
Speci�cation and Veri�cation of a Steam-Boiler with Signal-CoqMickaël Kerb÷uf1, David Nowak2, and Jean-Pierre Talpin11Inria-Rennes � Irisa, Campus de Beaulieu, Rennes, France2Oxford University Computing Laboratory, Wolfson Building, Oxford, EnglandAbstract Over the last decade, the increasing demand for the validationof safety critical systems has led to the development of domain-speci�cprogramming languages (e.g. synchronous languages) and automatic ve-ri�cation tools (e.g. model checkers). Conventionally, the veri�cation ofa reactive system is implemented by specifying a discrete model of thesystem (i.e. a �nite-state machine) and then checking this model againsttemporal properties (e.g. using an automata-based tool). We investigatethe use of a synchronous programming language, Signal, and of a proofassistant, Coq, for the speci�cation and the veri�cation of co-inductiveproperties of the well-known steam-boiler problem.By way of this large-scale case-study, the Signal-Coq formal approach,i.e. the combined use of Signal and Coq, is demonstrated to be a well-suited and practical approach for the validation of reactive systems. In-deed, the deterministic model of concurrency of Signal, for specifyingsystems, together with the unparalleled expressive power of the Coqproof assistant, for verifying properties, enables to disregard any com-promise incurred by any limitation of either the speci�cation and theveri�cation tools.Keywords: synchronous programming, theorem proving, the steam-boiler problem.1 IntroductionIn recent years, the veri�cation of safety critical systems has become an areaof increasing importance for the development of softwares in sensitive �elds:medicine, telecommunication, transportation, energy.The notion of reactive system has emerged to focus on the issues relatedto the control of interaction and of response-time in mission-critical systems.This has led to the development of speci�c programming languages and relatedveri�cation tools for reactive systems.Conventionally, the veri�cation of a reactive system is implemented by, �rst,elaborating a discrete model of the system (i.e. an approximation of its behaviourby a �nite-state machine) speci�ed in a dedicated language (e.g. a synchronousprogramming language) and, then, by checking a property against the model(i.e. model checking).Synchronous languages (such asEsterel [5], Lustre [9], Signal [4], State-charts [10]) have proved to be well adapted to the veri�cation of safety and

liveness properties of reactive systems. For instance, model checking has beenused at an industrial scale on Signal programs to check properties such asliveness, invariance, reachability and attractivity.Whereas model checking e�ciently decides discrete properties of �nite statesystems, the use of formal proof systems enables to prove numerical and para-meterized properties about in�nite state systems. Using a proof system, we cannot only prove the safety and liveness of a reactive system but also its correctnessand completeness.Such a proof is of course not automatic and requires interaction with heuser to direct its strategy. The prover can nonetheless automate he most tediousand mechanical parts of the proof. In general, formal roofs of programs aredi�cult and time-consuming. In the very case of modeling a reactive system usinga declarative synchronous language, however, this di�culty is milded thanksto the elegant stylistic combination of declarative programming and relationalmodeling.We investigate the combined use of the synchronous language Signal and ofthe proof assistant Coq for specifying and verifying properties of a large-scalecase study, namely, the steam-boiler problem.2 The Signal-Coq Formal ApproachSynchronous languages assume that computation takes no time (this is the so-called �synchronous hypothesis�). Actually, this means that the duration of com-putations is negligible in comparison to the time of reaction of the system. Thissynchronous hypothesis is particularly well adapted to verify safety and someforms of liveness properties. Signal is a synchronous, declarative, data-�ow ori-ented programming language. It is built around a simple paradigm: a process isa system of equations on signals; and a minimal kernel of primitive operators.A signal represents an in�nite �ow of data. At every instant, it can be absentor present with a value. The instants when values are present are determined byits associated clock. Interested reader may �nd more about Signal in [4].Coq [7] is a proof assistant for higher-order logic. It allows the developmentof computer programs that are consistent with their formal speci�cation. Thelogical language used in Coq is a variety of type theory, the Calculus of InductiveConstructions [15]. It has been extended with co-inductive types (types de�nedas greatest �xed points rather than as least �xed points [8]) to handle in�niteobjects, It is thus well suited to represent signals.In [14], we have introduced a co-inductive semantics for the kernel of thelanguage Signal and formalized it in the proof assistant Coq. In this section,we summarize the Coq de�nitions given for the primitive operators of Signal.Interested reader may �nd the generalization to the complete language in [13].A signal X is de�ned as a stream of ? and values v. Let D be a set of values.The set of signals SD is the largest set such that:SD = f?:X j X 2 SDg [fv:X j v 2 D;X 2 SDg

Instantaneous Relation. The relation RnP is used in Signal to specify an in-stantaneous relation between n signals. At each instant, these signals satisfy thepredicate P . In Coq, according to the Curry-Howard isomorphism, a pair proof-speci�cation is represented by a pair term-type. The type of non-well-foundedproofs of RnP is introduced as a co-inductive type. Co-induction is needed to dealwith in�nite signals. For instance, R2P is introduced as follows:CoInductive Relation2 [U,V:Set; P:U->V->Prop] :(Signal U)->(Signal V)->Prop :=relation2_a: (X:(Signal U))(Y:(Signal V))(Relation2 P X Y)->(Relation2 P (Cons (absent U) X) (Cons (absent V) Y))| relation2_p: (X:(Signal U))(Y:(Signal V))(u:U)(v:V)(P u v)->(Relation2 P X Y)->(Relation2 P (Cons (present u) X) (Cons (present v) Y)).Down-Sampling. The Signal equation Z := X When Y states that the signalZ down-samples X when X is present and when Y is present with the valuetrue. When is the least �xpoint of the following continuous functional:FWhen(f) =def 8>>>><>>>>: (?:X;?:Y) 7�! ?:f(X;Y)(?:X; b:Y) 7�! ?:f(X;Y)(v:X;?:Y) 7�! ?:f(X;Y)(v:X; false :Y) 7�! ?:f(X;Y)(v:X; true:Y) 7�! v:f(X;Y)Deterministic Merge. The Signal equation Z := X Default Y states that Xand Y are merged in Z with the priority to X . Default is the least �xpoint ofthe following continuous functional:FDefault(f) =def 8>><>>: (?:X;?:Y) 7�! ?:f(X;Y)(?:X; v:Y) 7�! v:f(X;Y)(u:X;?:Y) 7�! u:f(X;Y)(u:X; v:Y) 7�! u:f(X;Y)Delay. The Signal function Pre is used to access to the previous value of asignal. Pre is the least �xpoint of the following continuous functional:FPre(f) =def � (u;?:X) 7�! ?:f(u;X)(u; v:X) 7�! u:f(v;X)Using the previously de�ned denotations of primitive processes, we can derivethe denotations of the derived operators of Signal. The parallel composition isdenoted by the logical and of the underlying logic and the introduction of localsignals is denoted by an existential quanti�er.This co-inductive trace semantics of Signal has been implemented with theproof assistant Coq (see [12] for details). Many lemmas are proved to ease thecorrectness proof of a reactive system speci�ed with Signal. The case studyintroduced in this paper con�rms that our co-inductive approach is a natural,simple and e�cient way to prove correctness of reactive systems.

3 Steam-Boiler Control Speci�cation ProblemIn order to compare the strengths and weaknesses of di�erent design formalismsfor reactive systems, the steam-boiler case study has been suggested by J.-R.Abrial, E. Börger and H. Langmaack. In this section, we brie�y recall its originalspeci�cation (see [2] for more details), and the additional precisions we bring(see [11] for more details).3.1 Physical EnvironmentThe physical environment is composed of several units (Fig. 1). Each one ischaracterized by physical constants and some of them provide data.
C

maximum gradient of increase
maximum gradient of decrease

maximal outcome of steam

��
��
��
��

pump controllers
provided data: flow

pumps
capacity:
provided data: status

P

M2

N2

N1

M1

M1
M2

N1
N2

steam boiler
maximal capacity:
minimal limit:
maximal limit:
minimal normal:
maximal normal:

C

U2

U1

:
:
:

W
��
��
��
��

steam measurement device
provided data: outcome of steam

water level measurement device
provided data: quantity of waterFigure1. Physical environment

3.2 Behaviour of the Steam-BoilerThe program has to control the level of water in the steam-boiler. This quantityshould not be too low or too high. Otherwise, the system might be a�ected.The program also has to manage the possible failure of physical units. For thatpurpose, at every instant, it takes into account the global state of the physicalenvironment which is denoted by an operation mode. The program follows acycle which takes place each �ve seconds. A cycle consists of the reception of

messages coming from the units, the analysis of the received informations, andthe transmission of messages to the units. According to the operation mode, theprogram decides at each cycle if the system must stop or not. If not, it activatesor deactivates pumps in order to keep the level of water in the middle of thesteam-boiler.The speci�cation also gives additional information regarding the physical be-haviour of the steam-boiler. Namely, new values, called adjusted and calculatedvalues, are proposed. They enable a sustained control of the system, by providinga vision of its dynamic, when a measurement device is defective.At each cycle, adjusted variables contain either real measurements or ex-trapolated values which are calculated during the preceding cycle. An adjustedvariable contains a real measurement when the corresponding device works prop-erly. Otherwise, it contains an extrapolated value.Calculated variables provide, at each cycle, extrapolated values of measure-ments for the following cycle. They contain the extreme values that are possiblyreachable from the current adjusted values.3.3 Precisions and Decisions about the Original Speci�cationBecause of the �exibility with which the original speci�cation of the steam-boilercan be interpreted, we �rst need to make some details more precise, on the phys-ical behaviour of the steam-boiler, and on the logical behaviour of its implemen-tation in Signal. Di�erent items are concerned by our decisions. Namely:Distinction between pump failures and pump controller failures. We cannot relyon the fact that controllers always provide a reliable information about theirassociated pumps. Indeed, according to the speci�cation, failures of controllershave to be taken into account and thus, we have to consider them as beingfallible. Consequently, how could pump failures and pump controller failures bedistinguished ?We �rst could try to detect the real throughput of each pump with an analysisof water-level variations in the boiler. But such a method presupposes a toorestrictive set of conditions about the physical characteristics of pumps andtheir controllers. Moreover, it actually makes controllers useless.We have therefore chosen to determinate what the real state of each pumpand controller should be, for each possible combination of values. This solution,which seems to be the most reasonable and intuitive one, was proposed in [6] (asolution of the steam-boiler problem in Lustre).Message occurrences. In order to have more �exibility for controlling the steam-boiler, each pump and each controller is connected to the main program by itsown communication line. Thus, each pump can be managed simultaneously andindependently.Moreover, some incoming messages from pumps essential are not always rele-vant for the system at every instant. For example, a pump should not necessarilyprovide its state if it did not receive a command during the preceding cycle. But

it can still provide its state at each cycle as speci�ed in the original text. Onlythe presence of compulsory messages will be checked.In addition to these messages, we introduce a new message H. This messageis a pure signal and stands for the main clock of the program. All involved signalsin the program have a clock which is a sub-clock of H. This signal is supposedto be reliable. It enables to detect the absence of compulsory messages.Activation, deactivation of the pumps, and stop of the system. The decisionsconcerning the activation or the deactivation of the pumps, and the decision ofstopping the system, are made according to the adjusted and calculated values.At �rst, a speci�c decision is made for each pair of extremum level, adjusted andcalculated. Then, the program globally decides if the system shall stop or not.If not, the program decides how the level shall move (up or down), if necessary,and by taking into account each speci�c decision.We calculate the best quantity of water to be provided, rather than justopening or closing all the pumps. Thus, at each cycle, the program calculatesthe optimal combination of open and closed pumps, in order to have an optimalprogression of the level of water toward the middle of the boiler, taking intoaccount failures of pumps and controllers.3.4 Design and ArchitectureThe steam-boiler controller in Signal is composed of four main processes (�g. 2).� The io_manager process detects transmission failures. It implements a�lter that guarantees the presence of the outgoing data, necessary to theprocessing. This process also provides a signal which announces the manualstop of the system.� The failure_manager process is in charge of managing the dialogue be-tween the physical units and the program regarding failure detections andrepair indications. It detects failures and provides a global vision of the stateof the physical system.� The dynamic process directly implements the equations suggested in thespeci�cation according to the detected failures and the values provided bythe measurement devices.� The control process is the main program. Starting from the global visionof the state of the system, and from the adjusted measurements provided bythe preceding process, it manages the operation modes, makes the decisionto stop the system or not, and �nally delivers activation and deactivationcommands to the pumps.

STOP

H

MODE

READY

VALVE

PROG_READY

VALVE_ACTION

OP_MODE

MANUAL_STOP

TRANS_FAILURE

IO_MANAGER

FAILURE_MANAGER

DYNAMIC

CONTROL

Figure2. Signal processes of the steam-boiler controller3.5 Motivation for the choice of this case studyThis case study is well adapted to our aim, i.e. to show the interest of theSignal-Coq formal approach. Indeed, the program has to handle several phys-ical parameters and it may use non linear numerical values (e.g. extrapolatedvalues of the level which take into account gradients of increase and decrease ofthe steam throughput, i.e. typically non linear numerical terms). Thus, safetyproperties cannot be simply and directly proved with a standard model checker.4 Veri�cation of the Steam-Boiler with CoqProofs of program properties are built on the co-inductive trace semantics ofSignal which has been implemented with Coq [13].This axiomatization is a set of Coq libraries which gathers the modeling ofsignals, the modeling of the primitives of the kernel language, and a number offunctions, predicates and theorems about signals. These Coq libraries, as wellas the proofs of the properties that are stated in the rest of this article, areavailable at [12].4.1 Safety obligationsA global safety property can be informally stated in the following way:

When a stop condition is satis�ed, the system stops indeed, i.e. the pro-gram enters the emergency stop mode.This statement implies several sub-properties. Our aim is to emphasize the in-terest of using Coq for their veri�cation. Thus, in the sequel of this article, weconcentrate our work especially on safety sub-properties that cannot be directlyand simply proved by a standard model checker.Since four stop conditions are speci�ed, the global safety property has to beproved for each one:1. Manual stop. The program received consecutively the required number ofstop messages from the user for manually stopping the system.2. Critical level. The system is in danger because the water level is either toolow or too high.3. Transmission failure. The program detected a transmission failure.4. Initialization. The water level measurement device is defective in the initial-ization mode.In our Signal speci�cation, these situations are associated with critical mes-sages. When one of these signals carries a value, the corresponding conditionholds and so, the program must stop.First of all, the expected relations between these critical messages and theoperation mode have to be checked. Then, we have to verify that each criticalmessage is actually present when the condition to which it corresponds holds.For that purpose, the implied sub-properties are divided into two main classes:� A �rst class gathers properties that specify the correct behaviour of criticalmessages, regarding the critical situations to which they correspond.� The second class gathers properties that justify some simpli�cations or spec-ify the use of some internal signals in the processing.We now only consider sub-properties coming from Manual Stop and Criticallevel because they involve parameters and non linear numerical values, unlikeTransmission failure and Initialization. So, they are convincing examples to il-lustrate our approach. Moreover, Critical level gathers essential properties of oursolution.4.2 Manual StopThe problem of manual stop is generalized, using a parameter called nb_stop,which stands for the number of stop messages required for manually stoppingthe program, instead of the �xed value �3� initially suggested in the speci�cation.

Since we are using a proof assistant, we do not need to instantiate this param-eter with a particular value. First, A predicate that denotes the right behaviourof a counter of the successive synchronous instants between two signals is co-inductively de�ned in Coq. Then, we prove that our Signal process providesindeed a signal (called CPT) that behaves like a counter of the successive syn-chronous instants between the stop signal (well called ... STOP) and the mainclock (called H).Instead of using a co-inductive predicate that denotes the expected behaviourof CPT, we de�ne a co-recursive function that speci�es CPT. This function isthe least �xpoint of the following continuous functional:F : (N�F(U[f?g) �F(V [f?g) ! F(N[f?g))�! (N�F(U[f?g) �F(V [f?g) ! F(N[f?g))f 7�! 8>><>>: (n; Cons(?; X); Cons(?; Y)) 7! Cons(?; f(n;X; Y))(n; Cons(x;X); Cons(?; Y)) 7! Cons(0; f(0; X; Y))(n; Cons(?; X); Cons(y; Y)) 7! Cons(0; f(0; X; Y))(n; Cons(x;X); Cons(y; Y)) 7! Cons(n+ 1; f(n+ 1; X; Y))Let cssm, the least �xpoint of F . The Coq de�nition of cssm is the following:CoFixpoint cssm :(U,V:Set)nat->(Signal U)->(Signal V)->(Signal nat) :=[U,V:Set][n:nat][X:(Signal U)][Y:(Signal V)]Cases X Y of(Cons absent X') (Cons absent Y')=> (Cons (absent nat) (cssm n X' Y'))|(Cons (present _) X') (Cons absent Y')=> (Cons (present O) (cssm O X' Y'))|(Cons absent X') (Cons (present _) Y')=> (Cons (present O) (cssm O X' Y'))|(Cons (present _) X') (Cons (present _) Y')=> (Cons (present (S n)) (cssm (S n) X' Y'))end.Using this function, the predicate that denotes the expected behaviour of CPTcan now be stated: CPT = cssm(0; STOP;H)We open in Coq a section in which hypotheses are stated. Those hypothesescorrespond to the Signal equations which are concerned by the property to beproved:(|...| CPT ^= H| CPT := ((ZCPT+1) when STOP) default (0 when H)| ZCPT := CPT$1 init 0| MANUAL_STOP := when (CPT=nb_stop)...|)

Those equations use constant signals. We �rst have to de�ne them explicitly.Then, we have to state the hypothesis regarding H, the main clock of the pro-gram. In particular, the clock of STOP is a sub-clock of H.This yields to the following equations:0 | STOP ^< H1 | CPT ^= H2 | Cst0 := 03 | Cst0 ^= H4 | CPT := ((ZCPT+1) when STOP) default (Cst0 when H)5 | ZCPT := CPT$1 init 06 | A := (CPT=nb_stop)7 | Csttrue := true8 | Csttrue ^= A9 | MANUAL_STOP := Csttrue when AUsing the co-inductive axiomatization of Signal in Coq [13], this system ofequations is translated into the following Coq hypotheses:Variable nb_stop : nat.Variables CPT,ZCPT,Cst0 : (Signal nat).Variables H,STOP,MANUEL_STOP,Csttrue : Clock.Variable A : (Signal bool).Hypothesis Equation0 : (OrderClock STOP H).Hypothesis Equation1 : (Synchro CPT H).Hypothesis Equation2 : (Constant O Cst0).Hypothesis Equation3 : (Synchro Cst0 H).Hypothesis Equation4 :CPT = (SignalAA_to_SignalA(default (when (fonction1 [n:nat](plus n (S O)) ZCPT)(Clock_to_Signal_bool STOP))(when Cst0(Clock_to_Signal_bool H)))).Hypothesis Equation5 : ZCPT = (pre O CPT).Hypothesis Equation6 : A = (fonction1 [n:nat](beq_nat n nb_stop) CPT).Hypothesis Equation7 : (Constant tt Csttrue).Hypothesis Equation8 : (Synchro Csttrue A).Hypothesis Equation9 : MANUAL_STOP = (when Csttrue A).In this environment, we aim at proving the following lemma:Lemma l1 : CPT = (cssm 0 H STOP).This property is too general for a model-checker because of the involved nb_stopparameter. It is also too restrictive for an inductive proof because of the instan-tiated parameters (values �0�) involved in the cssm predicate and in the Signalpre term. A more general property must be stated with non instantiated param-eters. Additional hypotheses about these formal parameters can also be stated.For that purpose, the �fth Signal equation of the previous speci�cation is pre-ferred the following, more general, one:

Variable ni : nat.Hypothesis Equation5 : ZCPT = (pre ni CPT).Then, the following lemma can be proved:Lemma l1b : CPT = (cssm ni H STOP).In particular, the initial property is veri�ed. This is the �rst part of the property.Using the same method, we also prove that MANUAL_STOP provides a valuewhen CPT reaches the nb_stop value. Finally, we prove that the program entersthe emergency stop mode in this case.An important feature of the method outlined in this section is that it does notat all impact the programming style because of veri�cation constraints. Signalprocesses are naturally translated into Coq objects (without, e.g., any variableinstantiation).4.3 Critical water level.The property concerning the water level can be divided into several sub-propertieswhich correspond to the di�erent cases of critical level. Those properties involveparameters like the boiler capacity, the extremal limits of the level, or the nom-inal capacity of each pump. Moreover, the processing depends on the adjustedvalues. Thus, those properties are parameterized and concern non linear numer-ical values. It is therefore not possible to verify them simply and directly with astandard model checker.At �rst, a set of preliminary lemmas that justify some simpli�cations inthe program have to be proved. For instance, the following statements allow toeliminate some cases in the processing:8t 2 N; qc1(t) < qc2(t) (1)8t 2 N; 0 � qa1(t) � qa2(t) � C (2)where qa1(t) and qa2(t) (resp. qc1(t) and qc2(t)) stand for the minimal andmaximal adjusted (resp. calculated) values of the level at instant t, and whereC stands for the maximal capacity of the boiler. Indeed, the process in charge ofmaking a decision about activations of the pumps relies on a list of the di�erentpossible interleavings of extrapolated and adjusted levels. But some of them areomitted because of the statements (1) and (2). So they have to be proved.The adjusted values qa1(t) and qa2(t) depend on calculated values qc1(t) andqc2(t), which are de�ned as follows:8t 2 N�; qc1(t) = qa1(t� 1)� va2(t� 1)�t� 12U1�t2 + pa1(t� 1)�t (3)8t 2 N�; qc2(t) = qa2(t� 1)� va1(t� 1)�t+ 12U2�t2 + pa2(t� 1)�t (4)where va1(t) and va2(t) stand for the adjusted values of the outcome of steam,and pa1(t) and pa2(t) stand for the adjusted values of the cumulated throughput

of the pumps. The parameters U1 and U2 denote the maximum gradients ofincrease and decrease of the outcome of steam.In order to prove a property equivalent to the statement (1) with a modelchecker, the processing would have to be changed radically. For instance, theinterval of possible values could be divided into several sub-levels and then, newboolean properties about the reachability of those levels could be de�ned. Andin every case, all parameters like U1, U2 or C should be instantiated. With ourSignal-Coq approach, we do not consider those veri�cation problems duringthe design of the program. Calculated values are textually stated (cf. (3) and (4))in Signal:...| QC1 ^= QC2| QC1 := QA1 - (VA2*Dt) - (0.5*U1*Dt*Dt) + (PA1*Dt)| QC2 := QA2 - (VA1*Dt) + (0.5*U2*Dt*Dt) + (PA2*Dt)| VC1 ^= VC2| VC1 := VA1-(U2*Dt)| VC2 := VA2+(U1*Dt)...Note that the calculated values concern the following cycle. The de�nition ofadjusted values are naturally given from the calculated values of the precedingcycle:...| ZQC2 := QC2$1 init C| ZQC1 := QC1$1 init 0.0| QA2 := (Q when J_OK) default ZQC2| QA1 := (Q when J_OK) default ZQC1| ZVC2 := VC2$1 init 0.0| ZVC1 := VC1$1 init 0.0| VA2 := (V when U_OK) default ZVC2| VA1 := (V when U_OK) default ZVC1...Signals Q and V carry the values coming from the measurement devices. SignalsJ_OK and U_OK provide at each cycle a boolean information about the physi-cal state of the measurement devices. We just have to translate these Signalequations into Coq hypotheses and we prove the properties (1) and (2) using co-induction. Coq o�ers a natural syntax for manipulating such numerical objects.For instance, consider the following statement:(8x; y 2 Z)(0 � x)) (0 < y)) (0 < x+ y)Using the ZArith library of Coq, the de�nition of this statement is the following:(x,y:Z)(Zle ZERO x)->(Zlt ZERO y) -> (Zlt ZERO (Zplus x y))Meanwhile, the ZArith library also provides syntactical facilities. Thus, we havean equivalent way to de�ne this statement:

(x,y:Z)`0 <= x`->`0 < y`->`0 < x+y`Such a syntax is more intuitive and so, proving equations or inequations on Zin Coq is much easier.The following �rst lemma is very simple to prove:Lemma I_N : (a,b,c,d,e:Z) `a <= b` -> `c <= d` ->`0 < 2*(b-Dt*c+Dt*e)+U2*(Dt*Dt) - 2*(a-Dt*d+Dt*e)-U1*(Dt*Dt)`.And then it is used to prove the statement (1):CoInductive Globally2 [U,V:Set;P:(Stream U)->(Stream V)->Prop] :(Stream U)->(Stream V)->Prop :=globally2 : (X:(Stream U))(Y:(Stream V))(P X Y)->(Globally2 P (tl X) (tl Y))->(Globally2 P X Y).This Coq statement de�nes a co-inductive predicate which implementsthe �2� connector for temporal logic. Indeed, in our co-inductive seman-tics of Signal, we cannot handle explicit temporal indexes (see [13] formore details).Definition ltSt := [X:(Signal Z)][Y:(Signal Z)](x,y:Z)(hd X)=(present x)->(hd Y)=(present y)->(Zlt x y).This statement de�nes the predicate that will be applied to the Globally2connector.Theorem QA1_lt_QA2 : (Globally2 ltSt QC1 QC2).This statement is equivalent to the statement (1)The decision concerning the stop of the system because of a critical level isfounded on the adjusted levels. Using the preceding theorem, it is very simpleto prove the following property:8t 2 N; qa1(t) � q(t) � qa2(t) (5)where q stands for the real level in the boiler. It means that even if a measurementdevice is defective, the program always knows the interval of possible currentlevels. Moreover, the program knows the interval of possibly reachable levels forthe next cycle. Regarding these intervals, we have to check that the level is neverlikely to reach a critical value. For instance we have:8t 2 N; (qa1(t) �M1 ^ qc1(t) �M1)) Critical_Level(t) = T (6)

It means that the program will stop (the critical message Critical_Level carries avalue T) if the minimal next level is below M1 (which is the minimal level underwhich the system is in danger after one cycle) while the current level is possiblyalready below M1.We also prove properties like the following one:8t 2 N; (qc1(t) �M1 ^ qc2(t) �M2)) Critical_Level(t) = T (7)It means that if the interval of possibly reachable levels for the next cycle is toowide for making a safe decision, the program stops.These examples emphasize an important advantage of our approach. Thestatements of the expected safety properties are especially clear. Moreover, theprogrammer does not need to have in mind what kind of property checkableor not during the design phase. Thus, specifying, programming and verifying aproblem are more natural and intuitive operations.Unlike a model checker, a proof assistant, and more generally a theoremprover cannot provide a counter-example when the check fails. But Coq givesa strong logical framework in which the user acquires a great con�dence inthe conformity of the program to the speci�cation. Moreover, if the program iserroneous, the proof progression will stop on an impossible sub-goal which isoften explicit enough to understand the mistake.Nevertheless, theorem proving is often less e�cient and often more tediousthan model checking. Then, even if we could check all properties with only aproof assistant like Coq, the optimal solution for veri�cation consists in usinga model checker as much as possible and in using a theorem prover when aproperty is out of the scope of the model checker.5 Related WorksThe steam-boiler problem has become a classical case study for testing andcomparing formal methods. It has been entirely speci�ed and proved with theB tool approach ([1]). In [6], a steam-boiler has been implemented in the syn-chronous data-�ow language Lustre (quite similar to Signal) and veri�ed withits model-checker Lesar that allows veri�cation of safety properties. This ap-proach enables to prove boolean safety properties but cannot deal with numericaland parameterized properties. In [3], the semantics of Lustre has been formal-ized in the theorem prover PVS but co-induction is not used to represent in�nitesignals. The solution proposed in the Lustre-PVS approach consists of viewingsignals as in�nite sequences. In this setting, a signal is represented by a functionwhich associates any instant i (a natural number) with the value v of the sig-nal (if it is present) or with ? (if it is absent). The declarative and equationalstyle of Signal is similar to Lustre. However, Lustre programs always havea unique reference of logical time: they are endochronous. Signal speci�cationsdi�er from Lustre programs in that they can be exochronous (i.e. they can havemany references of logical time). For instance, the process x:=1 | y:=2 does notconstrain the clocks of x and y to be equal. Hence, had we used functions over

in�nite sequences to represent signals, we would have faced the burden of havingto manipulate several, possibly unrelated, indexes of time i.6 ConclusionThe axiomatization of the trace semantics of Signal within the proof assistantCoq o�ers a novel approach for the validation of reactive systems.We demonstrate the bene�ts of this formal approach for specifying and ver-ifying properties of reactive systems by considering a large-scale case study, thesteam-boiler controller problem.Disregarding any compromise between the modeling tools and the modeledsystem, we augmented the original speci�cation of the steam-boiler of [2] with amore precise description of the physical environment.This case study shows to be well adapted to the evaluation of the Signal-Coq formal approach, allowing the modeling of parameterized strong safetyproperty with non-linear numerical constraints. In spite of the strong implicationfor the user during the proof-checking process, it appears that the use of a proofassistant like Coq has many advantages.In addition to the facts that the approach alleviates any limitation in theexpression of properties, it makes it possible to acquire a strong con�dence inthe system being speci�ed. Moreover, it is noticeable that experiences at usingCoq allowed to develop libraries which improved the e�ciency of latter proofs.However, this approach is interesting only with properties that cannot bedirectly proved by a model checker. It is thus advisable to use a proof assistantin complement to more classical approaches to check these particular (e.g. pa-rameterized, co-inductive, non-linear) properties. In conclusion, the integrationof model-checking and theorem-proving within a uni�ed framework seems to bea promising prospect.References1. J.-R. Abrial. The B-Book. Cambridge University Press, 1995.2. J.-R. Abrial, E. Börger, and H. Langmaack. Formal Methods for Industrial Appli-cations: Specifying and Programming the Steam Boiler Control. Lecture Notes inComputer Science, 1165, October 1996.3. S. Bensalem, P. Caspi, and C. Parent-Vigouroux. Handling Data-�ow Programsin PVS. Research report (draft), Verimag, May 1996.4. A. Benveniste and P. Le Guernic. Synchronous Programming with Events andRelations: the Signal Language and its Semantics. Science of Computer Pro-gramming, 16(2):103�149, 1991.5. G. Berry and G. Gonthier. The Esterel Synchronous Programming Language:Design, Semantics, Implementation. Science of Computer Programming, 19:87�152, 1992.6. T. Cattel and G. Duval. The Steam-Boiler Problem in Lustre. Lecture Notes inComputer Science, 1165:149�164, 1996.

7. B. Barras et al. The Coq Proof Assistant Reference Manual - Version 6.2. INRIA,Rocquencourt, May 1998.8. E Giménez. Un Calcul de Constructions In�nies et son Application à la Véri�ca-tion des Systèmes Communicants. PhD thesis, Laboratoire de l'Informatique duParallélisme, Ecole Normale Supérieure de Lyon, December 1996.9. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data�owProgramming Language Lustre. Proc. of the IEEE, 79(9):1305�1320, September1991.10. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science ofComputer Programming, 8:231�274, 1987.11. M. Kerb÷uf, D. Nowak, and J.-P. Talpin. The Steam-boiler Controller Problem inSignal-Coq. Research Report 3773, INRIA, Campus universitaire de Beaulieu,35042 RENNES Cedex (France), October 1999.12. http://www.irisa.fr/prive/Mickael.Kerboeuf/gb/SBGB.htm.13. D. Nowak. Spéci�cation et preuve de systèmes réactifs. PhD thesis, Ifsic, Univer-sité Rennes I, October 1999.14. D. Nowak, J.-R. Beauvais, and J.-P. Talpin. Co-inductive Axiomatization of aSynchronous Language. In Proceedings of Theorem Proving in Higher Order Logics(TPHOLs'98), number 1479 in LNCS, pages 387�399. Springer Verlag, September1998.15. B. Werner. Une Théorie des Constructions Inductives. PhD thesis, UniversitéParis VII, May 1994.

