Skip to main content

Graph Colouring by Maximal Evidence Edge Adding

  • Conference paper
  • First Online:
Practice and Theory of Automated Timetabling III (PATAT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2079))

  • 1224 Accesses

Abstract

Graph colouring is one of the most studied NP-hard problems. Many problems of practical interest can be modelled as colouring problems. The basic colouring problem is to group items in as few groups as possible, subject to the constraint that no incompatible items end up in the same group. Classical examples of applications include timetabling and scheduling [25]. We describe an iterative heuristic algorithm for adding new edges to a graph in order to make the search for a colouring easier. The heuristic is used to decide which edges should be added by sampling a number of approximate colourings and adding edges which have fewest conflicts with the generated colourings. We perform some analysis of the number of approximate colourings that might be needed to give good bounds on the probability of including an edge which increases the chromatic number of the graph. Experimental results on a set of “difficult graphs” arising from scheduling problems are given.

Work supported by a British Council Exchange Grant with Slovenia, ALIS No. 27

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battiti, R., Tecchiolli, G.: The Reactive Tabu Search. ORSA J. Comput. 6 (1994) 126–140

    MATH  Google Scholar 

  2. Burge, P., Shawe-Taylor, J.: Adapting the Energy Landscape for MFA. J. Artif. Neural Networks 2 (1995) 449–454

    Google Scholar 

  3. Burge, P., Shawe-Taylor, J.: Bitstream Neurons for Graph Colouring. J. Artif. Neural Networks 2 (1995) 443–448

    Google Scholar 

  4. Burke, D.K., Elliman, D.G., Weare, R.F.: A University Timetabling System Based on Graph Colouring and Constraint Manipulation. J. Res. Comput. Ed. 26 (1993)

    Google Scholar 

  5. Burke, E., Newall, J.: A Multi-stage Evolutionary Algorithm for the Timetabling Problem. IEEE Trans. Evol. Comput. 3 (1999) 63–74

    Article  Google Scholar 

  6. Carter, M.W., G. Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E., Ross, P. (eds): Lecture Notes in Computer Science, Vol. 1153. Springer-Verlag, Berlin Heidelberg New York (1996) 3–21

    Google Scholar 

  7. Chams, M., Hertz, A., de Werra, D.: Some Experiments with Simulated Annealing for Colouring Graphs. Eur. J. Oper. Res. 32 260–266

    Google Scholar 

  8. Chernoff, H.: A Measure of Asymptotic Efficiency of Tests of a Hypothesis Based on the Sum of Observations. Ann. Math. Stat. 23 (1952) 493–507

    Article  MathSciNet  MATH  Google Scholar 

  9. Culberson, J.C.: Iterated Greedy Graph Coloring and the Difficulty Landscape. Technical Report TR 92-07, University of Alberta, Canada (1992) (http://web.cs.ualberta.ca/~joe/index.html/)

  10. de Werra, D.: An Introduction to Timetabling. Eur. J. Oper. Res. 19 (1985) 151–162

    Article  MATH  Google Scholar 

  11. Edwards, K.: The Complexity of Colouring Problems on Dense Graphs. Theor. Comput. Sci. 43 (1986) 337–343

    Article  MATH  Google Scholar 

  12. Eiben, A.E., van der Havl, J.K., van Hemert, J.I.: Graph Coloring with Adaptive Evolutionary Algorithms. J. Heuristics 4 (1998) 25–46

    Article  MATH  Google Scholar 

  13. Erben, W.: A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabling. Proc. 3rd Int. Conf. on the Practice and Theory of Automated Timetabling (2000) 397–421

    Google Scholar 

  14. Ferreira, A.G., J. Žerovnik, J.: Bounding the Probability of Success of Stochastic Methods for Global Optimization. J. Comput. Math. Appl. 25 (1993) 1–8

    Article  MATH  Google Scholar 

  15. Fleurent, C., Ferland, J.A.: Genetic and Hybrid Algorithms for Graph Coloring. Ann. Oper. Res. 63 (1996) 437–461

    Article  MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: The Complexity of Near-Optimal Graph Colouring. J. Assoc. Comput. Machinery 23 (1976) 43–49

    MATH  MathSciNet  Google Scholar 

  17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some Simplified NP-complete Graph Problems. Theor. Comput. Sci. 1 (1976) 237–267

    Article  MATH  MathSciNet  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco, CA (1979)

    MATH  Google Scholar 

  19. Glover, F.: Tabu Search-Part I. ORSA J. Comput. 1 (1989) 190–206

    MATH  MathSciNet  Google Scholar 

  20. Glover, F.: Tabu Search-Part II. ORSA J. Comput. 2 (1990) 4–32

    MATH  Google Scholar 

  21. Hertz, A., de Werra, D.: Using Tabu Search Techniques for Graph Coloring. Computing 39 (1991) 378–406

    Google Scholar 

  22. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simulated Annealing: an Experimental Evaluation. II: Graph Coloring and Number Partitioning. Oper. Res. 39 (1991) 378–406

    Article  MATH  Google Scholar 

  23. Johnson, D.S., Trick, M. (eds.): Cliques, Coloring and Satisfiability: 2nd DIMACS Implementation Challenge. American Mathematical Society (1996). DIMACS colouring benchmarks available via ftp at ftp://ftp.rutgers.dimacs.edu

  24. Kirckpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulation Annealing. Science 220 (1983) 671–680

    Article  MathSciNet  Google Scholar 

  25. Leighton, F.T.: A Graph Coloring Algorithm for Large Scheduling Problems. J. Res. Natl Bur. Standards 84 (1979) 489–506

    MATH  MathSciNet  Google Scholar 

  26. Lund, C., Yanakakis, M.: On the Hardness of Approximating Minimization Problems. J. Assoc. Comput. Machinery 41 (1994) 960–981

    MATH  Google Scholar 

  27. Neufeld, G.A., Tartar, J.: Graph Coloring Conditions for the Existence of Solutions to the Timetable Problem. Commun. ACM 17 (1974) 450–453

    Article  MATH  MathSciNet  Google Scholar 

  28. Opsut, R.J., Roberts, F.S.: On the Fleet Maintenance, Mobile Radio Frequency, Task Assignment and Traffic Phasing Problems. In: Chatrand, G., Alavi, Y., Goldsmith, D.L., Lesniak-Foster, L., Lick, D.R. (eds.): The Theory and Applications of Graphs. Wiley, New York (1981) 479–492

    Google Scholar 

  29. Peterson, C., Anderson, J.R.: A Mean Field Annealing Theory Learning Algorithm for Neural Networks. Int. J. Neural Systems 1 (1987) 995–1019

    MATH  Google Scholar 

  30. Petford, A., Welsh, D.: A Randomised 3-colouring Algorithm. Discrete Math. 74 (1989) 253–261

    Article  MathSciNet  MATH  Google Scholar 

  31. Schaerf, A.: A Survey of Automated Timetabling. Artif. Intell. Rev. 13 (1999) 87–127

    Article  Google Scholar 

  32. Schmidt, G., Ströhlein, T.: Timetable Construction-an Annotated Bibliography. Comput. J. 23 (1979) 307–316

    Article  Google Scholar 

  33. Shawe-Taylor, J., Žerovnik, J.: Boltzmann Machine with Finite Alphabet. In: Artificial Neural Networks 2, Vol. 1. Int. Conf. on Artif. Neural Networks (Brighton) (1992) 391–394.

    Google Scholar 

  34. Shawe-Taylor, J., Žerovnik, J.: Analysis of the Mean Field Annealing Algorithm for Graph Colouring. J. Artif. Neural Networks 2 (1995) 329–340

    Google Scholar 

  35. Shawe-Taylor, J., Žerovnik, J.: Adapting Temperature for some Randomized Local Search Algorithms. Preprint 614. Dept Math., University of Ljubljana (1998)

    Google Scholar 

  36. Welsh, D.J.A., Powell, M.B.: An Upper Bound for the Chromatic Number of a Graph and its Applications to Timetabling Problems. Comput. J. 10 (1967) 85–86

    Article  MATH  Google Scholar 

  37. Wood, D.C.: A System for Computing University Examination Timetables. Comput. J. 11 (1968) 41–47

    Article  MATH  Google Scholar 

  38. Žerovnik, J.: A Randomised Heuristical Algorithm for Estimating the Chromatic Number of a Graph. Inform. Process. Lett. 33 (1989) 213–219

    Article  MathSciNet  MATH  Google Scholar 

  39. Žerovnik, J.: A Randomized Algorithm for k-colorability. Discrete Math. 131 (1994) 379–393

    Article  MathSciNet  MATH  Google Scholar 

  40. Žerovnik, J.: Regular Graphs are “Difficult” for Colouring. Informatica 17 (1993) 59–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rising, B., Shawe-Taylor, J., Žerovnik, J. (2001). Graph Colouring by Maximal Evidence Edge Adding. In: Burke, E., Erben, W. (eds) Practice and Theory of Automated Timetabling III. PATAT 2000. Lecture Notes in Computer Science, vol 2079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44629-X_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-44629-X_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42421-5

  • Online ISBN: 978-3-540-44629-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics