Skip to main content

Independence: Logics and Concurrency

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1862))

Abstract

We consider Hintikka et al.’s ‘independence-friendly first-order logic’. We apply it to a modal logic setting, defining a notion of ‘independent’ modal logic, and we examine the associated fixpoint logics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur, T. Henzinger and O. Kupferman, Alternating-time temporal logic, in Proc. 38th FOCS (1997), 100–109.

    Google Scholar 

  2. H.R. Andersen, Verification of Temporal Properties of Concurrent Systems, DAIMI PB-445, Computer Science Dept, Aarhus University, 1993.

    Google Scholar 

  3. J. Barwise, On branching quantifiers in English, J. Philos. Logic 8 47–80 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Blass and Y. Gurevich. Henkin quanti.ers and complete problems. Ann. Pure Appl. Logic 32:1, 1–16 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. J.C. Bradfield, The modal mu-calculus alternation hierarchy is strict, Theor. Comput. Sci. 195 133–153 (1997).

    Article  MathSciNet  Google Scholar 

  6. J.C. Bradfield, Fixpoint alternation and the game quantifier, Proc. CSL’ 99, LNCS 1683 350–361 (1999).

    Google Scholar 

  7. J.C. Bradfield, Fixpoint alternation: arithmetic, transition systems, and the binary tree, Theoret. Informatics Appl. 33 341–356 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Cenzer, Monotone inductive definitions over the continuum, J. Symbolic Logic 41:1 188–198 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  9. H.B. Enderton, Finite partially ordered quantifiers, Z. für Math. Logik u. Grundl. Math. 16 393–397 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Gottlob, Relativized logspace and generalized quantifiers over finite ordered structures. J. Symbolic Logic 62:2, 545–574 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Henkin, Some remarks on infinitely long formulas, Infinitistic Methods, Pergamon Press, Oxford and PAN, Warsaw, 167–183 (1961).

    Google Scholar 

  12. J. Hintikka and G. Sandu, A revolution in logic?, Nordic J. Philos. Logic 1(2) 169–183 (1996).

    MATH  MathSciNet  Google Scholar 

  13. W. Hodges, Compositional semantics for a language of imperfect information, Int. J. IGPL 5(4), 539–563.

    Google Scholar 

  14. M. Huhn, P. Niebert and F. Wallner, Verification on local states, Proc. TACAS’ 98, LNCS 1384 36–51.

    Google Scholar 

  15. R. S. Lubarsky, μ-definable sets of integers, J. Symbolic Logic 58 (1993) 291–313.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. L. McMillan, Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits, Proc. CAV’92, 161–171 (1992).

    Google Scholar 

  17. M. Nielsen and C. Clausen, Bisimulations, games and logic. BRICS report RS-94-6. BRICS, Aarhus (1994).

    Google Scholar 

  18. W. Penczek, On undecidability of propositional temporal logics on trace systems, Inf. Proc. Let. 43(3) 147–153 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Penczek and R. Kuiper, Traces and Logic, in: Diekert and Rozenberg, ed. The Book of Traces, World Scientific (1995).

    Google Scholar 

  20. G. Sandu, On the logic of information independence and its applications, J. Philos. Logic 22 361–372 (1993).

    Article  MathSciNet  Google Scholar 

  21. C.P. Stirling and D.J. Walker, A general tableau technique for verifying temporal properties of concurrent programs. Proc. Int. BCS-FACS Workshop on Semantics for Concurrency Workshops in Computing (Springer-Verlag, Berlin, 1990) (1–15).

    Google Scholar 

  22. A. Valmari, A stubborn attack on state explosion. Proc. CAV’ 90, DIMACS vol. 3, 25–42 (1991).

    Google Scholar 

  23. W.J. Walkoe, Jr, Finite partially-ordered quantification. J. Symbolic Logic 35 535–555 (1970).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bradfield, J.C. (2000). Independence: Logics and Concurrency. In: Clote, P.G., Schwichtenberg, H. (eds) Computer Science Logic. CSL 2000. Lecture Notes in Computer Science, vol 1862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44622-2_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44622-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67895-3

  • Online ISBN: 978-3-540-44622-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics