
Key Recovery and Forgery Attacks
on the MacDES MAC Algorithm

Don Coppersmith1, Lars R. Knudsen2, and Chris J. Mitchell3

1 IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
copper@watson.ibm.com

2 Department of Informatics, University of Bergen, N-5020, Bergen, Norway
lars.knudsen@ii.uib.no, http://www.ii.uib.no/∼larsr

3 Information Security Group, Royal Holloway, University of London, Egham, Surrey
TW20 0EX, UK

c.mitchell@rhbnc.ac.uk, http://isg.rhbnc.ac.uk/cjm

Abstract. We describe a series of new attacks on a CBC-MAC algo-
rithm due to Knudsen and Preneel including two key recovery attacks
and a forgery attack. Unlike previous attacks, these techniques will work
when the MAC calculation involves prefixing the data to be MACed
with a ‘length block’. These attack methods provide new (tighter) upper
bounds on the level of security offered by the MacDES technique.

Key words.Message Authentication Codes. Cryptanalysis. CBC-MAC.

1 Introduction

CBC-MACs, i.e. Message Authentication Codes (MACs) based on a block cipher
in Cipher Block Chaining (CBC) mode, have been in wide use for many years for
protecting the integrity and origin of messages. A variety of minor modifications
to the ‘basic’ CBC-MAC have been devised and adopted over the years, in re-
sponse to various cryptanalytic attacks (for a survey see [7]). The latest version
of the international standard for CBC-MACs, ISO/IEC 9797–1, [4], which was
recently published, contains a total of six different MAC algorithms.

This paper is concerned with one of these algorithms, namely MAC Algo-
rithm 4. This algorithm has only recently been added to the draft international
standard, and was intended to offer a higher degree of security than previ-
ous schemes at a comparable computational cost. It was originally proposed
by Knudsen and Preneel, [6] and, when used with the DES block cipher, was
given the name ‘MacDES’.

M. Bellare (Ed.): CRYPTO 2000, LNCS 1880, pp. 184–196, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Key Recovery and Forgery Attacks on the MacDES MAC Algorithm 185

Some key recovery attacks against this scheme have recently been described,
[3], but these do not work when ‘Padding method 3’ is used, which involves
prefixing the data to be MACed with a length block. The key recovery and
forgery attacks described below are designed specifically to work in this case.

2 Preliminaries

MAC algorithm 4 uses three block cipher keys, K, K ′ and K ′′, where either K ′′

is derived from K ′, or K ′ and K ′′ are both derived from a single key. However,
for the attacks here we make no assumptions about how K ′ and K ′′ are related.
We assume that the block cipher uses k-bit keys. We denote the block cipher
encryption operation by Y = eK(X), where Y is the n-bit ciphertext block
corresponding to the n-bit plaintext block X, and K is the k-bit key. We denote
the corresponding decryption operation by X = dK(Y ).

The MAC is computed on a data string by first padding the data string
so that it contains an integer multiple of n bits, and then breaking it into a
series of n-bit blocks. If the n-bit blocks derived from the padded data string are
D1, D2, . . . , Dq, then the MAC computation is as follows.

H1 = eK′′(eK(D1)),
Hi = eK(Di ⊕ Hi−1), (2 ≤ i ≤ q − 1), and
M = eK′(eK(Dq ⊕ Hq−1)),

for some H1, H2, . . . , Hq−1. Finally, M is truncated as necessary to form the
m-bit MAC.

ISO/IEC FDIS 9797–1 provides three different padding methods. Padding
Method 1 simply involves adding between 0 and n−1 zeros, as necessary, to the
end of the data string. Padding Method 2 involves the addition of a single 1 bit
at the end of the data string followed by between 0 and n − 1 zeros. Padding
Method 3 involves prefixing the data string with an n-bit block encoding the bit
length of the data string, with the end of the data string padded as in Padding
Method 1.

When using one of the six MAC algorithms from ISO/IEC FDIS 9797–1,
it is necessary to choose one of the three padding methods, and the degree of
truncation to be employed. We consider the case where Padding Method 3 is
used, and where there is no truncation (as already noted, the case where either
of the other two Padding Methods is used is dealt with in [3]). Hence, given that
the block cipher in use has an n-bit block length, the MAC has m = n bits. E.g.,
in the case of DES we have m = n = 64 and k = 56.

Finally note that we assume that all MACs are computed and verified using
one particular triple of keys (K,K ′,K ′′). The two key recovery attacks described
below are designed to discover these keys. The forgery attack also described in
this paper enables the observer of messages and corresponding MACs to obtain
a new (valid) message/MAC pair which had not been observed. Of course, in
general, a successful key recovery attack enables arbitrary numbers of forgeries
to be constructed in a trivial way.



186 Don Coppersmith, Lars R. Knudsen, and Chris J. Mitchell

3 A Key Recovery Attack

We start by describing a chosen plaintext attack for key recovery which is more
efficient than any previously known attacks on this MAC scheme. In a later
section we describe a still more efficient key recovery attack.

3.1 Outline of Attack

The attack operates in two stages. In stage 1 we find a pair of n-bit block-pairs:
(D1, D2) and (D′

1, D
′
2), which should be thought of as the first pair of blocks

of longer padded messages, with the property that the ‘partial MACs’ for these
two pairs are equal, i.e. so that if

H1 = eK′′(eK(D1)),
H2 = eK(D2 ⊕ H1),
H ′

1 = eK′′(eK(D′
1)), and

H ′
2 = eK(D′

2 ⊕ H ′
1),

then H2 = H ′
2. This is what is usually referred to as an ‘internal collision’,

although we call this particular case a ‘hidden internal collision’ since it will not
be evident from a complete MAC calculation.

Given that D1 and D′
1 are to be thought of as the first blocks of padded

messages (and given we are assuming Padding Method 3 is in use), D1 and D′
1

will be encodings of the length of the unpadded messages. The attack relies on
D′

1 being an encoding of a message for which the padded version has q+1 blocks
(q ≥ 4) and D1 being an encoding of a message for which the padded version
has q blocks.

In stage 2 we will use this pair of block-pairs to launch an attack which is
essentially the same as Attack 1 of [3].

3.2 Stage 1 — Finding the Hidden Internal Collision

We first choose D1 and D′
1. Typically one might choose D1 to be an encoding

of 3n and D′
1 to be an encoding of 4n, which will mean that D1 will be the first

block of a 4-block padded message and D′
1 will be the first block of a 5-block

padded message. For the purposes of the discussion here we suppose that D1
encodes a bit-length resulting in a q-block padded message (q ≥ 4).

The attacker chooses (arbitrary) values for n-bit blocks labeled D2 and
D5, D6, . . . , Dq. The attacker then generates 2n/2 messages which, when padded
using Padding Method 3, will have the form

D1, D2, X, Y,D5, D6, . . . , Dq

where X and Y are arbitrary n-bit blocks, and, by some means, obtains the
MACs for these messages. By routine probabilistic arguments (called the ‘birth-
day attack’, see [7]), there is a good chance that two of the messages will have
the same MAC.



Key Recovery and Forgery Attacks on the MacDES MAC Algorithm 187

Suppose the two pairs of blocks (X,Y ) involved are (X1, Y1) and (X2, Y2).
Then if

H1 = eK′′(eK(D1)),
H2 = eK(D2 ⊕ H1),
H3 = eK(X1 ⊕ H2),
H4 = eK(Y1 ⊕ H3),
H ′

3 = eK(X2 ⊕ H2), and
H ′

4 = eK(Y2 ⊕ H ′
3),

we know that H4 = H ′
4. We call the two pairs (X1, Y1) and (X2, Y2) a ‘diagnostic

pair’. These can be used to find the desired hidden internal collision.
The attacker now constructs 2n message pairs. Each pair will, when padded

using Padding Method 3, have the form:

D′
1,W,X1, Y1, D

′
5, D

′
6, . . . , D

′
q+1

and
D′

1,W,X2, Y2, D
′
5, D

′
6, . . . , D

′
q+1

where W varies over all possible n-bit blocks, (X1, Y1) and (X2, Y2) are as above,
and D′

5, D
′
6, . . . , D

′
q+1 are arbitrary (if desired, they could be different for each

message pair). The attacker now, by some means, discovers whether or not the
two messages within each pair have the same MAC; this will typically require
2n chosen MACs, together with 2n MAC verifications.

First consider the case where the ‘partial MAC’ from the block-pair (D′
1,W )

is the same as the partial MAC from the block pair (D1, D2). That is, if H2 is
as above, and if

H ′
1 = eK′′(eK(D′

1)), and
H ′

2 = eK(W ⊕ H ′
1),

then suppose that H2 = H ′
2. Note that there will always exist a value W giving

this property, since as W ⊕H ′
1 ranges over all possible n-bit blocks, then so will

H ′
2. But, given the discussion above regarding the diagnostic pairs (X1, Y1) and

(X2, Y2), this immediately means that the pair of messages involving this value
of W will yield the same MACs as each other.

Second consider the pairs of messages for all the other 2n − 1 values of W .
In these cases we know that H2 �= H ′

2. There will be at least one ‘false positive’,
namely when H ′

2 = H2 ⊕ X1 ⊕ X2. For the remaining cases, assuming that the
block cipher behaves in a random way, the probability of the MACs from the
message pair being identical is 2−n.

Hence, as the search proceeds through the entire set of message pairs, we
would expect approximately three ‘positives’ — one corresponding to the case
we desire, i.e. where H2 = H ′

2, one where H ′
2 = H2 ⊕X1 ⊕X2, and one random

‘false positive’. If a second diagnostic pair is available then this can be used to



188 Don Coppersmith, Lars R. Knudsen, and Chris J. Mitchell

immediately rule out any false positives. If not then we can proceed to stage 2
with all the ‘positives’ from stage 1, and all but the genuine positive will yield
inconsistent results.

Note that the cost of this part of the attack is 2n/2 ‘chosen MACs’ (to find
the diagnostic pair), and 2n chosen MAC calculations and 2n MAC verifications
to find the hidden internal collision.

3.3 Stage 2 — Recovering the Key

From the previous stage we have a pair of n-bit block-pairs: (D1, D2) and
(D′

1, D
′
2), with the property that the ‘partial MACs’ for these two pairs are

equal, i.e. so that if

H1 = eK′′(eK(D1)),
H2 = eK(D2 ⊕ H1),
H ′

1 = eK′′(eK(D′
1)), and

H ′
2 = eK(D′

2 ⊕ H ′
1),

then H2 = H ′
2. In addition D′

1 encodes the length of a message, which, when
padded, contains (q+1) blocks, and D1 encodes the length of a message, which,
when padded, contains q blocks.

The attacker now, by some means, obtains the MAC for a set of 2n/2 padded
messages of the form

D′
1, D

′
2, E3, E4, . . . , Eq+1

where E3, E4, . . . , Eq+1 are arbitrary. By the usual ‘birthday attack’ arguments,
there is a good chance that two of the messages will have the same MAC. Suppose
the two padded strings D′

1, D
′
2, E3, E4, . . . , Eq+1 and D′

1, D
′
2, E

′
3, E

′
4, . . . , E

′
q+1

yield the same MAC, and suppose that the common MAC is M . Note that the
cost of this part of the attack is 2n/2 ‘chosen MACs’. (Note also that we need to
ensure that Eq+1 �= E′

q+1).
Next submit two chosen padded strings for MACing, namely

D1, D2, E3, E4, . . . , Eq

and
D1, D2, E

′
3, E

′
4, . . . , E

′
q

namely the strings one obtains by deleting the last block from each of the above
two messages and replacing the first two blocks by D1 and D2 (these remain
‘valid’ padded messages because D1 encodes the length of a message which,
when padded, contain q blocks). If we suppose that the MACs obtained are M ′

and M ′′ respectively, then we know immediately that

dK′(M ′) ⊕ Eq+1 = dK(dK′(M)) = dK′(M ′′) ⊕ E′
q+1

since (D1, D2) and (D′
1, D

′
2) yield the same ‘partial MAC’.



Key Recovery and Forgery Attacks on the MacDES MAC Algorithm 189

Now run through all possibilities L for the unknown key K ′, and set x(L) =
dL(M ′) and y(L) = dL(M ′′). For the correct guess L = K ′ we will have x(L) =
dK′(M ′) and y(L) = dK′(M ′′), and hence Eq+1 ⊕x(L) = E′

q+1 ⊕ y(L). This will
hold for L = K ′ and probably not for any other value of L, given that k < n (if
k ≥ n then either a second ‘collision’ or a larger brute force search will probably
be required).

Having recovered K ′, we do an exhaustive search for K using the relation
dK′(M ′) ⊕ Eq+1 = dK(dK′(M)) (which requires 2k block cipher encryptions).
Finally we can recover K ′′ by exhaustive search on any known text/MAC pair,
e.g. from the set of 2n/2, which again will require 2k block cipher encryptions.

3.4 Complexity of the Attack

We start by introducing a simple way of quantifying the effectiveness of an attack.
Following the approach used in [4], we use a four-tuple [a, b, c, d] to specify the
size of the resources needed by the attacker, where

– a denotes the number of off-line block cipher encipherments (or decipher-
ments),

– b denotes the number of known data string/MAC pairs,
– c denotes the number of chosen data string/MAC pairs, and
– d denotes the number of on-line MAC verifications.

The reason for distinguishing between the numbers c and d is that, in some
environments, it may be easier for the attacker to obtain MAC verifications (i.e.
to submit a data string/MAC pair and receive an answer indicating whether
or not the MAC is valid) than to obtain the genuine MAC value for a chosen
message.

Using this notation, the complexity of Stage 1 of the attack is [0, 0, 2n, 2n]
and the complexity of stage 2 is [2k+2, 0, 2n/2, 0] (note that we ignore lower order
terms). Hence the overall attack complexity is [2k+2, 0, 2n, 2n], i.e. in the case of
DES the attack complexity is [258, 0, 264, 264].

This is sufficiently high to rule out most practically conceivable attacks. How-
ever it is substantially less than the complexity of the best previously known
attack as given in [6], which was [289, 0, 265, 255].

4 A More Efficient Key Recovery Attack

We now present a second key recovery attack which is considerably more efficient
than the attack just described. The attack is in two stages. The second stage is
identical to the second stage of the first attack; the improvement is in the first
stage. We find a pair of n-bit blocks (D1, D′

1) with the following properties.

– D′
1 encodes the length of a message which, when padded, contains q + 1

blocks.
– D1 encodes the length of a message which, when padded, contains q blocks.
– eK′′(eK(D1)) ⊕ eK′′(eK(D′

1)) = V , for some known n-bit block V .



190 Don Coppersmith, Lars R. Knudsen, and Chris J. Mitchell

Then choosing D′
2 = D2 ⊕ V yields a pair of n-bit block-pairs (D1, D2) and

(D′
1, D

′
2) for which the partial MACs are equal.

For fixed values D1, D4, D5, . . . , Dq, a total of 2n/2 different values of X, and
a set of t different values of Y , by some means obtain the MACs of the padded
messages (D1, X, Y,D4, D5, . . . , Dq). Choose the 2n/2 values of X to cover all the
n-bit blocks with most significant n/2 bits set to zero (for simplicity we assume
n is even). If t is sufficiently large, then for most values of X there will exist at
least one tuple (Y,X ′, Y ′) such that

MAC(D1, X, Y,D4, D5, . . . , Dq) = MAC(D1, X
′, Y ′, D4, D5, . . . , Dq).

In such a case we know that

eK(X ⊕ eK′′(eK(D1))) ⊕ eK(X ′ ⊕ eK′′(eK(D1))) = Y ⊕ Y ′. (1)

If the Y values are fixed for every value of X, each such match results in an
additional match, since a match for messages with blocks X,Y and X ′, Y ′ also
gives a match for messages with blocks X,Y ′ and X ′, Y . To avoid this (it doesn’t
help us) for each value of X we choose the Y values randomly depending on X.

Now consider the graph G whose vertices are the messages X, and with an
edge between X and X ′ when a relationship of the type (1) is known. This graph
has 2n/2 vertices and a number of edges dependent on t. With t = 2n/4t′ we have
a total of T = 23n/4t′ messages and about T 2/2 = 23n/2t′2/2 pairs of messages.
Assuming that the underlying block cipher behaves randomly this results in
about 2n/2t′2/2 pairs of messages with colliding MAC values. Thus the graph G

will have 2n/2 vertices and approximately 2n/2t′2/2 edges. If we view the graph
as a random graph [9], then a “giant component” will arise when the number of
edges is sufficiently larger than half the number of vertices. With t′ = 2 it can
be shown that with high probability there is a component containing 98% of all
vertices.1

We know the value

eK(X ⊕ eK′′(eK(D1))) ⊕ eK(X ′ ⊕ eK′′(eK(D1)))

whenever X and X ′ are in the same connected component, by adding the ap-
propriate equations together. So for most values of X we know the value

f(X) = eK(X ⊕ eK′′(eK(D1))) ⊕ eK((X ⊕ 1) ⊕ eK′′(eK(D1)))

where 1 denotes the n-bit block with least significant bit 1 and all other bits set
to zero.
1 With s vertices and cs/2 randomly placed edges, with c > 1, there is a single “giant
component” whose size is almost exactly (1− t(c))s, where [1]

t(c) = (1/c)
∞∑

k=1

(kk−1(ce−c)k)/k!.

For c = 4, 1− t(c) = 0.98.



Key Recovery and Forgery Attacks on the MacDES MAC Algorithm 191

Now repeat the above process but for a set of padded messages with q + 1
rather than q blocks. In this case label the fixed values D′

1, D
′
4, D

′
5, . . . , D

′
q+1,

and obtain the MACs for messages

D′
1, Z, Y,D

′
4, D

′
5, . . . , D

′
q+1

for 2n/2+1 values of Z and t values of Y , where the values of Z cover all n-bit
blocks whose least significant n/2 bits are forced to 0 (except the single least
significant bit which covers both values). As previously, if t is sufficiently large
then for many (most) values of Z we will have an equation of the form

g(Z) = eK(Z ⊕ eK′′(eK(D′
1))) ⊕ eK((Z ⊕ 1) ⊕ eK′′(eK(D′

1))).

Now find values X, Z such that f(X) = g(Z). Then we know with a high
probability that either

X ⊕ eK′′(eK(D1)) = Z ⊕ eK′′(eK(D′
1)),

or
X ⊕ eK′′(eK(D1)) = Z ⊕ 1 ⊕ eK′′(eK(D′

1)).

This (almost) gives us the desired relationship betweenD1 andD′
1. In fact the

next stage of the attack can be carried out for both possible relationships. This
will not significantly affect the overall attack complexity, since the complexity
of the second stage is much less than that of the first stage.

Complexity of attack

It should be clear that finding the relationship between the desired pair of blocks
(D1, D′

1) requires 3 × 2n/2 × t ‘chosen MACs’, where t = 2n/4t′. Hence the
complexity of the first stage of the attack is [0, 0, 3t′ × 23n/4, 0] for small t′ ≥
1. The complexity of the second stage of the attack is [2k+2, 2n/2, 0, 0]. Thus,
assuming that the second stage of the attack is performed twice, we get an
overall attack complexity of [2k+3, 2n/2+1, 3t′ × 23n/4, 0]. In the case of DES this
gives an attack complexity of [259, 233, s × 248, 0] for a small s ≥ 3.

5 A MAC Forgery Attack

We next consider a forgery attack against the same MAC scheme, and which
uses a similar method of attack. What is particularly significant about this at-
tack is that, analogously to the attack in [6], it is based almost exclusively on
‘MAC verifications’ rather than ‘chosen MACs’. As mentioned above, in certain
circumstances it may be substantially easier for the attacker to obtain MAC
verifications (i.e. to submit a data string/MAC pair and receive an answer indi-
cating whether or not the MAC is valid) than to obtain the genuine MAC value
for a chosen message. The attack also requires almost no memory.



192 Don Coppersmith, Lars R. Knudsen, and Chris J. Mitchell

5.1 Details of Attack

By some means suppose the attacker obtains the MAC, M , for the padded
message

D1, D2, D3, ..., Dq

(where D1 encodes the length of a (q − 1)n-bit message). Suppose next that the
attacker submits the 2n messages

D′
1,W,D2, D3, ..., Dq

for MAC verification with candidate MAC M , where W takes on all possible
values, and where D′

1 encodes the length of a qn-bit message. Precisely one of
the 2n messages will have valid MAC M .

Armed with the correct W it is now possible to forge the MAC of any padded
message of q blocks by requesting the MAC of a padded message of q+1 blocks
or vice versa. This is because we know that

MAC(D′
1,W,E2, ..., Eq) = MAC(D1, E2, ..., Eq)

for any blocks E2, E3, . . . , Eq.
There are variants of this attack which allow the block W to be inserted

between any pair of blocks. Also the attack is only dependent on the block
length, and will also work against Triple DES CBC-MAC and other iterated
MAC schemes of similar structure.

5.2 Complexity

It is straightforward to see that the complexity of the above attack is simply
[0, 0, 1, 2n]. In addition, once the 2n verifications have been performed, each
additional MAC forgery only requires one ‘chosen MAC’.

This compares with the best previously known forgery attack for this MAC
scheme, namely the Preneel-van Oorschot attack, [8], which has complexity
[0, 0, 2n/2, 0].

6 Preventing the Attacks

Before considering countermeasures against these attacks it is first important to
note that if k (the bit length of the key) and n (the cipher block length) are chosen
to be sufficiently large, then all these attacks become infeasible. In particular,
with the lengths envisaged for the emerging Advanced Encryption Standard
(AES) these attacks are of academic interest only. However, for the time being
many systems are reliant on ciphers such as DES, for which k and n are both
uncomfortably small. Thus, finding countermeasures which do not involve too
many additional encryption operations remains of practical importance.



Key Recovery and Forgery Attacks on the MacDES MAC Algorithm 193

6.1 Using Serial Numbers

Probably the simplest way of preventing all the attacks described above is to
use Serial Numbers, as described in [4]. The basic idea is to prepend a unique
serial number to a data string prior to computing a MAC. That is, every time a
MAC is generated by a device, that device ensures that the data to be MACed is
prepended with a number which has never previously been used for this purpose
(at least within the lifetime of the key).

Although it is not stated explicitly in [4], it would seem that it is intended
that the serial number should be prepended to the message prior to padding,
and this is the assumption we make here. Note also that it will be necessary to
send the serial number with the message, so that the intended recipient can use
it to help recompute the MAC (as is necessary to verify it).

It is fairly simple to see why this approach foils the attacks described in this
paper. All attacks require the forger to obtain the MAC for a chosen data string.
However, the attacker is now no longer in a position to choose the data string,
since the MAC generator will insert a serial number (previously unused) as part
of the MAC computation process. Note that an attacker can still verify MACs
on particular messages using serial numbers of his own choice.

Note that the effectiveness of Serial numbers against forgery attacks on the
MAC scheme considered here is discussed in more detail in [2].

6.2 A Further MacDES Variant

Another possible way to defeat the attacks described previously is to modify the
MAC scheme to introduce an extra key. The key recovery attacks exploit the
fact that one key of the CBC-chaining equals the first of the two keys in the final
double encryption. We can therefore preclude such attacks by using the key K
only in the middle step of the MAC calculation and not in the first and final
steps. I.e. we can introduce a fourth key, K ′′′, which could be derived from K
(with K ′′ derived from K ′), and put:

H1 = eK′′(eK′′′(D1)),
Hi = eK(Di ⊕ Hi−1), (2 ≤ i ≤ q − 1), and
M = eK′(eK′′′(Dq ⊕ Hq−1)).

However, this modified scheme can still be attacked with about 265 chosen
plaintexts and 264 work. The number 265 refers to the number of different mes-
sages for which MACs are required, and not the number of different plaintext
blocks (which obviously cannot exceed 264). We now sketch the attack.

Select 260 values of Xi that are 0 in the most significant 4 bits (say), and 25

arbitrary values of Yj . Fix words D1 and D4 corresponding to a padded message
of eventual length 4×64 bits. (Thus D1 encodes a message length of 3×64 bits.)
By some means obtain MACs for the 265 messages

(D1, Xi, Yj , D4).



194 Don Coppersmith, Lars R. Knudsen, and Chris J. Mitchell

We are guaranteed to have at least 264 coincidences of the form

MAC(D1, Xi, Yj , D4) = MAC(D1, Xk, Ym, D4).

Recalling that H1 is constant throughout this exercise (but unknown), each
coincidence gives the knowledge that

eK(Xi ⊕ H1) ⊕ Yj = eK(Xk ⊕ H1) ⊕ Ym = dK(H3),

whence
eK(Xi ⊕ H1) ⊕ eK(Xk ⊕ H1) = Yj ⊕ Ym.

Construct a graph of 260 vertices, each vertex representing an allowable value of
Xi. An edge joins two vertices when we have knowledge of the type given in the
last equation. That is, vertices Xi and Xk are joined when we know the value of

eK(Xi ⊕ H1) ⊕ eK(Xk ⊕ H1).

Because we have 264 edges and 260 vertices, routine arguments about random
graphs (see, for example [9]) predicts that we will have one ‘giant connected
component’ in this graph, which contains most of the vertices. If two vertices
Xi, Xp lie in the same connected component, we can (by chasing edges and
adding the corresponding equations) find the corresponding sum

eK(Xi ⊕ H1) ⊕ eK(Xp ⊕ H1).

In particular for most ‘acceptable’ values of Xi we know the sum

f(Xi) = eK(Xi ⊕ H1) ⊕ eK((Xi ⊕ 1) ⊕ H1).

However, we still do not know K or H1.
Now for each guess k for K, and each of 24 choices of z, compute ek(z) ⊕

ek(z⊕ 1) and see whether this equals f(Xi) for some value of Xi. If so, compute
also ek(z ⊕ 2) ⊕ ek(z ⊕ 3) and check whether that matches f(Xi ⊕ 2) for the
same Xi. If so, then K and H1 can be determined. This last step takes time
256 × 24 × 4 = 262.

Having recovered K and H1, it is then necessary to break double-DES to
recover K ′ and K ′′′ (complexity approximately [256+t,0,0,0] with 256−2t space
[10]). This also involves doing the above attack twice, since two pairs of input
and output of double-DES are need to determine the secret keys. Finally, break
single DES to find K ′′.

6.3 Truncation

Perhaps the most obvious countermeasure to the attacks described here is to
choose the MAC length m such that m < n, i.e. to truncate the Output Block
of the MAC calculation. However, Knudsen [5] has shown that, even when trun-
cation is employed, in some cases the same attacks can still be made at the cost
of a modest amount of additional effort. Moreover, if m is made smaller, then
certain trivial forgery attacks become easier to mount (see, for example, [2]).

We now consider how truncation affects the key recovery and forgery attacks
described above.



Key Recovery and Forgery Attacks on the MacDES MAC Algorithm 195

Key recovery attacks. The key recovery attacks no longer work as described.
However, as we now sketch, a 264 chosen text attack can still work, even with
truncated (32-bit) MACs and even with the four-key variant (as described in
Section 6.2).

In fact for most of the attack it is possible to make a trade-off between
chosen texts and computation. Also, it is possible to recover all keys, or to build
a ‘dictionary’. The attack complexity is approximately 264+3−p chosen texts and
256+2p computation, for 0 < p < 32, and with full key-recovery we need an
additional amount of 256+t computation using 256−2t space and about 257 MAC
verifications.

Pick a block of x = 264−2p words X, with the low order 2p bits set to 0. For
each X, pick y = 2p words Y . Optimally these depend on X in a random fashion
(to avoid some duplications). Pick four messages Z, fixed throughout. Fix the
initial block D1. Obtain the MACs of the 264−2p × 2p × 4 blocks (D1, X, Y, Z).
Let h(X,Y ) be the concatenation of the four MACs of

(D1, X, Y, Z1), (D1, X, Y, Z2), (D1, X, Y, Z3), (D1, X, Y, Z4).

The coincidence h(X,Y ) = h(X ′, Y ′) is (essentially) equivalent to H3(D1, X, Y )
= H3(D1, X

′, Y ′) (the equality after three rounds).
Now use the same random graph idea as previously, with about x edges

among the x vertices. Throw in a slop factor so that there are 2x edges. Then
nearly everything is in the giant component. Evaluate, for each X, the function

g(X) = H2(D1, X) ⊕ H2(D1, X ⊕ 1) = eK(H1 ⊕ X) ⊕ eK(H1 ⊕ X ⊕ 1).

Now for each of w = 22p trial values W , and each of 256 trial values k for K,
evaluate f(k,W ) = ek(W )⊕ ek(W ⊕ 1). The W s are 0 in the high order 64− 2p
bits. For each false positive g(X) = f(k,W ), do a bit more sleuthing. Eventually
you find the right setting: K = k, H1 = X ⊕ W .

Then (if p = 0 and we had initially 267 chosen texts) we have enough in-
formation to get the truncated 32 bits of eK′(eK′′′(U)) for each 64-bit input U ,
although we don’t have enough information to easily get K ′ and K ′′′ themselves.
If p is larger than 0 then we will only build a partial dictionary.

Alternatively, once K and H1 are recovered, one can break double-DES to
recover K ′′ and K ′′′. At this point, K,K ′′, and K ′′′ are known and one finds K ′

using about 257 MAC verifications.

Forgery attacks. Truncating the MAC values does not substantially increase
the complexity of the forgery attack described in Section 5. For example, if the
MAC length m = 32, two known-text MACs (of equal lengths) will be required.
In the verification step, a check is performed on the second message (only) if the
first verification succeeds.

7 Conclusions

We have seen that the most effective key recovery attack against the MacDES
scheme (with Padding Method 3) has complexity [259, 233, s× 248, 0] for a small



196 Don Coppersmith, Lars R. Knudsen, and Chris J. Mitchell

s ≥ 3. This compares with the previously best known attack which has com-
plexity [289, 0, 265, 255]. This means that this scheme is still better than the
ANSI retail MAC, i.e. MAC algorithm 3 from [4], but not as much as previously
thought. In addition a new forgery attack against this scheme (and others) has
been described, requiring just one ‘chosen MAC’. The use of MAC truncation
makes the attacks considerably more difficult. As an example, when used with
DES and a MAC value of 32 bits we outlined a key-recovery attack of complexity
[264, 0, 263, 257] (with possible trade-offs between chosen texts and computation).
If Serial Numbers are employed, then the attacks appear to become even more
infeasible.

References

1. B. Bollobás. Random graphs. Academic Press, 1985.
2. K. Brincat and C.J. Mitchell. A taxonomy of CBC-MAC forgery attacks. Submitted,
January 2000.

3. D. Coppersmith and C.J. Mitchell. Attacks on MacDES MAC algorithm. Electronics
Letters, 35:1626–1627, 1999.

4. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9797–1, Information technology — Security techniques — Message Authentication
Codes (MACs) — Part 1: Mechanisms using a block cipher, December 1999.

5. L.R. Knudsen. Chosen-text attack on CBC-MAC. Electronics Letters, 33:48–49,
1997.

6. L.R. Knudsen and B. Preneel. MacDES: MAC algorithm based on DES. Electronics
Letters, 34:871–873, 1998.

7. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, 1997.

8. B. Preneel and P.C. van Oorschot. On the security of iterated Message Authenti-
cation Codes. IEEE Transactions on Information Theory, 45:188–199, 1999.

9. J. Spencer. Ten lectures on the probabilistic method. Society for Industrial and
Applied Mathematics, Philadelphia, PA, second edition, 1994.

10. P.C. van Oorschot and M.J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1–28, 1999.


	Introduction
	Preliminaries
	A Key Recovery Attack
	Outline of Attack
	Stage 1 --- Finding the Hidden Internal Collision
	Stage 2 --- Recovering the Key 
	Complexity of the Attack

	A More Efficient Key Recovery Attack
	A MAC Forgery Attack 
	Details of Attack
	Complexity

	Preventing the Attacks
	Using Serial Numbers
	A Further MacDES Variant 
	Truncation

	Conclusions

