Skip to main content

Optimal, Suboptimal, and Robust Algorithms for Proximity Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2125))

Included in the following conference series:

  • 828 Accesses

Abstract

Given a set of n points in the plane, any β-skeleton and [γtO,γ1] graph can be computed in quadratic time. The presented algorithms are optimal for β values that are less than 1 and [γtO,γ1] values that result in non-planar graphs. For β = 1, we show a numerically robust algorithm that computes Gabriel graphs in quadratic time and degree 2. We finally show how a β-spectrum can be computed in optimal O(n 2) time. Research supported in part by the CNR Project “Geometria Computazionale Robusta con Applicazioni alla Grafica ed al CAD”, the project “Algorithms for Large Data Sets: Science and Engineering” of the Italian Ministry of University and Scientific and Technological Research (MURST 40%), by Gen. Cat. SGR000356 and MEC-DGES-SEUID PB98-0933, Spain, and by NSERC, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robust proximity queries: An illustration of degree-driven algo rithm design. SI AM J. Comput., 28(3):864–889, 1998.

    Google Scholar 

  2. R. Beirouti and J. Snoeyink. Implementations of the LMT heuristic for minimum weight triangulation. In ACM Symposium on Computational Geometry, pages 96–105, 1998.

    Google Scholar 

  3. J.-D. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting segments. SIAM J. Comput., (5):1401–1421, 2000.

    Google Scholar 

  4. J.-D. Boissonnat and J. Snoeyink. Efficient algorithms for line and curve segment intersection using restricted predicates. Comput. Geom. Theory Appl., 16(1):35–52, 2000.

    MATH  MathSciNet  Google Scholar 

  5. T. Chan. Reporting curve segment intersections using restricted predicates. Comput. Geom. Theory Appl., 16(4), 2000.

    Google Scholar 

  6. F. DÁmore, P. Franciosa, and G. Liotta. A robust region approach to the computation of geometric graphs. In Algortihms-ESA’ 98, volume 1461 of Lecture Notes Comput. Sci., pages 175–186, 1998.

    Google Scholar 

  7. H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput. Syst. Sci., 38:165–194, 1989. Corrigendum in 42 1991, 249–251.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis. Systematic Zoology, 18:259–278, 1969.

    Article  Google Scholar 

  9. J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives. Proc. IEEE, 80(9):1502–1517, Sept. 1992.

    Google Scholar 

  10. D. G. Kirkpatrick and J. D. Radke. A framework for computational morphology. In G. T. Toussaint, editor, Computational Geometry, pages 217–248. North-Holland, Amsterdam, Netherlands, 1985.

    Google Scholar 

  11. A. Lingas. A linear-time construction of the relative neighborhood graph f rom the Delaunay triangulation. Comput. Geom. Theory Appl., pages 199–208, 1994.

    Google Scholar 

  12. D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation research and clustering of points in the plane. Geogr. Anal., 12(3):205–222, 1980.

    Article  Google Scholar 

  13. M. H. Overmars and E. Welzl. New methods for computing visibility graphs. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 164–171, 1988.

    Google Scholar 

  14. J. D. Radke. On the shape of a set of points. In G. T. Toussaint, editor, Computational Morphology, pages 105–136. North-Holland, Amsterdam, Netherlands, 1988.

    Google Scholar 

  15. S. V. Rao and A. Mukhopadhyay. Fast algortihm for computing β-skeletons and their relatives. In Proc. 8th Annual Int. Symp. on Algorithms and Computation, volume 1350 of Lecture Notes Comput. Sci., pages 374–383, 1997.

    Google Scholar 

  16. S. V. Rao and A. Mukhopadhyay. Efficient algortihms for computing the β-spectrum. In Proc. 12th Canad. Conf. Comput. Geom., pages 91–97, 2000.

    Google Scholar 

  17. K. J. Supowit. The relative neighborhood graph with an application to minimum spanning trees. J. A CM, 30(3):428–448, 1983.

    MATH  MathSciNet  Google Scholar 

  18. R. C. Veltkamp. The γ-neighborhood graph. Comput.Geom.Theory Appl., 1(4):227–246, 1992.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hurtado, F., Liotta, G., Meijer, H. (2001). Optimal, Suboptimal, and Robust Algorithms for Proximity Graphs. In: Dehne, F., Sack, JR., Tamassia, R. (eds) Algorithms and Data Structures. WADS 2001. Lecture Notes in Computer Science, vol 2125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44634-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44634-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42423-9

  • Online ISBN: 978-3-540-44634-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics