Skip to main content

Temporal Coding in Neuronal Populations in the Presence of Axonal and Dendritic Conduction Time Delays

  • Chapter
  • First Online:
  • 691 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

Time delays are a ubiquitous feature of neuronal systems. Synaptic integration between spiking neurones is subject to time delays at the axonal and dendritic level. Recent evidence suggests that temporal coding on a millisecond time scale may be an important functional mechanism for synaptic integration. This study uses biophysical neurone models to examine the influence of dendritic and axonal conduction time delays on the sensitivity of a neurone to temporal coding in populations of synaptic inputs. The results suggest that these delays do not affect the sensitivity of a neurone to the presence of temporal correlation amongst input spike trains, and point to a mechanism other than electrotonic conduction of EPSPs to describe neural integration under conditions of large scale synaptic input. The results also suggest that it is the common modulation rather than the synchronous aspect of temporal coding in the input spike trains which neurones are sensitive to.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer, W., Gray, C.: Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience 18 (1995) 555–586

    Article  Google Scholar 

  2. MacKay, W.A.: Synchronized neuronal oscillations and their role in motor processes. Trends in Cognitive Sciences 1 (1997) 176–183

    Article  Google Scholar 

  3. Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278 (1997) 1950–1953

    Article  Google Scholar 

  4. Abeles, M.: Role of cortical neuron: Integrator or coincidence detector? Israel Journal of Medical sciences 18 (1982) 83–92

    Google Scholar 

  5. Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Current Opinion in Neurobiology 4 (1994) 569–579

    Article  Google Scholar 

  6. Shadlen, M.N., Newsome, W.T.: Is there a signal in the noise? Current Opinion in Neurobiology5 (1995) 248–250

    Article  Google Scholar 

  7. Shadlen, M.N., Newsome, W.T.: The variable discharge of cortical neurons: Implications of connectivity, computation and information coding. Journal of Neuroscience 18 (1998) 3870–3896

    Google Scholar 

  8. Softky, W.R.: Simple versus efficient codes. Current Opinion in Neurobiology 5 (1995) 239–247

    Article  Google Scholar 

  9. Softky, W.R., Koch, C.: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience 13 (1993) 334–350

    Google Scholar 

  10. König, P., Engel, A.K., Singer, W.: Integrator or coincidence detector? The role of the cortical neuron revisited. Trends in Neurosciences 19 (1996) 130–137

    Google Scholar 

  11. Halliday, D.M.: Generation and characterization of correlated spike trains. Computers in biology and medicine 28 (1998) 143–152

    Article  Google Scholar 

  12. Cullheim, S, Fleshman, J.W., Glenn, L.L., Burke, R.E.: Membrane area and dendritic structure in type identified triceps surae alpha motoneurons. Journal of comparative neurology 255 (1987) 82–96

    Article  Google Scholar 

  13. Fleshman, J.R., Segev, I., Burke, R.E.: Electrotonic architecture of type-identified amotoneurones in the cat spinal cord. Journal of Neurophysiology 60 (1988) 60–85

    Google Scholar 

  14. Rall, W., Burke, R.E., Holmes, W.R., Jack, J.J.B., Redman, S.J., Segev, I.: Matching dendritic neuron models to experimental data. Physiological Reviews 72 (1992) (Suppl.) S159–S186

    Google Scholar 

  15. Segev, I., Fleshman, J.R., Burke, R.E.: Compartmental models of complex neurons. In Methods in neuronal modeling: From synapses to networks, eds Koch C, Segev I. (1989) 63–96. MIT Press

    Google Scholar 

  16. Jack, J.J.B., Noble, D., Tsien, R.W.: Electrical Current Flow in Excitable Cells. 2nd Edition Clarendon Press, Oxford (1975)

    Google Scholar 

  17. Segev, I., Fleshman, J.R., Burke, R.E.: Computer simulations of group Ia EPSPs using morphologically realistic models of cat a-motoneurones. Journal of Neurophysiology 64 (1990) 648–660

    Google Scholar 

  18. Cope, T.C., Fetz, E.E., Matsumura, M.: Cross-correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. Journal of Physiology 390 (1987) 161–188

    Google Scholar 

  19. Rinzel, J., Rall, W.: Transient response to a dendritic neuron model for current injected at one branch. Biophysics 14 (1974) 759–789

    Google Scholar 

  20. Baldissera F., Gustafsson B.: Afterhyperpolarization conductance time course in lumbar motoneurones of the cat. Acta physiol. Scand 91 (1974) 512–527

    Article  Google Scholar 

  21. Moore, G.P., Segundo, J.P., Perkel, D.H., Levitan, H.: Statistical signs of synaptic interaction in neurons. Biophysical Journal 10 (1970) 876–900

    Google Scholar 

  22. Rosenberg, J.R., Amjad, A.M., Breeze, P., Brillinger, D.R., Halliday, D.M.: The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress in Biophysics and molecular Biology 53 (1989) 1–31

    Article  Google Scholar 

  23. Halliday, D.M., Rosenberg, J.R., Amjad, A.M., Breeze, P., Conway, B.A., Farmer, S.F.: A framework for the analysis of mixed time series/point process data-Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Progress in Biophysics and molecular Biology64 (1995) 237–278

    Article  Google Scholar 

  24. Rosenberg, J.R., Halliday, D.M., Breeze, P., Conway, B.A.: Identification of patterns of neuronal activity-partial spectra, partial coherence, and neuronal interactions. Journal of Neuroscience Methods 83 (1998) 57–72

    Article  Google Scholar 

  25. Calvin, W.H., Stevens, C.F.: Synaptic noise and other sources of randomness in motoneuron interspike intervals. Journal of Neurophysiology 31 (1968) 574–587

    Google Scholar 

  26. Stevens, C.F., Zador A.M.: Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience 1 (1998) 210–217

    Article  Google Scholar 

  27. Halliday, D.M.: Weak, stochastic temporal correlation of large scale synaptic input is a major determinant of neuronal bandwidth, Neural Computation 12 (2000) 737–747

    Article  Google Scholar 

  28. Braitenberg, V., Schüz, A.: Cortex: Statistics and geometry of neuronal connectivity. Springer-Verlag, Berlin (1997)

    Google Scholar 

  29. Henneman, E., Mendell, L.M.: Functional organization of motoneuron pool and its inputs. In Handbook of Physiology. Section 1 Vol 2 Part 1 The nervous system: Motor control (eds Brokkhart, J.M. & Mountcastle, V.B.) American Physiological Society, Bethesda, MD, (1981) 423–507

    Google Scholar 

  30. Bernander, ö., Douglas, R.J., Martin, K.A.C., Koch, C.: Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences 88 (1991) 11569–11573

    Article  Google Scholar 

  31. Rapp, M., Yarom, Y., Segev, I.: The impact of parallel fiber background activity on the cable properties of cerebellar purkinje cells.Neural Computation 4 (1992) 518–533

    Article  Google Scholar 

  32. Marr, D.: Vision. WH Freeman & Company, San Francisco (1982)

    Google Scholar 

  33. Abbott, L. Sejnowski, T.J.(eds): Neural codes and distributed representations. MIT Press (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halliday, D.M. (2001). Temporal Coding in Neuronal Populations in the Presence of Axonal and Dendritic Conduction Time Delays. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics