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Abstract. This paper deals with representation and solution of asymmetric
decision problems. We describe a new graphical representation called sequential
valuation networks, which is a hybrid of Covaliu and Oliver’s sequential
decision diagrams and Shenoy’s asymmetric valuation networks. Sequential
valuation networks inherit many of the strengths of sequential decision
diagrams and asymmetric valuation networks while overcoming many of their
shortcomings. We illustrate our technique by representing and solving a
modified version of Covaliu and Oliver’s Reactor problem.

1 Introduction

The goal of this paper is to propose a new graphical technique for representing and
solving asymmetric decision problems. The new graphical representation is called a
sequential valuation network and it is a hybrid of sequential decision diagrams
(SDDs) [3] and asymmetric valuation networks (VNs) [13]. Sequential valuation
networks adapt the best features from SDDs and asymmetric VNs and provide a fix to
some of the major shortcomings of these techniques as identified by Bielza and
Shenoy [1]. The algorithm for solving sequential valuation networks is based on the
idea of decomposing a large asymmetric problem into smaller symmetric sub-
problems and then using a special case of Shenoy’s fusion algorithm to solve the
symmetric sub-problems.

In a decision tree representation, a path from the root node to a leaf node is called a
scenario. A decision problem is said to be asymmetric if there exists a decision tree
representation such that the number of scenarios is less than the cardinality of the
Cartesian product of the state spaces of all chance and decision variables.

There are three types of asymmetry in decision problems—chance, decision, and
information. First, the state space of a chance variable may vary depending on the
scenario in which it appears. In the extreme, a chance variable may be non-existent in
a particular scenario. For example, if a firm decides not to test market a product, we
are not concerned about the possible results of test marketing. Second, the state space
of a decision variable may depend on the scenario in which it appears. Again, at the



extreme, a decision variable may simply not exist for a given scenario. For example,
if we decide not to buy a financial option contract, the decision of exercising the
option on the exercise date does not exist. Finally, the information constraints may
depend on the scenarios. For example, in diagnosing a disease with two symptoms,
the order in which the symptoms are revealed (if at all) may depend on the sequence
of the tests ordered by the physician prior to making a diagnosis. A specific example
of information asymmetry is described in Section 5. Most of the examples of
asymmetric decision problems have focused on chance and decision asymmetry.
Information asymmetry has not been widely studied.

Several graphical techniques have been proposed for representing and solving
asymmetric decision problems—traditional decision trees [11], combination of
influence diagrams (IDs) and decision trees [2], contingent influence diagrams [5],
influence diagrams with distribution trees [14], decision graphs within the ID
framework [10], asymmetric valuation network representation with indicator
valuations [13], sequential decision diagrams [3], configuration networks [7],
asymmetric influence diagrams [9], and valuation networks with coarse valuations
[8]. Each of these methods has some advantages and disadvantages. For a comparison
of decision trees, Smith-Holtzman-Matheson’s influence diagrams, Shenoy’s
asymmetric valuation networks, and Covaliu and Oliver’s sequential decision
diagrams, see [1].

Covaliu and Oliver’s SDD representation [3] is a compact and intuitive way of
representing the structure of an asymmetric decision problem. One can think of a
SDD as a clustered decision tree in which each variable appears only once (as in
influence diagrams and VNs). Also, SDDs model asymmetry without adding dummy
states to variables. However, the SDD representation depends on influence diagrams
to represent the probability and utility models. Also, preprocessing may be required in
order to make the ID representation compatible with the SDD representation so that
the formulation table can be constructed. One unresolved problem is that although a
SDD and a compatible ID use the same variables, the state spaces of these variables
may not be the same. The problem of exponential growth of rows in the formulation
table is another major problem of this method. Finally, this method is unable to cope
with an arbitrary factorization of the joint utility function. It can only handle either a
single undecomposed utility function, or a factorization of the joint utility function
into factors where each factor only includes a single variable.

Shenoy's asymmetric VN representation [13] is compact in the sense that the model
is linear in the number of variables. It is also flexible regarding the factorization of the
joint probability distribution of the random variables in the model—the model works
for any multiplicative factorization of the joint probability distribution. However, this
representation technique cannot avoid the creation of artificial states that lead to an
increased state space for some variables in the model. Some types of asymmetry
cannot be captured in the VN representation. Also, the asymmetric structure of a
decision problem is not represented at the graphical level, but instead in the details of
the indicator valuations.

This paper presents a new graphical representation called a sequential valuation
network (SVN) that is a hybrid of SDDs and asymmetric VNs. This new graphical
method combines the strengths of SDDs and VNs, and avoids the weaknesses of
either. We use the graphical ease of SDD representation of the asymmetric structure



of a decision problem, and attach value and probability valuations to variables as in
VNs. The resulting SVN representation is able to address many of the shortcomings
of VNs and SDDs as follows. The state spaces of the variables do not include artificial
states, and all types of asymmetry can be represented. This is true for the Reactor
problem and we conjecture that these aspects are true of all asymmetric problems.
Most of the asymmetric structure of a decision problem is represented at the graphical
level. A SVN does not need a separate graph to represent the uncertainty model. No
pre-processing is required to represent a decision problem as a SVN, i.e., it is not
necessary to construct a formulation table prior to solving a SVN. Finally, a SVN can
easily represent any factorization of the joint utility function.

To solve SVNs, we identify different symmetric sub-problems as paths from the
source node to the terminal node. Each such path represents a collection of scenarios.
Finally, we apply a special case of Shenoy’s [12] fusion algorithm for each sub-
problem and solve the global asymmetric problem by solving smaller symmetric sub-
problems. The strategy of breaking down an asymmetric decision problem into
several symmetric sub-problems is also used by [7] and [9].

An outline of the remainder of the paper is as follows. In Section 2, we give a
complete statement of a modified version of the Reactor problem of [3], and describe
a decision tree representation of it. In Section 3, we represent the same problem using
SVN representation and in Section 4, we sketch its solution. Finally, in Section 5, we
conclude by summarizing some strengths of our representation as compared to the
representations proposed so far.

2 The Reactor Problem

An electric utility firm must decide whether to build (D2) a reactor of advanced design
(a), a reactor of conventional design (c), or no reactor (n). If the reactor is successful,
i.e., there are no accidents, an advanced reactor is more profitable, but it is also
riskier. Past experience indicates that a conventional reactor (C) has probability 0.980

of being successful (cs), and a probability 0.020
of a failure (cf). On the other hand, an advanced
reactor (A ) has probability 0.660 of being
successful (as), probability 0.244 of a limited
accident (al), and probability 0.096 of a major
accident (am). If the firm builds a conventional
reactor, the profits are $8B if it is a success, and
−$4B if there is a failure. If the firm builds an
advanced reactor, the profits are $12B if it is a
success, −$6B if there is a limited accident, and
−$10B if there is a major accident. The firm’s
utility function is assumed to be linear in
dollars.

Before making the decision to build, the firm
has the option to conduct a test (D1 = t) or not
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Fig. 1. A Probability Model for A and R
in the Reactor Problem



(D1 = nt) of the components of the advanced reactor. The test results (R) can be
classified as bad (b), good (g), or excellent (e). The cost of the test is $1B. The test
results are highly correlated with the success or failure of the advanced reactor (A).
Figure 1 shows a causal probability model for A and R in the Reactor problem. Notice
that if A = as, then R cannot assume the state b. If the test results are bad, then as per
the probability model, an advanced reactor will result in either a limited or a major
accident, and consequently, the Nuclear Regulatory Commission will not license an
advanced reactor.

2.1 Decision Tree Representation and Solution

Figure 2 shows a decision tree representation and solution of this problem. The
optimal strategy is as follows. Do the test; build a conventional reactor if test results
are bad or good, and build an advanced reactor if test results are excellent. The
maximum expected profit is $8.13B.

The decision tree representation given in Figure 2 successfully captures the
asymmetric structure of the Reactor problem. The product of the cardinalities of the
state spaces of the decision and chance variables is 108, but there are only 21 possible
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scenarios in this problem. The decision tree is shown using coalescence, i.e., repeating
sub-trees are shown only once. With coalescence, the number of endpoints is reduced
to 12. Notice that before we can complete the decision tree representation, we need to
compute the required probabilities, i.e. P(R) and P(A|R).

3 Sequential Valuation Network Representation

In this section, we define a new hybrid representation, which we call a sequential
valuation network. First we start with some notation.

Valuation Fragments. Suppose α is a utility valuation for h , i.e., α: Ωh → �,
where Ωh denotes the state space of the variables in h, and � denotes the set of real
numbers. We shall refer to h as the domain of α. Suppose g ⊆ h, and suppose Γ ⊆ Ωg.
Then α|Γ is a function α|Γ: Γ×Ωh–g → � such that (α|Γ)(xg, xh–g) = α(xg, xh–g) for all
xg ∈ Γ, and all xh–g ∈ Ωh–g. We call α|Γ a restriction of α to Γ. We will also refer to
α|Γ    as a fragment of α. We will continue to regard the domain of α|Γ as h. Notice that
α|Ωg = α.

Often, Γ is a singleton subset of Ωg, Γ = {xg}. In this case, we write α|Γ as α|xg.
For example, suppose α is a valuation for {A, B} where ΩA = {a1, a2} and ΩB = {b1,
b2, b3}. Then, α can be represented as a table as shown in the left hand side of Table
1. The restriction of α to a1, α|a1, is shown in the right hand side of Table 1. In
practice, valuation fragments will be specified without specifying the full valuation.
In the case of utility valuations, the unspecified values can be regarded as zero
utilities (whenever the utility function decomposes additively), and in the case of
probability valuations, the unspecified values can be regarded as zero probabilities.

A complete SVN representation of the Reactor problem is given in Figure 3, Table
2, and Table 3. The SVN graph consists of six types of nodes—chance, decision,
terminal, indicator, utility and probability. Chance nodes are shown as circles and
represent random variables. In the Reactor problem representation, there are three
chance nodes, R , A , and C. Decision nodes are shown as rectangles and represent
decision variables. In the Reactor problem representation, there are two decision
nodes, D1 and D2. The terminal node is shown as an octagon and is a compact version
of the end points of a decision tree. The terminal node is labeled T in the Reactor

problem representa t ion .
Indicator valuations are shown
as triangles with a double
border, probability valuations
are shown as triangles with a
single border, and utility
valuations are shown as
diamonds. For further details,
see [4].

The structure of the sub-
graph is similar to the SDD
graphical representation of [3]

Table 1. An Example of a Valuation Fragment

Ω{A, B} α {a1}×ΩB α|a1

a1, b1 α(a1, b1) a1, b1 α(a1, b1)

a1, b2 α(a1, b2) a1, b2 α(a1, b2)

a1, b3 α(a1, b3) a1, b3 α(a1, b3)

a2, b1 α(a2, b1)

a2, b2 α(a2, b2)

a2, b3 α(a2, b3)



(with minor differences in the terminal node and the annotations associated with the
directed edges) and the attached valuations have the same semantics as VNs [13].

In the qualitative part, we first define the state spaces of all chance and decision
variables, and then specify the details of the indicator valuations. In the Reactor
problem, ΩD1

 = {t, nt}, ΩR = {b, g, e}, ΩD2
 = {a, c, n}, ΩA = {as, al, am}, and ΩC =

{cs, cf}. The indicator valuation δ1|t with domain {t}×{R, D2} is a constraint on the
choices available to the decision-maker at D2. This constraint can be specified by
listing all states in {t}×Ω{R, D2} that are allowed. Thus, the states that are allowed by
δ1|t are {(t, b, c), (t, b, n), (t, g, a), (t, g, c), (t, g, n), (t, e, a), (t, e, c), (t, e, n)}.
Similarly, the indicator valuation δ2 with domain {R, A} can be regarded as a
constraint on the state space Ω{R, A}. δ2 rules out the state (b, as) that has zero
probability. In this paper, we will regard an indicator valuation as a subset of the state
space of its domain. For example, δ1|t ⊂  {t}×Ω{R, D}, and δ2 ⊂ Ω{R, A}. During the
solution phase, the computations in some sub-problems are done on the relevant state
space (determined by the valuations that are being processed) constrained by the
indicator valuations that are associated with the sub-problem.

In the quantitative part, we specify the numerical details of the probability and
utility valuations as given in Tables 2 and 3. The numerical specifications have to be
consistent with the graphical and qualitative specifications in the following senses.
First, each valuation’s domain is specified in the graphical part. For example, the
domain of χ is C. Therefore, we have to specify the values of χ for each state in ΩC.
Second, since the edge from χ to C is directed, this means the probability valuation χ
is a conditional for C given the empty set, i.e., the marginal of χ for the empty set is a
vacuous probability valuation. Third, if we have probability or utility valuations
specified on domains for which we have indicator valuations, then it is only necessary

α
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Fig. 3. A SVN Graphical Representation of the Reactor Problem



to specify the values of the valuations
for the states permitted by the indicator
valuations. For example, probability
valuation ρ has domain {R, A}. Since we
have indicator valuation δ2 with the
same domain, it is sufficient to specify
the values of ρ for the states in δ2. Thus,
we can regard ρ as a valuation fragment.
Also, since the edge from ρ  to R  is
directed, the values of ρ have to satisfy
the condition ρ↓A  = ιA where ιA is the
vacuous probability valuation with

domain {A}, i.e., a valuation whose
values are identically one. Fourth, it
is sufficient to specify values of
utility or probability valuations for
those states that are allowed by the
annotations on the edges between
variables. For example, consider the
utility valuation fragment υ2|a. The
domain of this valuation is {D2, A}.
However, the annotation on the edge
from D 2 to A  tells us that all
scenarios that include variable A
have D2 = a. Therefore, it is
sufficient to specify υ2 for all states
in {a}×ΩA. Similarly, it is sufficient
to specify υ3|c  for {c}×Ω C , and
sufficient to specify δ1|t for {t}×Ω{R,

D2}. Utility valuation υ4|n is only specified for D2 = n. Notice that when D2 = n, the
next node in the SVN is the terminal node T. Therefore, υ4|n cannot include either A
or C in its domain.

Utility valuations υ1, υ2|a, υ3|c, and υ4|n are additive factors of the joint utility
function, and probability valuations χ, α, and δ are multiplicative factors of the joint
probability distribution. In the Reactor problem, we have a factorization of the joint
probability distribution into conditionals, i.e., a Bayes net model. But this is not a
requirement of the sequential valuation network representation. As we will see in the
next section, the SVN solution technique will work for any multiplicative
factorization of the joint probability distribution.

4 Solving a SVN Representation

The main idea of the SVN solution method is to recursively decompose the
problem into smaller sub-problems until the sub-problems are symmetric, then to

Table 2. Utility Valuation Fragments in the
Reactor Problem

ΩD1
υ1 {a}×ΩA υ2|a

nt 0 a, as 12

t –1 a, al –6

a, am –10

{c}×ΩC υ3|c {n} ⊂ ΩD2
υ4|n

c, cs 8 n 0

c, cf –4

Table 3. Probability Valuation Fragments in the
Reactor Problem

ΩC χ ΩA α δ2 ρ

cs 0.98 as 0.660 b, al 0.288

cf 0.02 al 0.244 b, am 0.313

am 0.096 g, as 0.182

g, al 0.565

g, a 0.437

e, as 0.818

e, al 0.147

e, am 0.250



solve the symmetric sub-problems, using a special case of the symmetric fusion
algorithm [12]. Finally, the solutions to the sub-problems are recursively combined to
obtain the solution to the original problem. We begin with some notation.

4.1 Combination

Consider two utility valuations ψ1 for h1 and ψ2 for h2. As defined in [12], we
combine utility valuations using pointwise addition assuming an additive factorization
of the joint utility function. In the SVN method, each sub-problem deals with
valuation fragments that are relevant to the sub-problem. We start with defining
combination of utility fragments.

Case 1. [Combination of utility fragments] Suppose g1 ⊆  h1, and g2 ⊆  h2, and

consider two utility fragments ψ1|Γ1 and ψ2|Γ2 where Γ1 ⊆ Ωg1
, and Γ2 ⊆ Ωg2

. Let Γ

denote ((Γ1×Ωh1∪h2−g1
)∪(Γ2×Ωh1∪h2−g2

))↓g1∪g2. The combination of ψ 1|Γ1 and

ψ2|Γ2, written as (ψ1|Γ1)⊗(ψ2|Γ2), is a utility valuation ψ for h1∪h2 restricted to Γ
given by

(ψ|Γ)(y) = (ψ1|Γ1)(y↓g1, y↓h1–g1) + (ψ2|Γ2)(y↓g2, y↓h2–g2) if y ↓g1 ∈ Γ1 and

y↓g2 ∈ Γ2

= (ψ1|Γ1)(y↓g1, y↓h1–g1) if y↓g1 ∈ Γ1 and y↓g2 ∉ Γ2

= (ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∉ Γ1 and y↓g2 ∈ Γ2

for all y ∈ Γ×Ω(h1∪h2)–(g1∪g2).

Case 2. [Combination of a utility fragment and a probability fragment] Suppose g1

⊆ h1, and g2 ⊆ h2, and consider utility fragment ψ1|Γ1 and probability fragment ψ2|Γ2

w h e r e  Γ1 ⊆ Ωg1
,  a n d  Γ2 ⊆ Ωg2

.  L e t  Γ  d e n o t e

((Γ1×Ωh1∪h2−g1
)∩(Γ2×Ωh1∪h2−g2

))↓g1∪g2. The combination of ψ 1|Γ1 and ψ2|Γ2,

written as (ψ1|Γ1)⊗(ψ2|Γ2), is a utility valuation ψ for h1∪h2 restricted to Γ given by:

(ψ|Γ)(y) = (ψ1|Γ1)(y↓g1, y↓h1–g1)(ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∈ Γ1 and y↓g2 ∈ Γ2

and 0 otherwise, for all y ∈ Γ×Ω(h1∪h2)–(g1∪g2).

Case 3. [Combination of probability fragments] Suppose g1 ⊆ h1, and g2 ⊆ h2, and

consider probability fragments ψ1|Γ1 and ψ2|Γ2 for h1 and h2, respectively, where Γ1

⊆ Ωg1
, and Γ2 ⊆  Ω g2

. Let Γ denote ((Γ1×Ωh1∪h2−g1
)∩(Γ2×Ωh1∪h2−g2

))↓g1∪g2. The

combination of ψ1|Γ1 and ψ 2 |Γ2, written as (ψ1|Γ1)⊗(ψ2|Γ2), is a probability

valuation ψ for h1∪h2 restricted to Γ given by

(ψ|Γ)(y) = (ψ1|Γ1)(y↓g1, y↓h1–g1)(ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∈ Γ1 and y↓g2 ∈ Γ2

and 0 otherwise for all y ∈ Γ×Ω(h1∪h2)–(g1∪g2). The reactor problem described in this

paper does not require this case of combination.



Note that, the combination of two utility valuations is a utility valuation; the
combination of two probability valuations is a probability valuation; and the
combination of a utility and a probability valuation is a utility valuation.

As for the marginalization and division operations, the SVN method uses the same
marginalization and division operations as defined in [12]. For further details, see [4].

4.2 Tagging

The recursive algorithm of solving lower level sub-problems and sending the
results to an upper level sub-problem requires the use of a concept that we call
tagging. Suppose ψ is a utility valuation with domain h, and suppose X ∉ h. Tagging
ψ by X = x is denoted by ψ⊗(ιX|x), where ιX|x is the vacuous utility valuation with
domain {X} restricted to X = x. A vacuous utility valuation is a valuation that is
identically zero. This operation basically extends the domain of ψ  from h to
h∪{X} without changing the values of ψ.

4.3 The Fusion Algorithm

The details of the fusion algorithm are given in [12]. In the context of sequential
valuation networks, the fusion algorithm is the same as rollback in decision trees.
Fusion with respect to decision variables is similar to the “folding back” operation in
decision trees [11] and fusion with respect to chance variables is similar to the
“averaging out” operation in decision trees [11]. Further details of the fusion
algorithm for sequential valuation networks are found in [4].

4.4 Decomposition of the Problem

Starting from the SVN graphical representation, we decompose the decision problem
into symmetric sub-problems. The symmetric sub-problems are identified by
enumerating all distinct directed paths and sub-paths from the source node to the
terminal node in the SVN graphical representation.

Variables. We start with the root node, say S. Next we identify all directed arcs in
the SVN that lead out of the source node S. For each directed arc, say to variable X,
we create a new sub-problem consisting of variables S and X on the path from the
source node to variable X. We retain the annotation on the edges. We recursively
proceed in this manner until all paths and sub-paths have been enumerated. Notice
that the terminal node is not a variable and we do not include it in any sub-problem.
The resulting directed tree is called a “decomposition tree.” Figure 4 shows the
decomposition tree that is constructed for the reactor problem.

Utility and Indicator Valuations. We start at the root node, say S, of the
decomposition tree with the set of all utility valuation fragments included in the SVN
representation. All valuation fragments whose domains are included in the set of
variables associated with the sub-problem are associated with this sub-problem. The
valuations that are not are passed on to the child sub-problems suitably decomposed



as per the annotation on the edges leading to the child sub-problems. This is
recursively repeated.

In the Reactor problem, we start with utility and indicator valuations υ1, υ2|a, υ3|c,
υ4|n, δ1|t, and δ2. Valuation υ1 with domain {D1} is associated with sub-problem 8.
Of the remaining valuations, only δ1|t has D1 in its domain. Since there is no fragment
of δ1|t that has D1 = nt, Sub-problem 7 receives valuations υ2|a, υ3|c, υ4|n, δ1|t, and
δ2. Sub-problem 6 receives valuations υ2|a, υ3|c, υ4|n, and δ2.

This process of associating utility and indicator valuations with sub-problems
continues recursively as above. The resulting distribution of utility and indicator
valuations in the sub-problems is shown in Figure 4.

Probability Valuations. We start by assuming that we have a factorization of the
joint probability distribution for all chance variables in the problem. In the reactor
problem, for example, the joint probability distribution τ for {C, A, R} is given by τ =

χ⊗α⊗ρ.

We recursively compute the probability valuation associated with a leaf sub-
problem that ends with a chance variable, say Cm, as follows. Let Γ = {C1, …, Cm}
denote the chance variables on a path from the source node to the leaf node whose last
variable is Cm, and let P = {π1, …, πk} denote the set of probability potentials with
domains h1, …, hk, respectively, such that (π1⊗…⊗πk)↓Γ is the joint distribution for
the chance variables in Γ. The probability valuation associated with the leaf sub-
problem whose last variable is Cm is given by π↓Γ/π↓Γ−{Cm}, where π  =
⊗{πj | Cm ∈ hj}. Furthermore, the set of probability valuations associated with the set
of chance variables Γ−{Cm} is ∪ { πj | Cm ∉ hj}∪{π↓Γ−{Cm}}, i .e. ,

D1 = nt  D1 = t  

 D1  

υ1  

 D1, R  

 D1, D2  D1, R, D2 

 D1, R, D2, A 

υ2|a, δ2,    

(α⊗ρ)/(α⊗ρ)↓R   

 D1, R, D2, C

υ3|c, χ   

 D1, D2, A  D1, D2, C 

D2 = c  D2 = a  D2 = c  

Sub-problem 1 Sub-problem 2 Sub-problem 3 Sub-problem 4 

Sub-problem 5 Sub-problem 6 

Sub-problem 7 

Sub-problem 8 

(α⊗ρ)↓R 

υ2|a, α υ3|c, χ   

δ1|t, υ4|n  D2 = a  υ4|n  

Fig. 4. The Decomposition Tree for the Reactor Problem



(⊗{πj | Cm ∉ hj}⊗π↓Γ−{Cm})↓Γ−{Cm} is the joint distribution for the chance variables
in Γ−{Cm}. Thus, we can recursively compute the probability valuations associated
with the other sub-problems whose last variable is a chance node. It follows from
Lauritzen and Spiegelhalter [1988] that π↓Γ/π↓Γ−{Cm} is the conditional probability
distribution for Cm given the variables in Γ−{Cm}. For further details on how the sub-
problems are populated with indicator, utility, and probability valuations, see [4].

4.5 Solving the Sub-Problems

We start with solving the leaf sub-problems. After solving a sub-problem (as per
the definition of fusion stated in [12]), we pass the resulting utility valuation fragment
to its parent sub-problem and delete the sub-problem. In passing the utility valuation
fragment to the parent sub-problem, if the domain of the utility valuation fragment
does not include any variables in the parent sub-problem, we tag the utility valuation
with the value of the last variable in the parent sub-problem that is in the annotation.
We recursively continue this procedure until all sub-problems are solved.

Consider the decomposition of the Reactor problem into the eight sub-problems as
shown in Figure 4. Consider Sub-problem 1 consisting of valuation fragments υ2|a,
(ρ⊗α)/(ρ⊗α)↓R, and δ2. We fuse the valuation fragments with respect to A using the
definition of fusion from [12].

FusA{υ2|a, (α⊗ρ) /(α⊗ρ)↓R} = {[υ2|a⊗ (α⊗ρ)/(α⊗ρ)↓R]
−A

} = {υ5|a}.

The resulting utility valuation υ5|a is sent to parent Sub-problem 5. Since υ5|a
includes D2 in its domain, there is no need for tagging. All computations are done on
relevant state spaces as constrained by indicator valuation δ2. The details of the
computation are shown in Table 4. The solutions to the remainder of the sub-problems
are given in [4].

5 Summary and Conclusions

The main goal of this paper is to propose a new representation and solution technique
for asymmetric decision problems.

The advantages of SVNs over SDDs are as follows. SVNs do not require a separate
influence diagram to represent the uncertainty model. SVNs can represent a more
general uncertainty model than SDDs, which like influence diagrams assume a Bayes
net model of uncertainties. All asymmetries can be represented in SVNs. This is not
true for SDDs. For example, in the Reactor problem, the impossibility of R = b when
A  = as is not represented in a SDD representation of the problem. SVNs do not
require a separate formulation table representation as in SDDs. Finally, SVNs can
handle any factorization of the joint utility function whereas SDDs as currently
described can only be used with either an undecomposed joint utility function or with
a factorization of the joint utility function into singleton factors.



The advantages of SVNs over VNs are as follows. SVNs represent most of the
asymmetry at the graphical level (some asymmetry is represented in the details of the
indicator valuations) whereas in the case of VNs, all asymmetry is represented in the
details of the indicator valuations. The state spaces of chance and decision nodes in
SVNs do not include dummy states. All types of asymmetry can be represented in
SVNs whereas VNs cannot represent some types of asymmetry. Finally, the modeling
of probability distributions in SVNs is as intuitive as in influence diagrams (assuming
we are given a Bayes net model for the joint probability distribution).

One main advantage of the SVN technique is that we do not need to introduce
dummy states for chance or decision variables. To see why this is important, we will
describe a simple example called Diabetes diagnosis. Consider a physician who is
trying to diagnose whether or not a patient is suffering from Diabetes. Diabetes has
two symptoms, glucose in urine, and glucose in blood. Assume we have a Bayes net
model for the three variables—Diabetes (D), glucose in blood (B) and glucose in urine
(U)—in which the joint distribution for the three variables P(D, B, U) factors into
three conditionals, P(D), P(B  | D), and P(U | D, B). Furthermore, assume that D has
two states, d for Diabetes is present, and ~d for Diabetes is absent, U has two states, u
for elevated glucose levels in urine, and ~u for normal glucose level in urine, and B
has two states, b for elevated glucose levels in blood, and ~b for normal glucose level
in blood. The physician first decides, FT (first test), whether to order a urine test (ut)
or a blood test (bt) or no test (nt). After the physician has made this decision and
observed the results (if any), she next has to decide whether or not to order a second
test (ST). The choices available for the second test decision depend on the decision
made at FT. If FT = bt, then the choices for ST are either ut or nt. If FT = ut, then the
choices for ST are either bt or nt. Finally, after the physician has observed the results
of the second test (if any), she then has to decide whether to treat the patient for
Diabetes or not. As described so far, the problem has three chance variables, D, U, B,
and three decision variables FT (first test), ST  (second test), and TD  (treat for
Diabetes). Using the SVN technique, one can represent this problem easily without
introducing any more variables or any dummy states. A SVN graphical representation

Table 4. The Details of Solving Sub-problem 1

{a}×δ2 υ2|a

(α⊗ρ)/

(α⊗ρ)↓R

υ2|a⊗(α⊗ρ)

/(α⊗ρ)↓R = ϕ

ϕ−A =

υ5|a

a, b, al −6 0.700 −4.200 −7.200

a, b, am −10 0.300 −3.000

a, g, as 12 0.400 4.800 0.649

a, g, al −6 0.460 −2.760

a, g, am −10 0.140 −1.400

a, e, as 12 0.900 10.800 10.043

a, e, al −6 0.060 −0.360

a, e, am −10 0.040 −0.400



is shown in Figure 5. In this figure, the indicator valuation fragment ι|FT = {bt, ut}
represents a constraint on ST as described above, the utility valuations κ1, κ2, and κ3
represents a factorization of the total cost of diagnosing and treating the patient for
Diabetes, and the probability valuations δ = P(D), β = P(B  | D), and υ = P(U | B , D)
represent a factorization of the joint probability distribution into conditionals specified
by the Bayes net model. Notice that the SVN graphical representation has several
directed cycles. However, these directed cycles are disallowed by the annotations on
the directed edges and the indicator valuation ι, which forbids, e.g., FT = bt, ST = bt,
and also FT = ut, ST = ut.

Representing this problem using Smith-Holtzman-Matheson’s asymmetric
influence diagrams [14] or Shenoy’s asymmetric valuation networks [13] is possible
but only after either introducing additional variables or introducing dummy states for
the existing variables. This is because if one uses the existing variables, the modeling
of information constraints would depend on the FT decision. If FT = bt, then the true
state of B is revealed prior to making the ST decision, and the true state of U is
unknown when the ST decision is made. However if FT = ut, then the true state of U
is known prior to making the ST decision and the true state of B is unknown when the
ST  decision is made. We call this aspect of the decision problem information
asymmetry. Using either traditional influence diagrams or valuation networks, it is not
possible to model this information asymmetry without either introducing additional
variables or introducing dummy states for existing variables. In either of these cases,
the modeling will need to adapt the Bayes net to a model that includes additional
variables or dummy states or both. We leave the details of representing the Diabetes
diagnosis problem using either influence diagrams or valuation networks or some
other technique to the ingenuity of the reader.

FT

ST

B

U

DTD

FT = bt

FT = ut

FT = nt

FT = bt

FT = ut

FT = ut

ST = bt

ST = ut

FT = bt

ST = nt

δβυ

κ1 κ3κ2

T

ι|FT={bt, ut}

Fig. 5. A SVN Representation of the Diabetes Diagnosis Problem
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