Skip to main content

Automatic Graphs and Graph D0L-Systems

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2000 (MFCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1893))

Abstract

The concept of end is a classical mean of understanding the behavior of a graph at infinity. In this respect, we show that the problem of deciding whether an infinite automatic graph has more than one end is recursively undecidable. The proof is based on the analysis of some global topological properties of the configuration graph of a self-stabilizing Turing machine. Next, this result is applied to show the undecidability of connectivity of all the finite graphs produced by iterating a graph D0L-system. We also prove that the graph D0L-systems with which we deal can emulate hyperedge replacement systems for which the above connectivity problem is decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. W. Ahlfors and L. Sario. Riemann Surfaces. Princeton University Press, 1960.

    Google Scholar 

  2. A. Blumensath and E. Grädel. Automatic structures. In LICS’2000, 2000.

    Google Scholar 

  3. A. Carbonne and S. Semmes. A graphic apology for symmetry and implicitness. Preprint.

    Google Scholar 

  4. A. Clow and S. Billington. Recognizing Two-Ended and Infinitely Ended Automatic Groups. Computer Program, Warwick University-UK, 1998.

    Google Scholar 

  5. B. Courcelle. Fundamental Properties of Infinite Trees. Theoretical Computer Science, 25:95–169, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Courcelle. Graph Rewriting: An algebraic and Logic Approach. In Handbook of Theoretical Computer Science vol. B, Van Leeuwen J. (editor). Elsevier Science Publishers, 1990.

    Google Scholar 

  7. B. Courcelle. The Monadic Second-order Logic of Graphs IV: Definability Properties of Equational Graphs. Annals of Pure and Applied Logic, 49:193–255, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Courcelle. The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In G. Rozenberg, (editor), Handbook of Graph Grammars and Computing by Graph Transformation, volume 1. World Scientific, 1997.

    Google Scholar 

  9. B. Courcelle and J. Engelfriet. A logical characterization of the sets of hypergraphs defined by hyperedge replacement grammars. Math. Syst. Theory, 28(6):515–552, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle Rewriting Hypergraph Grammars. JCSS, 46:218–270, 1993.

    MATH  MathSciNet  Google Scholar 

  11. M. De Does and A. Lindenmayer. Algorithms for the Generation and Drawing of Maps Representing Cell Clones. In GGACS’82, volume 153 of Lect. Notes in Comp. Sci., pages 39–57. Springer-Verlag, 82.

    Google Scholar 

  12. W. Dicks and M.J. Dunwoody. Groups Acting on Graphs, volume 17 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1989.

    Google Scholar 

  13. J. Engelfriet and G. Rozenberg. Node Replacement Graph Grammars. In G. Rozenberg, (editor), Handbook of Graph Grammars and Computing by Graph Transformation, volume 1. World Scientific, 1997.

    Google Scholar 

  14. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word processing in groups. Jones and Bartlett, 1992.

    Google Scholar 

  15. V. Gerasimov. Detecting Connectedness of the Boundary of a Hyperbolic Group. Preprint, 1999.

    Google Scholar 

  16. E. Ghys and P. de la Harpe. Sur les groupes hyperboliques d’aprées Mikhael Gromov, volume 83 of Progress in Mathematics. Birkhäuser, 1990.

    Google Scholar 

  17. R. Halin. Über Unendliche Wege in Graphen. Math. Ann., 157:125–137, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Company, 1979.

    Google Scholar 

  19. B. Khoussainov and A. Nerode. Automatic Presentations of Structures. In Logic and Computational Complexity (Indianapolis, IN, 1994), volume 960 of Lecture Notes in Comput. Sci, pages 367–392. Springer, Berlin, 1995.

    Google Scholar 

  20. A. Lindenmayer. An Introduction to Parallel Map Generating Systems. In GGACS’86, volume 291 of Lect. Notes in Comp. Sci., pages 27–40. Springer-Verlag, 1986.

    Google Scholar 

  21. A. Lindenmayer and G. Rozenberg. Parallel generation of maps: developmental systems systems for cell layers. In GGACS’78, volume 73 of Lect. Notes in Comp. Sci., pages 301–316. Springer-Verlag, 1978.

    Google Scholar 

  22. O. Ly. On Effective Decidability of the Homeomorphism Problem for Non-Compact Surfaces. Contemporary Mathematics-Amer. Math. Soc., 250:89–112, 1999.

    MathSciNet  Google Scholar 

  23. W. S. Massey. Algebraic Topology: An Introduction, volume 56 of Graduate Text in Mathematics. Springer, 1967.

    Google Scholar 

  24. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science, 37:51–75, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Narbel. Limits and Boundaries of Word and Tiling Substitutions. PhD thesis, Paris 7, 1993.

    Google Scholar 

  26. C.H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.

    Google Scholar 

  27. L. Pelecq. Isomorphisme et automorphismes des graphes context-free, équationnels et automatiques. PhD thesis, Bordeaux I, 1997.

    Google Scholar 

  28. J. Peyriére. Processus de naissance avec intéraction des voisins, évolution de graphes. Ann. Inst. Fourier, Grenoble, 31(4):181–218, 1981.

    MathSciNet  Google Scholar 

  29. J. Peyriére. Frequency of patterns in certain graphs and in Penrose tilings. Journal de Physique, 47:41–61, 1986.

    Google Scholar 

  30. N. Robertson and P. Seymour. Some New Results on the Well-Quasi Ordering of Graphs. Annals of Dicrete Math., 23:343–354, 1984.

    MathSciNet  Google Scholar 

  31. G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transformation, volume1. World Scientific, 1997.

    Google Scholar 

  32. G. Rozenberg and A. Salomaa. The Mathematical Theory of L-Systems. Academic Press, 1980.

    Google Scholar 

  33. G. Sénizergues. Definability in weak monadic second-order logic of some infinite graphs. In Dagstuhl seminar on Automata theory: Infinite computations. Wadern, Germany, volume 28, pages 16–16, 1992.

    Google Scholar 

  34. G. Sénizergues. An effective version of Stallings’ theorem in the case of context-free groups. In ICALP’93, pages 478–495. Lect. Notes Comp. Sci. 700, 1993.

    Google Scholar 

  35. J.R. Stallings. On torsion-free groups with infinitely many ends. Ann. of Math., 88:312–334, 1968.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ly, O. (2000). Automatic Graphs and Graph D0L-Systems. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-44612-5_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67901-1

  • Online ISBN: 978-3-540-44612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics