Skip to main content

A Fully Complete PER Model for ML Polymorphic Types

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1862))

Included in the following conference series:

Abstract

We present a linear realizability technique for building Partial Equivalence Relations (PER) categories over Linear Combinatory Algebras. These PER categories turn out to be linear categories and to form an adjoint model with their co-Kleisli categories. We show that a special linear combinatory algebra of partial involutions, arising from Geometry of Interaction constructions, gives rise to a fully and faithfully complete model for ML polymorphic types of system F.

Work partially supported by TMR Linear FMRX-CT98-0170.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky. Retracing some paths in Process Algebra, Concur’96, 1996.

    Google Scholar 

  2. S. Abramsky. Axioms for Full Abstraction and Full Completeness, 1997, to appear.

    Google Scholar 

  3. S. Abramsky. Interaction, Combinators, and Complexity, Notes, Siena (Italy), 1997.

    Google Scholar 

  4. S. Abramsky, E. Haghverdi, P. Panangaden, P. Scott. Geometry of Interaction and Models of Combinatory Logic, 1998, to appear.

    Google Scholar 

  5. S. Abramsky, R. Jagadeesan. New foundations for the Geometry of Interaction, Inf. and Comp. 111(1), 1994, 53–119.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Abramsky, R. Jagadeesan. Games and Full Completeness for Multiplicative Linear Logic, J. of Symbolic Logic 59(2), 1994, 543–574.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Abramsky, R. Jagadeesan, P. Malacaria. Full Abstraction for PCF, 1996, Inf. and Comp. to appear.

    Google Scholar 

  8. S. Abramsky, J. Longley. Realizability models based on history-free strategies, Draft paper, 1999.

    Google Scholar 

  9. S. Abramsky, M. Lenisa. Fully Complete Models for ML Polymorphic Types, Technical Report ECS-LFCS-99-414, LFCS, 1999 (available at http://www.dimi.uniud.it/~lenisa/Papers/Soft-copy-ps/lfcs99.ps.gz).

  10. S. Abramsky, G. McCusker. Full abstraction for idealized Algol with passive expressions, TCS 227, 1999, 3–42.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Abramsky, P. Mellies. Concurrent Games and Full Completeness, LICS’99.

    Google Scholar 

  12. A. Asperti, G. Longo. Categories, Types and Structures, Foundations of Computing Series, The MIT Press, 1991.

    Google Scholar 

  13. V. Breazu-Tannen, T. Coquand. Extensional models for polymorphism, TCS 59, 1988, 85–114.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Crole, Categories for Types, Cambridge University Press, 1993.

    Google Scholar 

  15. P. Di Gianantonio, G. Franco, F. Honsell. Game Semantics for Untyped λ-calculus, TLCA’99, LNCS, 1999.

    Google Scholar 

  16. J.Y. Girard. Interprétation functionelle et élimunation des coupures de l’arithmétique d’ordre supérieur, Thése d’Etat, Université Paris VII, 1972.

    Google Scholar 

  17. J.Y. Girard. Towards a Geometry of Interaction, Contemporary Mathematics 92, 1989, 69–108.

    MathSciNet  Google Scholar 

  18. D. Hughes. Hypergame Semantics: Full Completeness for System F, D.Phil. thesis, University of Oxford, submitted 1999.

    Google Scholar 

  19. J. Hyland, E. Robinson, G. Rosolini. Algebraic types in PER models, MFPS, M. Main et al. eds, LNCS 442, 1990, 333–350.

    Google Scholar 

  20. M. Hyland, L. Ong. On full abstraction for PCF, Inf. and Comp., 1996, to appear.

    Google Scholar 

  21. A. Ker, H. Nickau, L. Ong. More Universal Game Models of Untyped λ-Calculus: The Böhm Tree Strikes Back, CSL’99, LNCS, 1999.

    Google Scholar 

  22. A. Joyal, R. Street, D. Verity. Traced monoidal categories, Math. Proc. Comb. Phil. Soc. 119, 1996, 447–468.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Laird. Full abstraction for functional languages with control, LICS’97.

    Google Scholar 

  24. G. McCusker. Games and full abstraction for FPC, LICS’96, 1996.

    Google Scholar 

  25. H. Nickau. Hereditarily sequential functionals, Proc. of the Symposium Logical Foundations for Computer Science, LNCS 813, 1994.

    Google Scholar 

  26. R. Statman. λ-definable functionals and βη-conversion, Arch. Math. Logik 23, 1983, 21–26.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abramsky, S., Lenisa, M. (2000). A Fully Complete PER Model for ML Polymorphic Types. In: Clote, P.G., Schwichtenberg, H. (eds) Computer Science Logic. CSL 2000. Lecture Notes in Computer Science, vol 1862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44622-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44622-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67895-3

  • Online ISBN: 978-3-540-44622-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics