Skip to main content

0–1 Laws for Fragments of Existential Second-Order Logic: A Survey

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2000 (MFCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1893))

Abstract

The probability of a property on the collection of all finite relational structures is the limit as n → ∞ of the fraction of structures with n elements satisfying the property, provided the limit exists. It is known that the 0-1 law holds for every property expressible in first-order logic, i.e., the probability of every such property exists and is either 0 or 1. Moreover, the associated decision problem for the probabilities is solvable.

In this survey, we consider fragments of existential second-order logic in which we restrict the patterns of first-order quantifiers. We focus on fragments in which the first-order part belongs to a prefix class. We show that the classifications of prefix classes of first-order logic with equality according to the solvability of the finite satisfiability problem and according to the 0-1 law for the corresponding Σ1 1 fragments are identical, but the classifications are different without equality.

Work partially supported by NSF grants CCR-9610257 and CCR-9732041.

Work partially supported by NSF grant CCR-9700061. Work partly done at LIFO, University of Orléans

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S, Hull, R., Vianu, V.: Foundations of Databases. Addision-Wesley, 1995.

    Google Scholar 

  2. Abramson, F. D., Harrington, L.A.: Models without indiscernibles. J. Symbolic Logic 431978,pp. 572–600.

    Article  MATH  MathSciNet  Google Scholar 

  3. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer-Verlag, 1997.

    Google Scholar 

  4. Bollobas, B: Random Graphs. Academic Press, 1985

    Google Scholar 

  5. Chernoff, H.: A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observation. Ann. Math. Stat 23(1952), pp. 493–509.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28(1981), pp. 114–133.

    Article  MATH  MathSciNet  Google Scholar 

  7. Compton, K.J.: 0-1 laws in logic and combinatorics, in NATO Adv. Study Inst. on Algorithms and Order I. Rival, ed., D. Reidel, 1988, pp. 353–383.

    Google Scholar 

  8. de la Vega, W.F.: Kernel on random graphs. Discrete Mathematics 821990), pp. 213–217.

    Article  MATH  MathSciNet  Google Scholar 

  9. Dreben, D., and Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley, 1979.

    Google Scholar 

  10. Ebbinghaus, H. D., Flum, J.: Finite Model Theorey, Springer-Verlag, 1995.

    Google Scholar 

  11. Fagin, R.: Generalized first-order spectra and polynomial time recognizable sets. Complexity of Computations R. Karp, ed., SIAM-AMS Proc. 7(1974), pp. 43–73.

    Google Scholar 

  12. Fagin, R.: Probabilities on finite models. J. Symbolic Logic 411976, pp. 50–58.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gaifman, H.: Concerning measures in first-order calculi. Israel J. Math. 2(1964). pp. 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  14. Glebskii, Y.V., Kogan, D.I., Liogonkii. M.I., Talanov, V.A.: Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics 5(1969), pp. 142–154.

    Article  Google Scholar 

  15. Gödel, K.: Ein Spezialfall des Entscheidungsproblems der theoretischen Logik, Ergebn. math. Kolloq. 2(1932), pp. 27–28.

    Google Scholar 

  16. Goldfarb, W.D.: The Gödel class with equality is unsolvable. Bull. Amer. Math. Soc. (New Series) 101984, pp. 113–115.

    Article  MATH  MathSciNet  Google Scholar 

  17. Grandjean, E.: Complexity of the first-order theory of almost all structures. Information and Control 521983, pp. 180–204.

    Article  MathSciNet  Google Scholar 

  18. Grädel, E., Kolaitis P.G., Vardi M.Y.: On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic 3(1997), 53–69.

    Article  MATH  MathSciNet  Google Scholar 

  19. Gurevich, Y., and Shelah, S.: Random models and the Gödel case of the decision problem. J. of Symbolic Logic 48(1983), pp. 1120–1124.

    Article  MATH  MathSciNet  Google Scholar 

  20. Hartmanis, J., Immerman, N., Sewelson, J.: Sparse sets in NP-P-EXPTIME vs. NEXPTIME. Information and Control 65(1985), pp. 159–181.

    Article  MathSciNet  Google Scholar 

  21. Immerman, N.: Desctiptive Complexity. Springger-Verlag, 1998.

    Google Scholar 

  22. Kaufmann, M.: A counterexample to the 0-1 law for existential monadic second-order logic. CLI Internal Note 32, Computational Logic Inc., Dec. 1987.

    Google Scholar 

  23. Kauffman, M., Shelah, S: On random models of finite power and monadic logic. Discrete Mathematics 54(1985), pp. 285–293.

    Article  MathSciNet  Google Scholar 

  24. Kolaitis, P., Vardi, M.Y: The decision problem for the probabilities of higherorder properties. Proc. 19th ACM Symp. on Theory of Computing, New York, May 1987, pp. 425–435.

    Google Scholar 

  25. Kolaitis, P.G., Vardi, M.Y: 0-1 laws for fragments of second-order logic-an overview. Logic from Computer Science Proc. of Workshop, 1989), 1992, pp. 265–286.

    Google Scholar 

  26. Kolaitis, P., Vardi, M.Y: 0-1 laws and decision problems for fragments of second-order logic. Information and Computation 87(1990), pp. 302–338.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lacoste: Finitistic proofs of 0-1 laws for fragments of second-order logic. Information Processing Letters 58(1996), pp. 1–4.

    Article  MATH  MathSciNet  Google Scholar 

  28. Lacoste, T.: 0-1 Laws by preservation. Theoretical Computer Science 184(1997), pp. 237–245.

    Article  MATH  MathSciNet  Google Scholar 

  29. Le Bars, J.M.: Fragments of existential second-order logic without 0-1 laws. Proc. 13th IEEE Symp. on Logic in Computer Science, 1998, pp. 525–536.

    Google Scholar 

  30. LeBars, J.M.: Counterexamples of the 0-1 law for fragments of existential second-order logic: an overview. Bulletin of Symbolic Logic 6(2000), pp. 67–82.

    Article  MathSciNet  Google Scholar 

  31. Mortimer, M.: On language with two variables, Zeit, für Math. Logik und Grund, der Math. 21(1975), pp. 135–140.

    MATH  MathSciNet  Google Scholar 

  32. Nešetřil, J., Rödl, V.: Partitions of finite relational and set systems. J. Combinatorial Theory A 22(1977), pp. 289–312.

    Article  MATH  Google Scholar 

  33. Nešetřil, J., Rödl, V.: Ramsey classes of set systems. J. Combinatorial Theory A 34 (1983), pp. 183–201.

    Article  Google Scholar 

  34. Pósa, L.: Hamiltonian circuits in random graphs. Discrete Math. 14(1976), pp. 359–364.

    Article  MATH  MathSciNet  Google Scholar 

  35. Pacholski, L., Szwast, L.: Asymptotic probabilities of existential second-order Gödel sentences. Journal of Symbolic Logic 56(1991), pp. 427–438.

    Article  MATH  MathSciNet  Google Scholar 

  36. Pacholski, L., Szwast, W.: A counterexample to the 0-1 law for the class of existential second-order minimal Gödel sentences with equality. Information and Computation 107(1993), pp. 91–103.

    Article  MATH  MathSciNet  Google Scholar 

  37. Ramsey, F.P.: On a problem in formal logic. Proc. London Math. Soc. 30(1928). pp. 264–286.

    Article  Google Scholar 

  38. Trakhtenbrot, B.A.: The impossibilty of an algorithm for the decision problem for finite models. Doklady Akademii Nauk SSR 70(1950), PP. 569–572.

    Google Scholar 

  39. Tendera, L.: A note on asymptotic probabilities of existential second-order minimal classes: the last step. Fundamenta Informaticae 20(1994), pp. 277–285.

    MATH  MathSciNet  Google Scholar 

  40. Vedo, A.: Asymptotic probabilities for second-order existential Kahr-Moore-Wang sentences. J. Symbolic Logic 62(1997), pp. 304–319.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolaitis, P.G., Vardi, M.Y. (2000). 0–1 Laws for Fragments of Existential Second-Order Logic: A Survey. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44612-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67901-1

  • Online ISBN: 978-3-540-44612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics