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Abstract. The task of a fast correlation attack is to efficiently restore
the initial content of a linear feedback shift register in a stream cipher
using a detected correlation with the output sequence. We show that
by modeling this problem as the problem of learning a binary linear
multivariate polynomial, algorithms for polynomial reconstruction with
queries can be modified through some general techniques used in fast
correlation attacks. The result is a new and efficient way of performing
fast correlation attacks.
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1 Introduction

Consider a binary additive stream cipher, i.e., a synchronous stream cipher in
which the keystream, the plaintext, and the ciphertext are sequences of binary
digits. The output sequence of the keystream generator, z1, z2, . . . is added bit-
wise to the plaintext sequence m1,m2, . . ., producing the ciphertext c1, c2, . . ..
The keystream generator is initialized through a secret key K, and hence, each
key K will correspond to an output sequence. Since the key is shared between
the transmitter and the receiver, the receiver can decrypt by adding the output
of the keystream generator to the ciphertext and obtain the message sequence,
see Figure 1.

The design goal is to efficiently produce random-looking sequences that are as
“indistinguishable” as possible from truly random sequences. For a synchronous
stream cipher, a known-plaintext attack is equivalent to the problem of finding
the key K that produced a given keystream z1, z2, . . . , zN . We assume that a
given output sequence from the keystream generator, z1, z2, . . . , zN , is known to
the cryptanalyst and that his task is to restore the secret key K.

It is common to use linear feedback shift registers, LFSRs, as building blocks
in different ways. Furthermore, the secret key K is usually chosen to be the initial
state of the LFSRs. The feedback polynomials of the LFSRs are considered to
be known.

Several cryptanalytic attacks against stream ciphers can be found in the lit-
erature [14]. One very important class of attacks on LFSR-based stream ciphers
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Fig. 1. A binary additive stream ciphers

is correlation attacks. The idea is that if one can detect a correlation between
the known output sequence and the output of one individual LFSR, it is possible
to mount a “divide-and-conquer” attack on the individual LFSR [18,19,12,13],
i.e., we try to restore the individual LFSR independently from the other LFSRs.
By a correlation we mean that, if u1, u2, . . . denotes the output of the particular
LFSR, we have

P (ui = zi) �= 1/2, i ≥ 1.

Other types of correlations may also apply.
A common methodology for producing random-like sequences from LFSRs

is to combine the output of several LFSRs by a nonlinear Boolean function f
with desired properties [14]. The purpose of f is to destroy the linearity of the
LFSR sequences and hence provide the resulting sequence with a large linear
complexity [14]. Note that for such a stream cipher, there is always a correlation
between the output zn and either one or a set of output symbols from different
LFSRs.

Finding a low complexity algorithm that successfully uses the existing corre-
lations in order to determine a part of the secret key can be a very efficient way
of attacking stream ciphers for which a correlation is identified. After the ini-
tializing ideas of Siegenthaler [18,19], Meier and Staffelbach [12,13] found a very
interesting way to explore the correlation in what was called a fast correlation
attack. A necessary condition is that the feedback polynomial of the LFSR has
a very low weight. This work was followed by several papers, providing improve-
ments to the initial results of Meier and Staffelbach, see [16,4,5,17]. However,
the algorithms are efficient (good performance and low complexity) only if the
feedback polynomial is of low weight. More recently, steps in other directions
were taken, and in [9] it was suggested to use convolutional codes in order to
improve performance [9]. This was followed by a generalization in [10], applying
the use of iterative decoding and turbo codes. One main advantage compared
to previous results was the fact that these algorithms now applied to a feedback
polynomial of arbitrary form. Very recently, several other suggested methods
have appeared, see [3,15,2].

The purpose of this paper is to show that the initial state recovery problem
in a fast correlation attack can be modeled as the problem of learning a binary
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linear multivariate polynomial. We show that algorithms for polynomial recon-
struction with queries can be modified through some general techniques used
in fast correlation attacks. The result is a new and efficient way of performing
fast correlation attacks. Actually, two algorithms are presented, one based on a
direct search and one based on a sequential procedure. Both provide very good
simulation results as well as a theoretical platform.

The paper is organized as follows. In Section 2 we give the preliminaries
on the standard model that is used for cryptanalysis and reformulate this into
a polynomial reconstruction problem. In Section 3 we review an algorithm by
Goldreich, Rubinfeld and Sudan [7] that solves the polynomial reconstruction
problem with queries in polynomial time. In Section 4 we derive a new algorithm
for fast correlation attacks, inspired by the previous section. In Section 5 we
present a sequential version of the new algorithm, i.e, this algorithm builds a
tree of possible candidates and searches through it. In Section 6 we present
simulation results and a comparison with other algorithms, and in Section 7 a
sketch of a theoretical platform for the two algorithms is presented. We show
among other things that the central test in the algorithms is statistically optimal.

2 Preliminaries and Model

Most authors [19,12,13,16,4,9,10] use the approach of viewing our cryptanalysis
problem as a decoding problem over the binary symmetric channel. However,
in this section we show that it can equivalently be viewed as the problem of
learning a linear multivariate polynomial.

Let the target LFSR have length l and feedback polynomial g(x). Clearly, the
number of possible LFSR sequences is 2l. Furthermore, assume that the known
keystream sequence z = z1, z2, . . . , zN is of length N .

The assumed correlation between ui and zi is described by the correlation
probability 1/2 + ε, defined by 1/2 + ε = P (ui = zi), where 0 < ε < 1/2. The
problem of cryptanalysis is the following. Given the received word (z1, z2, . . . , zN )
as the output of the stream cipher, find the initial state (or at least a part of it)
of the target LFSR.

It is known that the length N should be at least around N0 = l/(1 − h(p))
for a unique solution to the above problem [4], where h(p) is the binary entropy
function. Throughout this paper we assume that N � N0. For this case, fast
correlation attacks are applicable. Although this notation was initially used as
the notion for the algorithms developed by Meier and Staffelbach [12,13], we
adopt this terminology for any algorithm that finds the correct initial state
of the target LFSR significantly faster than exhaustively searching through all
initial states.

Let us now consider the unknown initial state of the target LFSR, denoted

u = (u1, u2, . . . , ul). (1)
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Clearly, since the LFSR sequence is generated through the recursion

ui =
l∑

j=1

gjui−j , i > l, (2)

where g(x) = 1 + g1x + . . . glx
l, we can express each ui as some known linear

combination of the initial state u, i.e.,

ui =
l∑

j=1

wijuj , ∀i ≥ 1, (3)

where wij , i ≥ 1, 1 ≤ j ≤ l are known constants that can be calculated provided
g(x) is known (This is essentially the error correcting code one gets by truncating
the set of LFSR sequences).

Define the initial state polynomial, denoted U(x), to be

U(x) = U(x1, x2, . . . , xl) = u1x1 + u2x2 + · · · + ulxl. (4)

With this notation, we can express each ui as being the initial state polynomial
evaluated in some known point xi = (wi1, wi2, . . . , wij), i.e.,

ui = U(xi), i ≥ 1. (5)

The correlation between ui and zi can be described by introducing a noise vector

e = (e1, e2, . . . , eN ), (6)

where ei ∈ F2 are independent random variables for 1 ≤ i ≤ N and P (ei = 0) =
1/2 + ε. Then we model the correlation by writing z = u+ e, giving

z = (U(x1) + e1, U(x2) + e2, . . . , U(xN ) + eN ), (7)

where xi are known l-tuples for all 1 ≤ i ≤ N . In conclusion, we have reformu-
lated our problem into the following.
The output vector z consists of a number of noisy observations

of an unknown polynomial U(x) evaluated in different known points
{x1,x2, . . .xN}. The task of the attacker is to determine the unknown
polynomial U(x).

3 Learning Polynomials with Queries

In computational learning theory (see e.g., [7] and its references), one might
want to consider the following general reconstruction problem:
Given: An oracle (black box) for an arbitrary unknown function f : F l → F ,

a class of functions F and a parameter δ.
Problem: Provide a list of all functions g ∈ F that agree with f on at least

a δ fraction of the inputs.
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The general reconstruction problem can be interpreted in several ways. We
consider only the paradigm of learning with persistent noise. Here we assume
that the output of the oracle is derived by evaluating some specific function in
F and then adding noise to the result. A lot of work on different settings for this
problem can be found.

We will now pay special attention to the work of Goldreich, Rubinfeld and
Sudan in [7]. They consider a case of the reconstruction problem when the hy-
pothesis class F is the set of linear polynomials in l variables (actually, any
polynomial degree d was considered in [7], but we are only interested in the
linear case). In the binary case (F = F2), they demonstrate an algorithm that
given ε > 0 and provided oracle access to an arbitrary function f : F l → F ,
runs in time poly(l/ε) and outputs a list of all linear functions in l variables that
agree with f on at least δ = 1/2 + ε of the output.

Let us immediately describe the procedure. First, the problem description
can be as follows. On a selected input x, the oracle evaluates an unknown linear
function p(x), adds a noise value e, and outputs the result p(x)+ e. On the next
oracle access, the function is evaluated in a new point and a new noise value is
added.

The algorithm for solving the above problem given in [7] is a generalization
of an algorithm given in [6] (in the binary case that we consider they coincide).
Consider all polynomials of the form

p(x) =
l∑

i=1

cixi.

The algorithm uses the concept of i-prefixes, which is defined to be all polyno-
mials that can be expressed in the form p(x1, x2, . . . , xi, 0, 0, . . . , 0). This means
that an i-prefix is a polynomial in l variables in which only the first i variables
appear.

The algorithm proceeds in l rounds, so that in the ith round we have a
list of candidates for the i-prefixes of p(x). The list of i-prefixes is generated
by extending the list of (i − 1)-prefixes from the previous round in all possible
ways, i.e., by adding or not adding the xi variable to each of the members of the
(i − 1)-prefixes. Hence the list is doubled in cardinality. After the extension, a
screening process takes place. The screening process guarantees that the i-prefix
of the correct solution passes with high probability and that not too many other
prefixes pass.

The screening process is done by testing each candidate prefix, denoted
(c1, c2, . . . , ci), as follows. Pick n = poly(l/ε) sequences uniformly from F

l−i
2 .

For each such sequence, denoted (si+1, . . . , sl), and for every ξ ∈ F2, estimate
the quantity

P (ξ) = Prr1,...,ri∈F2


f(r, s) =

i∑
j=1

cjrj + ξ


 .

Here (r, s) denotes the vector (r1, . . . , ri, si+1, . . . , sl). All these probabilities
can be approximated simultaneously by using a sample of poly(l/ε) sequences
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(r1, . . . , ri). A candidate is considered to pass the test if for at least one sequence
(si+1, . . . , sl) there exists ξ such that the estimate P (ξ) is greater than 1/2+ε/3.
It is shown in [7] that the correct candidate passes the test with overwhelming
probability, and that not too many other candidates do. For more details on this
algorithm, we refer to [7].

4 Fast Correlation Attacks Based on Algorithms
for Learning Polynomials

We observe the similarities between our correlation attack problem described as
a polynomial reconstruction problem as in Section 2, and the problem of learning
polynomials with queries as described in the previous section.

Note that the polynomial time algorithm of the previous section can not be
applied directly to the correlation attack problem, since queries are essential.
In the query case, sample points given to the oracle can be chosen, whereas for
correlation attacks the sample points are simply randomly selected. The latter
problem is actually a well-known problem also in learning theory, called “learning
parity with noise”, and it is commonly believed to be hard, see [11,1].

Nevertheless, we are interested in finding as efficient correlation attacks as
possible, and we will now derive an algorithm that is inspired by the results
presented in the previous section.

Let us first briefly review our problem formulation. The recovery of the initial
state of the target LFSR is viewed as the problem of recovering an unknown
binary linear polynomial U(x) in l variables. To our disposal, we have a number
N of noisy observations of this polynomial (the output sequence), denoted

z = (z1, z2, . . . , zN ).

The noise is such that

P (zi = U(xi)) = 1/2 + ε, 1 ≤ i ≤ N,

where xi are known random l-tuples for all 1 ≤ i ≤ N .
Our problem in applying the algorithm described in Section 3 is the fact

that we are not able to select the points xi ourselves. This can to some extent
be compensated for by the following observation [9].

Assume that we have noisy observations zi and zj of the polynomial U(x)
in two points xi and xj , respectively, i.e., P (zi = U(xi)) = 1/2 + ε and P (zj =
U(xj)) = 1/2 + ε. Since U(x) is a linear polynomial, the sum of these two noisy
observations will give rise to an even more noisy observation in the point xi +xj ,
since

P (zi + zj = U(xi + xj)) = P (zi + zj = U(xi) + U(xj))
= P (zi = U(xi))P (zj = U(xj))

+P (zi �= U(xi))P (zj �= U(xj))
= (1/2 + ε)2 + (1/2 − ε)2

= 1/2 + 2ε2.
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Next, observe that we do not have to restrict ourselves to addition of just two
sample points, but can consider any sum of t points. Hence, any

∑t
j=1 zaj

,
a1, . . . at ∈ {1, 2, . . . , N}, will be a noisy observation of U(

∑t
j=1 xaj ) with noise

level

P (
t∑

j=1

zaj
= U(

t∑
j=1

xaj
)) = 1/2 + 2t−1εt. (8)

For convenience, we introduce the notation x̂ =
∑t

j=1 xaj
and ẑ =

∑t
j=1 zaj

and write
U(x̂) = ẑ + e,

where now e is a binary random variable with P (e = 0) = 1/2 + 2t−1εt, from
(8).

If we want to use the algorithm in Section 3 we must feed the oracle with x̂
points of a special form. An idea in the algorithm to be described is to construct
such points by adding suitable vectors xaj

in such a way that their sum is of
the required form. Clearly, the noise level increases with the number of vectors
in the sum, so we are interested in having as few vectors as possible summing
to the desired form. On the other hand, allowing only very few vectors in the
sum will give us only very few x̂ vectors of the desired form. Hence, there is a
tradeoff for the value of the constant t. We return to this issue in the theoretical
analysis.

Also, we introduce a slightly modified version of the algorithm from Section 3.
The new version includes a squared distance used in the test in the screening
procedure. We will later show that this is a statistically optimal distance mea-
sure. We first consider a version in which the idea of i-prefixes is removed. In
the next section we elaborate on the idea of i-prefixes. A description of the basic
algorithm is given in Figure 2.

Let us give an intuitive explanation of the algorithm. We first note that the
algorithm recovers the first k bits of the initial state, namely u1, . . . , uk. The
remaining part of the initial state can be recovered in a similar way, if desired.

Now consider the case of one hypothesized value of (u1, . . . , uk). We want to
check whether this value, denoted (û1, . . . , ûk), is correct or not. This is done by
first selecting a certain (l−k)-tuple si, and then by finding all linear combinations
of t vectors in {x1,x2, . . .xN},

x̂(i) =
t∑

j=1

xaj
, (9)

having the special form
x̂(i) = (x̂1, . . . , x̂k, si), (10)

for arbitrary values of x̂1, . . . , x̂k (not all zero). The complexity of this precompu-
tation step depends on t, and by using some simple birthday-paradox arguments,
one can show that the computation can be done in O(N�t/2�) using O(N�t/2�)
storage.
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In: z = (z1, . . . , zN ), [x1,x2, . . . ,xN ], and constants t, k and n.
1. (Precomputation) Select n different (l−k)-tuples s1, s2, . . . , sn. For

each si, find all linear combinations of the form x̂(i) =
∑t

j=1 xaj

which are of the special form

x̂(i) = (x̂1, . . . , x̂k, si),

for arbitrary values of x̂1, . . . , x̂k.
Store all x̂(i) together with all ẑ(i) =

∑t
j=1 zaj . Let the set of all

such pairs have cardinality Si.
2. Run through all 2k values of the constants (u1, . . . , uk) =

(û1, . . . , ûk) as follows.
3. For each si, run through all Si stored pairs {(x̂(i), ẑ(i))}, calculate

the number of times we have

k∑

j=1

ûj x̂j = ẑ(i),

and denote this by num. Update

dist← dist + (Si − 2 · num)2.

4. If dist is the highest received value so far, store (û1, . . . , ûk). Set
dist← 0.

Out: Output (û1, . . . , ûk) having the highest value of dist.

Fig. 2. A description of the basic algorithm

Now, the main observation is that the relation between U(x̂(i)) and ẑ(i) can,
from our previous arguments, be written in the form

U(x̂(i)) = ẑ(i) + e, (11)

where e represents the noise having a noise level of P (e = 0) = 1/2 + 2t−1εt.
Now (11) is equivalently expressed as

k∑
j=1

uj x̂j +
l∑

j=k+1

ujsj = ẑ(i) + e, (12)

and this can be rewritten as

k∑
j=1

(uj + ûj)x̂j +
l∑

j=k+1

ujsj + e =
k∑

j=1

ûj x̂j + ẑ(i). (13)

Now recall that W =
∑l

j=k+1 ujsj in (13) is a fixed binary random variable for
all linear combinations of the special form that we required, i.e., we will have
either W = 0 for all our x̂(i)’s, or W = 1.
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Consider a correct hypothesized value and assume that we have all the Si

equations. Then num simply counts the number of times the right hand side
in (13) is zero. Since

∑k
j=1(uj + ûj)x̂j = 0, the probability for the left hand

side to be zero is then P (W + e = 0). This probability is either 1/2 − 2t−1εt

or 1/2 + 2t−1εtt for all equations, depending on whether W = 0 or W = 1.
Thus num has a binomial distribution Bin(Si, p), with p being one of the two
probabilities above.

However, if the hypothesized valued was wrong, then
∑k

j=1(uj + ûj)x̂j �= 0,
and hence, it will result in num being binomial distributed, Bin(Si, p), with
p = 1/2.

In order to separate the two hypothesis we measure the difference between
the number of times

∑k
j=1 ûj x̂j = ẑ(i) holds and the number of times it does not

hold. Then a squared distance ((Si−2 ·num)2) is used. If we have enough points,
i.e., we can create enough different x̂ as linear combinations of at most t xi’s,
we will be able to separate the two hypotheses. However, the number of linear
combinations for a particular si value is limited. Hence, we also run through a
lot of different si values. Each gives a squared distance, and we sum them all
up to become our overall distance (dist). In Section 7 we show that a squared
distance leads to a statistically optimal test, i.e., we pick the candidate having
the highest probability.

5 A Sequential Reconstruction Algorithm

In this section we want to elaborate around the idea of using i-prefixes from
Section 3 and modify the proposed algorithm into a sequential algorithm.

Instead of simply selecting the candidate (û1, . . . , ûk) having the highest value
of dist, we would now want to have a set of surviving candidates. These are then
extended by incrementing, in our case, k by one. This extension doubles the
number of candidates, since each surviving candidate can be extended in the
(k + 1)th position by either 0 or 1. But before the next extension, we run a
screening procedure that removes a substantial part of the candidates.

This is a straightforward usage of the idea of i-prefixes. From our perspec-
tive, it does introduce some small practical problems. The major problem is
that we now must store a large set of possible candidates. The performance
of our algorithms is highly connected with the computational complexity. If a
large memory must be used in our algorithm, some degradation in complexity is
likely to appear in practice. This is the reason for presenting a slightly different
approach. Essentially we use, instead of an l round algorithm, a tree structure
for all candidates that are still “alive”. The advantage is that, essentially, the
memory requirements are removed. Figure 3 shows how a version of such an
algorithm may look like.

Note that the set Ω is only introduced to simplify the presentation. We do
not need to store it. It is a lexicographically ordered set, and when we put new
values in Ω, we actually do not need to store anything.
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In: z = (z1, . . . , zN ), [x1,x2, . . . ,xN ], and constants t, k̂, n and
threshold(k). Let Ω be a list of all k̂-tuples in lexicographical order.

1. (Precomputation) For each value of k, k̂ ≤ k ≤ l, set up a screening
procedure as given in 2.

2. (Precomputation) Select n different (l−k)-tuples s1, s2, . . . , sn. For
each si, find all linear combinations of the form x̂(i) =

∑t
j=1 xaj

which are of the special form

x̂(i) = (x̂1, . . . , x̂k, si),

for arbitrary values of x̂1, . . . , x̂k. Store (x̂(i), ẑ(i) =
∑t

j=1 zaj ).
Assume that Si such pairs have been stored.

3. Take the first value in Ω, denoted (û1, . . . , ûk).
4. For each si, run through all Si stored pairs for si, calculate the

number of times we have

k∑

j=1

ûj x̂j = ẑ(i),

and denote this by num. Update

dist← dist + (Si − 2 · num)2.

5. If dist > threshold(k), put both (û1, . . . , ûk, 0) and (û1, . . . , ûk, 1)
in Ω. Set dist← 0. If |Ω| > 1 go to 3.

Out: Output all values in Ω that has reached length l.

Fig. 3. A description of the sequential algorithm.

Example 1. Assume that the sequential algorithm is applied with k̂ = 5. We
examine first the value (u1, . . . , u5) = (0, 0, 0, 0, 0). Assume that the received dist
is higher than threshold(5). We then extend this vector with the two possible
values for u6, giving (0, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 1). We continue to examine
the first of these candidates. Assume that dist < threshold(6). We continue with
the second of these candidates. Assume that in this case dist > threshold(6).
We extend this vector and get (0, 0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 1, 1) as two new
vectors. We continue in this fashion. The tree structure of this procedure is
presented in Figure 4.

(0, 0, 0, 0, 0)

0

1

0

1

✈
✈

✈
❢

❢

✏✏✏✏✏✏

������✏✏✏✏✏✏

������

Fig. 4. The tree in Example 1.
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Whether a candidate will survive the test at level k or not is determined by a
threshold value (threshold(k)). Increasing the threshold value will throw away
more wrong candidates, but will also increase the probability of throwing away
the correct candidate. A discussion on how to choose the threshold values is
given in Section 7.

Comparing with the algorithm of the previous section, this algorithm will
have a better performance (fewer tests on average) if we implement it in an
efficient way. One important observation in this direction is the fact that all
x̂(i) vectors for a certain k will appear again as valid x̂(i) vectors for higher
k (assuming that we use the same si vectors). This means that we should not
recalculate num on x̂(i) vectors that have already been used, but rather, we
store the value of num for all si values and incorporate this in the calculation
for higher k values.

6 Performance of the Proposed Algorithm

In this section we present some simulation results for the basic algorithm de-
scribed in Section 4 and the sequential version in Section 5. Simulations are
presented for t = 2 and t = 3. In general, increasing t will increase the perfor-
mance at the cost of an increased precomputation time and increased memory
requirement in precomputation.

The first simulations are for the same feedback polynomial and the same
length of the observed keystream as in [9,10,2]. Table 1 shows the maximum
error probability p = 1/2− ε for the basic algorithm when the received sequence
is of length N = 400000. The parameter k is varying in the range 13−16 and n is
in the set n ∈ {1, 2, 4, 8, . . . , 512}. As a particular example, when k = 16, n = 256

Table 1. Maximum p = 1/2 − ε for the basic algorithm with t = 2, k = 13, . . . , 16,
varying n, and N = 400000.

N = 400000
n k = 13 k = 14 k = 15 k = 16
1 0.30 0.32 0.34 0.36
2 0.32 0.34 0.36 0.38
4 0.34 0.36 0.38 0.40
8 0.36 0.38 0.40 0.41
16 0.38 0.39 0.41 0.42
32 0.39 0.40 0.42 0.43
64 0.40 0.41 0.42 0.44
128 0.41 0.42 0.43 0.44
256 0.42 0.43 0.43 0.45
512 0.42 0.44 0.44 0.45
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we reach p = 0.45 having 400000 known keystream symbols. The running time
is less than 3 minutes, and the precomputation time negligible.

It is important to observe that for a fixed running time, the performance
increases with increasing n (up to a certain point). The table entries {k = 16,
n = 1}, {k = 15, n = 4}, {k = 14, n = 16}, {k = 13, n = 64} all have roughly
the same computational complexity, but an increasing performance with n can
be observed.

More interesting is perhaps to show simulation results for longer LFSRs,
as was done in [3]. We present results for the basic algorithm when l = 60
using a feedback polynomial of weight 13. In Table 2 we show the required

l = 60, t = 2
N k n time p

40 · 106 23 1 96 sec 0.35
40 · 106 22 2 48 sec 0.36
40 · 106 21 4 25 sec 0.36
40 · 106 25 1 26 min 0.40
40 · 106 24 2 13 min 0.40
40 · 106 23 4 6.5 min 0.40
40 · 106 22 8 3.3 min 0.41
40 · 106 25 4 106 min 0.43

l = 60, t = 3
N k n time p

1.5 · 105 24 1 4.5 min 0.3
1.5 · 105 23 2 2.3 min 0.3
1.5 · 105 22 4 69 sec 0.3
1.5 · 105 25 1 18 min 0.32
1.5 · 105 24 2 9.2 min 0.32
1.5 · 105 23 4 4.6 min 0.32

Table 2. Performance of the basic algorithm with l = 60 when t = 2 and t = 3,
respectively.

computational complexity and the achieved correlation probability for different
algorithm parameters. The implementations were written in C and the running
times were measured on a Sun Ultra-80 running under Solaris.

We can compare with other suggested methods. Actually, in the special case
of n = 1, our proposed algorithm will coincide with the method in [3]. This
enables us to see the improvement in Table 2, by observing the decrease of
decoding time when n increases (for a fixed p). Furthermore, [3] is the only
previous work reporting simulation results for l ≥ 60.

An important advantage for the proposed methods is the storage complexity.
The attacks based on convolutional and turbo codes [9,10] uses a trellis with 2B

states. Hence, the size of B is limited to 20 − 30 in practise, due to the fact that
it must be kept in memory during decoding. On the other hand, the memory
requirements for the algorithms presented in this paper remain constant when
k increases. Also, the proposed algorithms are trivially parallelizable, and hence
the only limiting factor is the total computational complexity.

Finally, simulation results for the sequential algorithm should be considered.
Some initial simulations for the case N = 400000, p = 0.40, t = 2, n = 64
indicated a speedup factor of approximately 5. An extensive set of simulations
for the sequential algorithm is under progress.
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7 Theoretical Analysis of the Algorithms

In this section we sketch some results for a theoretical analysis of the proposed
algorithms. A complete analysis will appear in the full paper. Here we prove,
among other things, that using the squared distance is statistically optimal.

First, we derive an expression for the expected number of linear combinations
of the form (9) and (10), i.e., the expected value of the parameter Si in the
algorithm.

Lemma 1. Let E[S] be the expected number of linear combinations of the form
(9) and (10) that can be created from t out of N random vectors x1, . . . ,xN .
Then E[S] is given as

E[S] =

(
N
t

)
2l−k

.

Proof: The number of ways we can create a linear combinations of of the form
(9) is

(
N
t.

)
The probability of getting a particular value of s is 1/2l−k. Thus, we

have in average
(
N
t

)
/2l−k linear combinations ending with a particular value s.

Next we show that using dist as defined in Section 4 gives optimal perfor-
mance. We start by considering the case when we have one fixed value of s. Then
we generalize to the case with several different s vectors.

Assume that for the given s we have created S noisy observations of the
polynomial U(x). The expected value of S is then given by Lemma 1. Assume
further that we are considering a particular candidate (û1, . . . , ûk), and that
we have found num observations such that

∑k
j=1 ûj x̂j = ẑ(i). Consider two

hypothesis H0, and H1. Let H1 be the hypothesis that the candidate is correct,
and H0 that the candidate is wrong.

Introduce the random variable W =
∑l

j=k+1 ujsj . Define p0 as p0 = P (e =
0) = 1/2 + 2t−1εt. Furthermore, P (W = 0) = 1/2. We showed in Section 4 the
following distribution for num:

num|H0 ∈ Bin(S, 1/2),
num|H1,W = 0 ∈ Bin(S, p0),
num|H1,W = 1 ∈ Bin(S, (1 − p0)).

Next, we approximate the binomial distribution for num with a normal dis-
tribution. As long as, Spq � 10 the approximation will be good. Furthermore,
we define the random variable Y as Y = |2 · num − S|. If P ((2 · num − S) <
0|H1,W = 0) = P ((2 · num − S) > 0|H1,W = 1) is small then we get the
following distribution of Y :

fY |H0(y) =
2√
πS

e−y2/S

fY |H1(y) =
1√

4πSp0(1 − p0)
e
− (y−Sp0)2

4Sp0(1−p0)
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The estimate of (u1, . . . , uk) is taken as the (û1, . . . , ûk) for which P (H1|Y ) is
maximal. However, it is not possible to calculate P (H1|Y ) directly. Instead, we
can equivalently choose the estimate as the (û1, . . . , ûk) for which the likelihood
ratio

Λ =
P (H1|Y )

1 − P (H1|Y )
=

P (H1|Y )
P (H0|Y )

=
P (Y |H1)P (H1)
P (Y |H0)P (H0)

,

is maximal.
In our case it is more convenient to use the loglikelihood ratio λ = ln(Λ).

Thus we can formulate the problem of finding the most likely candidate as:

arg max
(û1,...,ûk)

[lnP (Y |H1) + lnP (H1) − lnP (Y |H0) − lnP (H0)] .

It now follows that maximizing λ is equivalent to taking the candidate for
which y2 is maximum.

This derivation holds when we have one value of S. Now we assume that we
have n different Si, (S1, S2, . . . , Sn) and corresponding Y = (Y1, Y2, . . . , Yn). By
observing that

P (Y |H0) = P (Y1|H0)P (Y2|H0) · · ·P (Yn|H0)

we see that optimality is reached for dist = dist1 + dist2 + . . . + distn, where
disti = y2

i . In conclusion, we have showed that the chosen distance is statistically
optimal.

To analyze the performance of the algorithm when we use the quadratic
distance measure we use the following approach. Assume that we have the correct
candidate (û1, . . . , ûk). Then we have

|2 · numi − Si| ∈ N(Si(2p0 − 1), 2Sip0(1 − p0)).

If we instead assume that the candidate (û1, . . . , ûk) is wrong we get

(2 · numi − Si) ∈ N(0, S/2).

The value of dist is calculated as

dist =
n∑

i=1

(2 · numi − Si)2 =
n∑

i=1

|2 · numi − Si|2.

One sees that dist is calculated by squaring and adding n normal random vari-
ables. Hence, dist is a noncentral chi-square distributed random variable with n
degrees of freedom.

By using the central limit theorem, we get that for large values of n we will
be successful when E(dist|H1) > E(dist|H0). Since this inequality always holds,
the conclusion is that if n → ∞ we can have ε → 0.

Finally we consider the sequential algorithm of Section 5. When analyzing
this algorithm we are now interested in two properties. The first is the probability
that we accept a candidate as correct when it actually is wrong, denoted by PF ,
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(false alarm). The second is the probability that we do not accept a correct
candidate. Denote this by PM , (miss).

Since we know the distribution of dist under the hypothesis H0 and H1 we can
calculate PM and PF as follows. Consider a fixed threshold T. The probability
of miss PM is then given as

PM = P (dist < T |H1),

and in the same way we get

PF = P (dist > T |H0).

8 Conclusions

In this work we have shown how learning theory can be used as a basis for cor-
relation attacks on stream ciphers. Techniques for reconstructing polynomials
have been modified and combined with some general techniques from correla-
tion attacks. The performance has been demonstrated through a sketch of a
theoretical analysis as well as through simulations. The simulations show a very
good performance.

The problem that arises in a standard correlation attack is equivalent to the
problem of learning parity with noise, a well known problem in computational
learning theory, commonly believed to be a hard problem. This might indicate
that it is hard to find further significant improvements on the problem. One
interesting idea would be to examine whether recent results on polynomial re-
construction as a decoding tool for certain error correcting codes [20] can be
used. Some results in this direction can be found in [8].
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