Skip to main content

Coarsening Approximations of Belief Functions

  • Conference paper
  • First Online:
Book cover Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2001)

Abstract

A method is proposed for reducing the size of a frame of discernment, in such a way that the loss of information content in a set of belief functions is minimized. This approach allows to compute strong inner and outer approximations which can be combined efficiently using the Fast Möbius Transform algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bauer. Approximation algorithms and decision making in the Dempster-Shafer theory of evidence-an empirical study. International Journal of Approximate Reasoning, 17:217–237, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Denœux. Inner and outer clustering approximations of belief structures. In Proceedings of IPMU’2000, volume 1, pages 125–132, Madrid, July 2000.

    Google Scholar 

  3. D. Dubois and H. Prade. Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell., 4:244–264, 1988.

    Article  Google Scholar 

  4. D. Dubois and H. Prade. Consonant approximations of belief measures. International Journal of Approximate Reasoning, 4:419–449, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Harmanec. Faithful approximations of belief functions. In K. B. Laskey and H. Prade, editors, Uncertainty in Artificial Intelligence 15 (UAI99), Stockholm, Sweden, 1999.

    Google Scholar 

  6. Lowrance J. D, T. D. Garvey, and T. M. Strat. A framework for evidential-reasoning systems. In T. Kehler et al., editor, Proceedings of AAAI’86, volume 2, pages 896–903, Philadelphia, August 1986. AAAI.

    Google Scholar 

  7. A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Englewood Cliffs, NJ., 1988.

    MATH  Google Scholar 

  8. R. Kennes. Computational aspects of the Möbius transform of graphs. IEEE Trans. SMC, 22:201–223, 1992.

    MATH  MathSciNet  Google Scholar 

  9. G. J. Klir and M. J. Wierman. Uncertainty-Based Information. Elements of Generalized Information Theory. Springer-Verlag, New-York, 1998.

    MATH  Google Scholar 

  10. P. Orponen. Dempster’s rule of combination is # p-complete. Artificial Intelligence, 44:245–253, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Petit-Renaud and T. Denœux. Handling different forms of uncertainty in regression analysis: a fuzzy belief structure approach. In A. Hunter and S. Pearsons, editors, Symbolic and quantitative approaches to reasoning and uncertainty (EC-SQARU’99), pages 340–351, London, June 1999. Springer Verlag.

    Google Scholar 

  12. G. Shafer. A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

    MATH  Google Scholar 

  13. P. Smets. The Transferable Belief Model for quantified belief representation. In D. M. Gabbay and P. Smets, editors, Handbook of Defeasible reasoning and uncertainty management systems, volume 1, pages 267–301. Kuwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  14. P. Smets. Practical uses of belief functions. In K. B. Laskey and H. Prade, editors, Uncertainty in Artificial Intelligence 15 (UAI99), pages 612–621, Stockholm, Sweden, 1999.

    Google Scholar 

  15. B. Tessem. Approximations for efficient computation in the theory of evidence. Artificial Intelligence, 61:315–329, 1993.

    Article  MathSciNet  Google Scholar 

  16. N. Wilson. Algorithms for dempster-shafer theory. In D. M. Gabbay and P. Smets, editors, Hanbook of defeasible reasoning and uncertainty management. Volume 5: Algorithms for Uncertainty and Defeasible Reasoning, pages 421–475. Kluwer Academic Publishers, Boston, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yaghlane, A.B., Denœux, T., Mellouli, K. (2001). Coarsening Approximations of Belief Functions. In: Benferhat, S., Besnard, P. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2001. Lecture Notes in Computer Science(), vol 2143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44652-4_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-44652-4_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42464-2

  • Online ISBN: 978-3-540-44652-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics