Technical Report N° 2000/06

On Applying Software Development Best
Practice to FPGAs in Safety-Critical Systems

Adrian Hilton,
Jon G. Hall

2000

Department of Computing

Faculty of Mathematics and Computing
The Open University

Walton Hall,

Milton Keynes

MK7 6AA

United Kingdom

http://computing.open.ac.uk



On Applying Software Development Best
Practice to FPGAs in Safety-Critical Systems

Adrian Hilton, Jon Hall

The Open University

Abstract. New standards for developing safety-critical systems require
the developer to demonstrate the safety and correctness of the pro-
grammable logic in such systems. In this paper we adapt software devel-
opment best practice to developing high-integrity FPGA programs.

1 Introduction

Programmable logic devices are increasingly important components of complex
and safety-critical systems. Standards such as the emerging UK Defence Stan-
dard 00-54 [6] and IEC 61508 [3] now require developers to reason about the
safety and correctness of programmable logic devices in such systems. In addi-
tion, programming such devices is becoming more like programming conventional
microprocessors in terms of program size, complexity, and the need to clarify a
program’s purpose and structure.

This paper looks at existing best practice in software development and shows
how it might be adapted to programmable logic devices without incurring undue
overhead in system development time. It does not consider the issue of testing
programmable logic programs.

2 Safety Standards

A safety-critical system is a collection of components acting together where in-
terruption of the normal function of one or more components may cause injury
or loss of life. The integrity of such a system is measured in terms of the proba-
bility of total or partial failure. [3] defines four integrity levels, SIL 1, SIL 2, SIL
3 and SIL 4, with the highest level (SIL 4) specifying a frequency of less than 1
failure per 10® hours of operation.

Since many safety-critical systems affect public safety, governmental and as-
sociated oversight agencies have drawn up standards documents for the devel-
opment of safety-critical systems. Newer standards are starting to require the
rigorous demonstration of safety for programmable logic components that has
been required for software for many years.

UK Defence Standard 00-54 [6] is a new interim standard for the use of
safety-related electronic hardware (SREH) in UK defence equipment. It relates
to systems developed under a safety systems document such as IEC 61508 [3].



Def Stan 00-54 is appropriate if an electronic component of the system is identi-
fied as having a safety integrity level of SIL 1 or greater. The techniques described
in the document are to be used to analyse complex electronic designs for system-
atic failures. The standard contains the following recommendations which are of
particular interest to us.

(§12.2.1) A formally defined language which supports mathematically
based reasoning and the proof of safety properties shall be used to specify
a custom design;

(§13.4.1) Safety requirements shall be incorporated explicitly into the
Hardware Specification using a formal representation; and

(§13.4.4) Correspondence between the Hardware Specification and the
design implementation shall be demonstrated by analytical means, sub-
ject to assumptions about physical properties of the implementation.

where ‘custom design’ refers to the non-standard components of the electronic
component under examination, and in particular to an FPGA’s program data.

Def Stan 00-54 also notes that widely used standard HDLs without formal
semantics, such as VHDL and Verilog, present compliance problems if used as a
design capture language: Z [7] is suggested as an example of a suitable language.

Def Stan 00-54 is interim, and may well change at formal issue as did Def Stan
00-55. Nevertheless, the concerns which it expresses about existing practices and
its suggestions for process improvements are worth careful scrutiny. A formal
language which supports reasoning about programmable logic behaviour will
assist developers to comply with this standard; without the ability to reason
formally, it is not possible to meet the requirements of §12.2.1, §13.4.1 and
§13.4.4.

3 Applying Software Best Practice to Programmable
Logic

Programmable logic devices, FPGAs in particular, may be built into safety-
critical systems when the system is first designed or as part of a re-engineering
of an older system. Such incorporation brings with it a need to be able to reason
formally about safety and correctness of programs executing on the FPGA; as
noted above, Def Stan 00-54 requires this analytic reasoning. Here we have three
distinct needs for a semantics of FPGA programs, to be able to:

— demonstrate that programs satisfy their specifications;

— refine high-level designs into code while demonstrating semantic equivalence
between them; and

— reason about behaviour at the interface between software and programmable
logic.

We develop these points in the rest of this section, with the objective of
outlining a method to produce a correct FPGA program from a high-level spec-
ification.



3.1 Demonstrating FPGA Program Correctness

There are two choices for showing that a FPGA’s program satisfies its specifi-
cation. The more common, verification, is ‘show that the implementation does
what the requirements say’. One possibility is to use ‘model-checking’, automatic
checking of finite state specifications against a given implementation. The key
weakness of model checking is that it is time-consuming, and usually will only
be able to tell you whether your system is correct, not where it is weak.

In this paper we adopt the second strategy which is often initially harder:
‘develop the requirements into an implementation’. This development is the pro-
cess of refinement; step-by-step application of a set of laws which transform an
abstract specification into a concrete implementation. This approach requires
more ‘up-front’ investment of time and effort. However, the correctness of the
implementation with respect to the specification is guaranteed, excepting the
possibility of human error in the refinement steps.

Both of these approaches require the ability to reason analytically about
FPGA programs. We address this in the following section.

3.2 Analytical Reasoning

Synchronous Receptive Process Theory (SRPT), described in [1], was developed
from Josephs’ Receptive Process Theory [4] with the motivation of being able
to reason about synchronous (clocked) events. It specifies a system as a set of
events X, and a set of processes Px each of which has a set of inputs I C ¥
and output events O C X where I N O = (). Processes are defined in terms of
output events in reaction to input events. SRPT has a denotational semantics
expressed in terms of the traces of each process. Each trace ¢ : N — P(I U O)
specifies a possible sequence of sets of events for the process at each tick of the
global clock.

The structure of a FPGA can be considered as a collection of small SRPT
processes reacting to input signals to produce output signals, when cells are
viewed as processes and their routing is viewed as describing which signals pass
to which process. In our work to date we have demonstrated a method of proof
that a FPGA cell (modelled by an SRPT process) satisfies a specification in
terms of event sequences in its traces.

3.3 Design Refinement

We wish to refine a FPGA program design from the Z specification language
to an implementation, maintaining demonstrable correctness. Refining the spec-
ification directly to SRPT is possible but hard work. A useful stepping stone
would be a software language that could act as the target of refinement from 7
and then be compiled into SRPT processes. One candidate is SPARK Ada [2],
a subset of the Ada language. SPARK Ada has a formal semantics defined in Z,
tool support from the SPARK Examiner static analysis tool, and the strong type



system of Ada. SPARK Ada is also strongly recommended for use in developing
SIL 4 systems.

Given an SRPT description of the program, we could attempt to compile it
into VHDL, but maintaining correctness would be hard. VHDL lacks a semantics,
with vendor implementations differing significantly. FPGA netlists will vary in
semantics depending on the target device. One intermediate option is to use a
language such as Pebble [5]. Pebble is synchronous, low-level enough to compile
to VHDL or netlist format without too high a probability of serious compiler
error, and high-level enough to abstract away from device dependencies. SRPT
could be mapped directly onto Pebble with minimal effort.

This development process is illustrated in Figure 1.

Develop and

prove correct
Program (SPARK)

Compile

Compile Compile

Fig. 1. Development Process

3.4 Conclusion

We have seen how a forthcoming safety standard places requirements for analyt-
ical demonstration of the safety of systems incorporating programmable logic.
We have identified key technologies and methods for such analysis, and proposed
a process for developing programs for PLDs to a high standard of integrity.

References

1. Janet E. Barnes. A mathematical theory of synchronous communication. Technical
report, Oxford University Computing Laboratory, 1993.

2. Jonathan Garnsworthy and Bernard Carré. SPARK - an annotated Ada subset for
safety-critical systems. Proceedings of Baltimore Tri-Ada Conference, 1990.

3. International Electrotechnical Commission. Functional Safety of Electrical / Elec-
tronic / Programmable Electronic Safety-Related Systems, IEC Standard 61508,
March 2000.

4. Mark Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

5. Wayne Luk and Steve McKeever. Pebble — a language for parametrised and recon-
figurable hardware. In R. Hartenstein and A Keevallik, editors, Proceedings of the
8th International Workshop on Field Programmable Logic (FPL’98), number 1482 in
Lecture Notes In Computer Science, pages 9-18. Springer-Verlag, September 1998.

6. Requirements for safety related electronic hardware in defence equipment, March
1999. Interim Defence Standard 00-54 Issue 1.

7. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.



