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo (1991) 24–30

    Google Scholar 

  9. Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms (1987) 41–49

    Google Scholar 

  10. Gonzalez, R.C., Woods, R.E.: Digital image processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  11. Harik, G.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L. J. (ed.): Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann, San Francisco (1995) 24–31

    Google Scholar 

  12. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  13. Jelonek, J., Stefanowski, J.: Experiments on solving multiclass learning problems by n2-classifier. In: Nedellec, C, Rouveirol, C. (eds.): Lecture Notes in Artificial Intelligence, Vol. 1398. Springer-Verlag, Berlin Heidelberg New York (1998) 172–177

    Google Scholar 

  14. Johnson, M.P.: Evolving visual routines. Master’s Thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  15. Koza, J.R.: Genetic programming-2. MIT Press, Cambridge (1994)

    Google Scholar 

  16. Koza, J.R., Keane, M., Yu, J., Forrest, H.B., Mydlowiec, W.: Automatic Creation of Human-Competetive Programs and Controllers by Means of Genetic Programming. Genetic Programming and Evolvable Machines 1 (2000) 121–164

    Article  MATH  Google Scholar 

  17. Krawiec, K.: Constructive induction in picture-based decision support. Doctoral dissertation, Institute of Computing Science, Poznań University of Technology, Poznan (2000)

    Google Scholar 

  18. Krawiec, K.: Constructive induction in learning of image representation. Research Report RA-006, Institute of Computing Science, Poznan University of Technology (2000)

    Google Scholar 

  19. Krawiec, K.: Pairwise Comparison of Hypotheses in Evolutionary Learning. Proceedings of The Eighteenth International Conference on Machine Learning (2001)

    Google Scholar 

  20. Langley, P. Elements of machine learning. San Francisco: Morgan Kaufmann (1996)

    Google Scholar 

  21. LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., et al.: Comparison of learning algorithms for handwritten digit recognition. International Conference on Artificial Neural Networks (1995) 53–60

    Google Scholar 

  22. Mahfoud, S.W.: A Comparison of Parallel and Sequential Niching Methods. In: Eshelman, L.J. (ed.): Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo (1995) 136–143

    Google Scholar 

  23. Mitchell, T.M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  24. Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  25. Poli, R. Genetic programming for image analysis, (Technical Report CSRP-96-1). The University of Birmingham (1996)

    Google Scholar 

  26. Rissanen, J.: A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11 (1983) 416–431

    Article  MATH  MathSciNet  Google Scholar 

  27. Sanchez, E.: Inverses of fuzzy relations. Application to possibility distributions and medical diagnosis. Proc. IEEE Conf. Decision Control, New Orleans 2, (1979) 1384–1389

    Google Scholar 

  28. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. Proceedings of the First International Conference on Genetic Algorithms and their Applications. Lawrence Erlbaum Associates, Hillsdale (1985)

    Google Scholar 

  29. Teller, A., Veloso, M.: A controlled experiment: evolution for learning difficult image classification. Lecture Notes in Computer Science, Vol. 990. Springer-Verlag, Berlin Heidelberg New York (1995) 165–185

    Google Scholar 

  30. Vafaie, H., Imam, I.F.: Feature selection methods: genetic algorithms vs. greedy-like search. Proceedings of International Conference on Fuzzy and Intelligent Control Systems (1994)

    Google Scholar 

  31. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Doctoral dissertation, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

    Google Scholar 

  32. Vincke, P.: Multicriteria decision-aid. John Wiley & Sons, New York (1992)

    Google Scholar 

  33. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. In: Motoda, H., Liu, H. (eds.), Feature extraction, construction, and subset selection: A data mining perspective. Kluwer Academic, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krawiec, K. (2001). On the Use of Pairwise Comparison of Hypotheses in Evolutionary Learning Applied to Learning from Visual Examples. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44596-X_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42359-1

  • Online ISBN: 978-3-540-44596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics