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First-order characterization and
modal analysis of indiscernibility and
complementarity in information systems
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118 route de Narbonne, 31062 Toulouse Cedex 4, France
? Department of Mathematical Logic with Laboratory for Applied Logic
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Abstract. In this paper, we study indiscernibility relations and com-
plementarity relations in information systems. The first-order charac-
terization of indiscernibility and complementarity is obtained through a
duality result between information systems and certain structures of re-
lational type characterized by first-order conditions. The modal analysis
of indiscernibility and complementarity is performed through a modal
logic which modalities correspond to indiscernibility relations and com-
plementarity relations in information systems.

1 Introduction

Information systems are knowledge-based systems which describe properties of
objects in terms of attributes. They provide an effective and broadly applicable
framework for the management and the processing of uncertainty, a crucial issue
in the development of reasoning systems that are concerned with incomplete in-
formation. The increasing number of knowledge-based systems that manage and
process incomplete information leads us to develop formal methods for reason-
ing about uncertain knowledge discovered from information systems. Initiated
by Pawlak [8] and furthered by Demri [2], Demri, Orlowska and Vakarelov [3],
Ortowska [5, 6], Orlowska and Pawlak [7] and Vakarelov [9, 10, 11, 12], the theo-
retical foundations of information systems investigate the relationships between
objects determined by their properties. All the relations defined in this context
are either indistinguishability relations or distinguishability relations. Indistin-
guishability relations indicate the way objects share properties whereas distin-
guishability relations indicate the way properties differentiate objects. Typical
issues are the following: first-order characterization and modal analysis of var-
ious classes of indistinguishability relations and distinguishability relations. To
obtain the first-order characterization of a class of indistinguishability relations
and distinguishability relations, one has to find first-order conditions such that
relations satisfying these conditions correspond to the indistinguishability rela-
tions and the distinguishability relations of this class derived from information
systems. To perform the modal analysis of a class of indistinguishability relations



and distinguishability relations, one has to address the questions of axiomatiza-
tion/completeness and decidability /complexity of a modal logic which modalities
correspond to the indistinguishability relations and the distinguishability rela-
tions of this class. In this paper, extending the line of reasoning suggested by
Demri, Ortowska and Vakarelov [3], we study indiscernibility relations and com-
plementarity relations in information systems. The first-order characterization
of indiscernibility and complementarity is obtained through a duality result be-
tween certain structures of relational type characterized by first-order conditions
and information systems. The modal analysis of indiscernibility and comple-
mentarity is performed through a modal logic which modalities correspond to
indiscernibility relations and complementarity relations in information systems.

2 Indiscernibility and complementarity

Adapted from Pawlak [8], an information system will be any structure (Att,
Obj,{Val, | a € Att}, f) where:

— Att is a nonempty set of attributes;

— Obj is a nonempty set of objects;

— For all a € Att, Val, is a nonempty subset of a fixed nonempty set Val of
properties;

— f is a function with domain Att x Obj and range the power set of Val such
that for all a € Att and for all @ € Obj, f(a,z) C Val,.

We should consider, for example, the information system S = (Att, Obj, {Val, |
a € Att}, f) defined as follows. Define:

— Att is {Languages, Sports};

— Obj is {Ann, Bob, Cindy, Daniel, Emma};

— Valranguages 1s {Arabic, Bulgarian, Castilian, Dutch};
— Valsports 1s {athletics, basketball, cycling};

— f is the function defined by table 1.

In this information system, the object Bob possesses the properties Arabic and
Bulgarian of mastering Arabic and Bulgarian whereas the object Daniel pos-
sesses the properties athletics and cycling of practising in athletics and cycling.
Information systems constitute the starting point for the formal examination of
sentences of the form “object z is indistinguishable from object y” or sentences
of the form “object z is distinguishable from object y”. In this respect, indis-
cernibility relations and complementarity relations play an important role. Let
S = (Att, 0bj, {Val, | a € Att}, f) be an information system. For all &, y € Obj,
define:

Strong indiscernibility: z =g y iff for all a € Att, f(a,z) = f(a,y);
Strong complementarity: zRgy iff for all a € Att, f(a,z) = (Val, \ f(a,y)).



f Ann Bob Cindy Daniel Emma

Languages |{Arabic, {Arabic, {Castilian, |{Arabic, {Arabic,
Bulgarian} |Bulgarian} |Dutch} Bulgarian} |Castilian}

Sports {athletics, |{athletics, |{cycling} {athletics, |{cycling}
basketball} |basketball} cycling}

Table 1. Example of an information system.

Intuitively, two objects are strongly indiscernible if all their respective sets of
properties determined by the attributes are indiscernible whereas two objects
are strongly complementary if all their respective sets of properties determined
by the attributes are complementary. The information system of table 1 is such
that Ann =g Bob and AnnRgsCindy. For all ,y € Obj, define:

Weak indiscernibility: z =g y iff there is a € Att such that f(a,z) = f(a,y);
Weak complementarity: zpgy iff there is a € Att such that f(a,z) = (Valg \
fla,y)).

Intuitively, two objects are weakly indiscernible if some of their respective sets of
properties determined by the attributes are indiscernible whereas two objects are
weakly complementary if some of their respective sets of properties determined
by the attributes are complementary. The information system of table 1 is such
that Ann =g Daniel and Annps Emma. The structure (Obj, =g, Rg, =g, ps) is
called abstract structure derived from S. We leave it to the reader to prove the
following lemmas.

Lemmal. Forall z,y,z € Obj:

tRsx;

If xRgy then yRsz;

If tRsy and y =5 z then zRgz;
If tRsy and yRgz then © =5 z.

r =g x;

If x =5 y then y =5 x;

Ifr =sy and y =5 z then x =g z;
If £ =5 y and yRsz then xRsz;

Lemma?2. Forall z,y,z € Obj:

IES x;

If x Z2g y then y =g x;

If x Z2gy and y =5 z then x =g z;
If £ =25 y and yRsz then zpgz;

psx;

If xpsy then ypsz;

If xpsy and y =5 z then zpsz;
If xpsy and yRsz then z =g z.

Lemma 1 and lemma 2 motivate the following definition. An abstract structure
is a structure (W, =, R, =, p) where:

— W is a nonempty set of possible worlds;
and R are binary relations on W subject to the conditions of lemma 1;
and p are binary relations on W subject to the conditions of lemma 2.
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In section 3, the concept of abstract structure will be of use to us for the purpose
of giving a first-order characterization of indiscernibility relations and comple-
mentarity relations in information systems. In section 4, the concept of abstract
structure will be of use to us for the purpose of giving a modal analysis of
indiscernibility relations and complementarity relations in information systems.

3 First-order characterization

The concept of abstract structure is of use to us for the purpose of giving a first-
order characterization of indiscernibility relations and complementarity relations
in information systems. The following important theorem explains the connec-
tion between abstract structures and information systems. All the section 3 is
devoted to its proof.

Theorem 3. Let F' = (W, =, R, =, p) be an abstract structure. There is an in-
formation system S = (Att,0bj, {Val, | a € Att}, f) such that Obj = W and
for all z,y € Oby:

r=syiffe=y; r=syiffe=y;
rRsy iff xRy, zpsy uf zpy.

As a consequence, abstract structures and information systems have equal math-
ematical content as far as indiscernibility relations and complementarity relations
are concerned. Holding the proof of theorem 3 in abeyance for a while, we pro-
ceed to introduce the concepts of indiscernibility set, positive set, negative set
and good set. Two subsets A and B of W are called comparable if A C B or
B C A. A set of pairwise comparable subsets of W is called a chain. A subset A
of W such that for all z,y € W:

— Ifz=yand ¢ € A then y € A;
— Ifz=yand z & A then y & A;

will be defined to be an indiscernibility set. An indiscernibility set A such that
for all z,y € W:

— If zRy and z € A then y & A;

will be defined to be a positive set. An indiscernibility set A such that for all
x,yeW:

— If zRy and = ¢ A then y € A;

will be defined to be a negative set. An indiscernibility set A such that A is a
positive set and A is a negative set will be defined to be a good set. The proof
of the following lemmas is left as an exercise for the reader.

Lemmad4. — () and W are indiscernibility sets.
— For all x € W, = () is an indiscernibility set.
— Forallz,ye W, = (x)U = (y) is an indiscernibility set.



— For all indiscernibility sets A, (W \ A) is an indiscernibility set.
— For all families (A; | i € I) of indiscernibility sets, | J(A; | ¢ € I) is an
indiscernibility set and (\(4; | i € I) is an indiscernibility set.

Lemma5. — 0 is a positive sel.
— For all . € W, = (2) is a positive set.
— For allz,y € W, if xRy then = (z)U = (y) is a positive set.
For all positive sets A, (W \ A) is a negative set.
— For all chains (A; | i € I) of positive sets, | J(A; | i € I) is a positive set.

Lemma6. — W is a negative set.
— For all . € W, # (2) is a negative set.
— For allz,y € W, if xRy then # (z)N # (y) is a negative set.
— For all negative sets A, (W \ A) is a positive set.
For all chains (A; | i € I) of negative sets, ((Ai | ¢ € I) is a negative set.

Lemma 7. Let A be a positive set and x € W be such that AU = () is not a
positive set. Then there is y € W such that y € A and zRy.

Lemma8. Let A be a negative set and © € W be such that AN # (z) is not a
negative set. Then there is y € W such that y € A and zRy.

A more important further consequence is the following lemma.
Lemma9. Let A be a positive set, B be a negative set and & € W be such that

A C B. Then (AU = () is a positive set and AU = (z) C B) or (BN # (z) is a
negative set and A C BN # (z)).

Proof. See Balbiani and Vakarelov [1] for details.

An important related result is the following proposition.

Proposition10. Let A be a positive set and B be a negative set such that A C
B. Then there is a good set C' such that A C C and C' C B.

Proof. See Balbiani and Vakarelov [1] for details.

A set a of good sets such that for all z,y € W:

— If z 22 y then there is A € a such that z € A iff y € A;
— If zpy then there is A € a such that z € A iff y € A;

will be defined to be a nice set. The following lemma is easy to check.

Lemma 11. The set of all good sets is a nice set.
Proof. See Balbiani and Vakarelov [1] for details.

A less obvious result is the following lemma.



Lemma12. For all x,y € W:

— & = y iff for all nice sets a and for all A € a, x € A iffy € A;

— xRy iff for all nice sets a and for all A€ a, x € Aiffy¢ A;

x = y iff there is a nice set a such that for all A €a, x € A iff y € A;
— xzpy iff there is a nice set a such that for all A€ a, x € A iffy & A.

Proof. See Balbiani and Vakarelov [1] for details.

Referring to lemma 12, we easily obtain a proof of theorem 3. Let S = (Att, Obj,
{Val, | a € Att}, f) be the information system defined as follows. Define:

— Att is the set of all nice sets;

— Obj is the set of all possible worlds;

— For all a € Att, Val, is the set of all good sets A such that A € a;

— For all a € Att and for all z € Obj, f(a,x) is the set of all good sets A such
that A € @ and z € A.

The reader may easily verify that for all z,y € Obj:

r =g yiff x =y; r=gyiff z =2y,
zRsy iff z Ry; zpsy iff zpy.

4 Modal analysis

The concept of abstract structure is of use to us for the purpose of giving a modal
analysis of indiscernibility relations and complementarity relations in informa-
tion systems. The reader is assumed to be familiar with the general concepts of
modal logic, see Hughes and Cresswell [4] for details. Seeing that the condition
xRz of lemma 1 and the condition zpz of lemma 2 are not modally definable, we
need to introduce the concept of nonstandard abstract structure. A nonstandard
abstract structure is a structure (W, =, R, =, p) where:

— W is a nonempty set of possible worlds;

— = and R are binary relations on W subject to the conditions of lemma 1 but
the condition z Rz;

— = and p are binary relations on W subject to the conditions of lemma 2 but
the condition zpz.

The linguistic basis of our modal logic is the propositional calculus enlarged with
the modalities [=], [R], [&] and [p] corresponding to the indiscernibility relations
and the complementarity relations in information systems. We define the set of
all formulas as follows:

—Au=pl-Al(AVB) [ [EARIA][=]A] [p]4;

where p ranges over a countably infinite set of propositional variables. The other
standard connectives are defined by the usual abbreviations. In particular, (=)A
is =[=]-A4, (R)A is =[R]-A, (2)A is =[=]=A and (p)A is =[p]-A. We follow
the standard rules for omission of the parentheses. A model (respectively: a
nonstandard model) is a structure (W, =, R, =, p, V) where:



— (W, =, R, =, p) is an abstract structure (respectively: a nonstandard abstract
structure);

— V' is a function with domain the set of all propositional variables and range
the power set of W.

Let M = (W, =, R, =, p, V) be either a model or a nonstandard model. We define
the relation “formula A is true at possible world z in M”, denoted M,z | A,
as follows:

- M,zEpiffz € V(p);

- M,z = -Aiff M,z £ A

-Me=EAVBifi Mz |= Aor M,z = B;

-Mzl=[E]Aiff forally e W, if 2 =y then M,y = A4;
M,z | [R]A iff for all y € W, if 2Ry then M,y = A;

- MzpE[=Aiffforallye W, if 2 =2 y then M,y | A4;
M,z = [p]Aiff for all y € W, if zpy then M,y = A.

An alternative formulation is “M satisfies formula A at possible world z”. The
following lemma is basic.

Lemma 13. The following conditions are equivalent.

1. A is true at some possible world in some finite model;

2. A is true at some possible world in some model;

3. A is true at some possible world in some nonstandard model;

4. A is true at some possible world in some finite nonstandard model.

Proof. (1 implies 2): Obvious.

(2 implies 3): Obvious.

(3 implies 4): Let M = (W, =, R,=,p,V) be a nonstandard model and M’ =
(W',=',R',~,p', V') be the finite nonstandard model defined as follows. Let
I'y be the smallest set of formulas containing the set Sf(A) of all subformulas
of A and such that for all formulas B, if [Z]|B € 'y or [R|BE€ I'y or [Z]|B €4
or [p|B € I'y then [=]|B € I'y and [R]B € I'y and [=]B € I'y and [p|B € I'4.
It should be remarked that Card(I'a) < 4 x Card(Sf(A)). Let =p, be the

equivalence relation on W defined as follows. For all z,y € W, define:
— z =p, y iff for all formulas B, if B € I'4 then M,z = B iff M,y = B.

For all € W, the equivalence class of 2 modulo =p, is denoted | « |. The
quotient set of W modulo =p, is denoted by W=, Define:

— W' is W|:FA;
— Forall z,y € W, | z |[='| y | iff for all formulas B, if [=]B € I'y then:

If M,z |E [=]B then M,y |= |
If M,y = [=]B then M,z |= |
If M,z |=[R]B then M,y = |
If M,y = [R]B then M,z = [R

B; If M,z | [=]B then M,y |=
B; If M,y = [=]B then M,z |=

B; If M,z = [p]B then M,y |= [p]B;
B; If M,y |= [p]B then M,z |= [p|B

= =] B;
= (=]B

3

=

]
]
]
]

bl



— Forall z,y e W, |2z | R |y | iff for all formulas B, if [R]|B € I'y then:

If M,z |=[=]B then M,y = [R|B; If M,z |= [=]B then M,y = [p
If M,y = [=]B then M,z = [R|B; If M,y = [=]B then M,z = [p
If M,z |= [R]B then M,y = [=]B; If M,z |= [p]B then M,y = [=
If M,y = [R]B then M,z = [=]B; If M,y |= [p]B then M,z = [=
— Forall z,y € W, |z |2| y| iff for all formulas B, if [~]B € I'4 then:

If M,z |= [=]B then M,y | [=]B; If M,z |= [p|B then M,y = [R]B;
If M,y =[=]B then M,z | [=]B; If M,y |=[p]B then M,z = [R]B;

— Forall z,y e W, |2 | p' | y|iff for all formulas B, if [p]B € I'y then:

If M,z |= [Z]B then M,y = [R|B; If M,z |= [p]B then M,y = [=]B;
If M,y = [=]B then M,z = [R|B; If M,y = [p]B then M,z | [=]B;

————

—

For all propositional variables p, V'(p) is V(p)

|:FA :
It follows immediately that M’ is a filtration of M. As a consequence, if A is
true at some possible world in M then A is true at some possible world in M’.
(4 implies 1): Let M = (W,=,R,=,p,V) be a finite nonstandard model and
M = (W',= R, ¥, p' V') be the finite model defined as follows. Define:

- Wis W x {0,1};

— For all 2,y € W and for all ¢,j € {0,1}, (z,7) =’ (y,j) iff z = y and i = j;
— For all 2,y € W and for all i,j € {0,1}, (z,9)R(y,J) iff zRy and i = 1 — j;
— Forall z,y € W and for all 4,5 € {0,1}, (z,i) = (y,5) if ¢ Xy and i = j;
— For all z,y € W and for all i,j € {0,1}, (z,9)p'(y,j) iff zpy and i =1 — j;

— For all propositional variables p, V'(p) is V(p) x {0, 1}.

bl

It follows immediately that M is a p-morphic image of M’. As a consequence, if
A is true at some possible world in M then A is true at some possible world in
M'. O

Now we turn to the axiomatization of the set of all formulas true at all possible
worlds in all models. Let LSWIC' — logic of strong and weak indiscernibility
and complementarity — be the smallest normal modal logic that contains the
axioms of table 2. A typical result is the following.

Theorem 14. LSWIC s complete with respect to the class of all models and
the class of all nonstandard models, i.e. the following conditions are equivalent.

1. A s true at all possible worlds in all models;
2. A is true at all possible worlds in all nonstandard models;

3. A is a theorem of LSWIC.

Proof. (1 implies 2): By lemma 13.

(2 implies 1): By lemma 13.

(2 implies 3): The proof can be obtained by the canonical model construction.
(3 implies 2): The proof is trivial because nonstandard models satisfy the con-
ditions which are needed to verify the axioms of LSWIC. O



=]A—- A [=]A— A
A= [=)(=)A A= [X)(2)A

[=]A = [=][=]A [=]A = [=][=]A
[R]A — [=][R]A [p]A = [=][R]A
A = [R(R)A A= [pl(p)A
[R]A — [R][=]A [p]A — [p][=]A
[=]A — [R][R]A [=]A — [p][R]A

Table 2. Axioms of LSWIC.

We now turn our attention to the decidability of the problem of determining of
any given formula whether it is a theorem of LSWIC' or not.

Theorem 15. Determining of any giwen formula whether it is a theorem of
LSWIC or not 1s decidable.

Proof. By lemma 13 and theorem 14, LSW IC'is a finitely axiomatizable normal
modal logic which has the finite model property. As a consequence, determining
of any given formula whether it is a theorem of LSWIC' or not is decidable. O

5 Conclusion

We have addressed the issues of first-order characterization and modal anal-
ysis of indiscernibility and complementarity in information systems. Previous
first-order characterizations and modal analyses have been given by Demri [2],
Demri, Orlowska and Vakarelov [3], Orlowska [5, 6], Orlowska and Pawlak [7]
and Vakarelov [9, 10, 11, 12] who consider indistinguishability relations and
distinguishability relations like the similarity relations defined as follows. Let
S = (Att,0bj, {Val, | a € Att}, f) be an information system. For all 2, y € Oby,
define:

Strong positive similarity: zogy iff for all a € Att, f(a,z) N f(a,y) # 0;
Strong negative similarity: zvgy iff for all a € Att, (Val,\ f(a,2))N(Valg\
fla,y)) #0;
Weak positive similarity: zXgy iff there is ¢ € Att such that f(a, z)N f(a,y)
0;
Wesz negative similarity: zNgy iff there is a € Att such that (Val,\ f(a, z))
N(Vala \ f(a,y)) # 0;

It should be remarked that the strong complementarity relation is definable by
means of the strong similarity relations as follows:

- Rszﬁﬁﬁ,



whereas the weak complementarity relation is definable neither by means of
the strong similarity relations nor by means of the weak similarity relations.
First-order characterizations and modal analyses of indiscernibility relations and
complementarity relations in information systems together with other indistin-
guishability relations or distinguishability relations like similarity relations are
not known.
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