
UC Irvine
UC Irvine Previously Published Works

Title
A 3/2-Approximation Algorithm for Augmenting the Edge-Connectivity
of a Graph from 1 to 2 Using a Subset of a Given Edge Set

Permalink
https://escholarship.org/uc/item/8hk01207

ISBN
978-3-540-44666-8

Authors
Even, Guy
Feldman, Julian
Kortsarz, Guy
et al.

Publication Date
2002

DOI
10.1007/3-540-44666-4_13

Copyright Information
This work is made available under the terms of a Creative Commons
Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8hk01207
https://escholarship.org/uc/item/8hk01207#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

A 3/2-Approximation Algorithm for
Augmenting the Edge-Connectivity of a Graph
from 1 to 2 Using a Subset of a Given Edge Set

(Extended Abstract)

Guy Even1, Jon Feldman2, Guy Kortsarz3, and Zeev Nutov3

1 Dept. of Electrical Engineering-Systems,
Tel-Aviv University, Tel-Aviv 69978, Israel

guy@eng.tau.ac.il
2 Massachusetts Institute of Technology,

Laboratory for Computer Science, Cambridge, MA, 02139, USA
jonfeld@theory.lcs.mit.edu
3 Open University of Israel,

16 Klauzner St, Tel-Aviv, Israel {guyk,nutov}@oumail.openu.ac.il

Abstract. We consider the following problem: given a connected graph
G = (V, EE) and an additional edge set E, find a minimum size subset
of edges F ⊆ E such that (V, E ∪ F) is 2-edge connected. This problem
is NP-hard. For a long time, 2 was the best approximation ratio known.
Recently, Nagamochi reported a (1.875 + ε)-approximation algorithm.
We give a new algorithm with a better approximation ratio of 3/2 and
a practical running time.

1 Introduction

The 2-Edge Connected Subgraph Problem Containing a Spanning Tree (2-ECST)
is defined as follows. The input consists of an undirected graph G(V, E) and a set
of additional edges (called “links”) E ⊆ V ×V . A subset F ⊆ E is called an aug-
mentation of G into a 2-edge-connected graph if G(V, E ∪F) is 2-edge connected.
The goal is to find an augmentation F of G into a 2-edge-connected graph with
fewest links. This problem is NP-Complete [2]. We present a 1.5-approximation
algorithm for the 2-ECST problem.

The 2-edge-connected components of G form a tree. It follows that by con-
tracting these components, one may assume that G is a tree. Hence, the 2-ECST
Problem is equivalent to the Tree Augmentation Problem (TAP) defined as fol-
lows. The input consists of a tree T (V, E) and a set of links E ⊆ V ×V . The goal
is to find a smallest subset F ⊆ E such that G(V, E ∪ F) is 2-edge connected.
Previous Results. Frederickson & Jájá [7] presented a 2-approximation to the
weighted version of TAP. Improving the approximation ratio below 2 was posed
by Khuller [12] as one of the main open problems in graph augmentation. Nag-
amochi & Ibaraki [11] presented a 12/7-approximation algorithm for TAP. How-
ever, the proof of the approximation ratio in [11] contains an error. Recently,

M. Goemans et al. (Eds.): APPROX-RANDOM 2001, LNCS 2129, pp. 90–101, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A 3/2-Approximation Algorithm 91

Nagamochi [10] reported a (1.875+ ε)-approximation algorithm. The time com-
plexity of the algorithm in [10] depends exponentially on 1/ε (alternatively, the
approximation ratio can be increased to 1.9). Our paper uses a few techniques
that appear in [10,11] including: leaf-close trees, shadows, stems, and the usage
of maximum matchings that forbid certain links. Our lower bound (Claim 12) is
a strengthening of [10, Lemma 4.2].

Related Results. The weighted version of 2-ECST (or equivalently TAP) is called
Bridge-Connectivity Augmentation (BRA) in [7]. In the BRA problem, the input
consists of a complete graph G(V,E) and edge weights w(e). The goal is to find
a minimum weight subset of edges F such that G′(V, F) is 2-edge connected.
The 2-ECST is simply the case in which the edges have {0, 1,∞} weights; the
edges of the connected graph have zero weight, links have unit weight, and all
the rest have infinite weight.

There are a few 2-approximation algorithms for the BRA problem. The first
algorithm, by Frederickson and Jájá [7] was simplified later by Khuller and
Thurimella [13]. These algorithms are based on constructing a directed graph
and computing a minimum weight arborescence. The primal-dual algorithm of
Goemans & Williamson [8] and the iterative rounding algorithm of Jain [9]
are LP-based 2-approximation algorithms. The approximation ratio of 2 for all
these algorithms is tight. Fredrickson and Jájá [7] showed also that when the
edge costs satisfy the triangle inequality, the Christofides heuristic leads to a
3/2-approximation algorithm.

Cheriyan et. al. [3] presented a 17/12-approximation algorithm for the special
case of BRA in which edges have {1,∞} weights. A 4/3-approximation algorithm
was presented for {1,∞} weights by Vempala & Vetta [14]. Eswaran & Tarjan
[4] presented a linear time algorithm for the special case of BRA in which all
edges have unit weights. Surveys for broad classes of augmentation problems can
be found in [12] and [5].

Equivalent Problems. The following two problems are equivalent to TAP, in the
sense that the corresponding reductions preserve approximation ratios (e.g., see
[2]): (1) Given a laminar family S of proper subsets of a ground set U , and an
edge set E on U , find a minimum subset F ∗ ⊆ E that “covers” S (that is, for
every S ∈ S, there is an edge in F , with one endpoint in S and the other in
V − S). (2) Given a k-connected graph G = (U,E0) with k odd, and an edge
set E on U disjoint to E0, find a min size edge set F ∗ ⊆ E such that G ∪ F is
(k + 1)-edge connected. Due to space limitations, all proofs as well as details of
the algorithm are omitted. See the full version for these parts.

2 Preliminaries

Let T (V, E) denote a tree defined over a vertex set V . A rooted tree is a tree T
with a node r ∈ V designated as a root. The root induces a partial order on V
as follows. For u, v ∈ V , we say that u is a descendant of v, and that v is an

92 Guy Even et al.

ancestor of u, if v lies on the path from r to u in T ; if, in addition, (u, v) is an
edge of T , then u is a child of v, and v is the parent of u. We denote the parent
of u by p(u). The least common ancestor, lca(u, v), of u and v is the common
ancestor of u and v with the largest distance to the root. We refer to a rooted
tree as a pair (T, r), and do not mention the root when it is clear which vertex
is the root. In the TAP problem, we designate an arbitrary node r of T as the
root.

The leaves of a rooted tree T are the nodes in V − r having no descendants.
We denote the leaf set of T by L(T), or simply by L, when the context is clear.

Consider a rooted tree (T, r) and a vertex v ∈ V . The rooted subtree of T
induced by the descendants of v (including v) is denoted by Tv. Note that v is
the root of Tv. A subtree T ′ of T is called a rooted subtree if T ′ = Tv, for some
vertex v ∈ V . We say that a rooted subtree T ′ of T is minimal w.r.t. property P
or that T ′ is P-minimal if T ′ satisfies property P, but no proper rooted subtree
of T ′ satisfies property P.

To contract a subset X of V is to combine all nodes in X to make a single
new node x. All edges and links with both endpoints in X are deleted. All edges
and links with one endpoint in X now have x as their new endpoint, but retain
their correspondence with the edge or link of the original graph. If r ∈ X, then x
becomes the root of the new tree. If parallel links arise, we consider an arbitrary
underlying set of links. For simplicity, we say that such x contains a node v if
v ∈ X. For a set of links F ⊆ E let T/F denote the tree obtained by contracting
every 2-edge connected component of T ∪ F into a single node.

Let p(u, v) denote the path in T between u and v. Consider a link (u, v) ∈ E.
If we decide to add (u, v) to the solution F , then the vertices along the path
p(u, v) belong to the same 2-edge connected component of T ∪ F . Hence, we
would like to contract the vertices along p(u, v). Instead of defining a new node
into which the vertices are contracted, it is convenient to regard this contraction
as a contraction of the vertices along p(u, v) into the least common ancestor,
lca(u, v). The advantage of this convention is that the contracted tree is a
subtree of the original tree. Note that we may obtain T/F simply by contracting
the paths corresponding to the links of F one by one. Moreover, the resulting
tree does not depend on the order by which the links are contracted.

We say that a link (u, v) covers all the edges along the path p(u, v). This
terminology enables us to formulate TAP as a covering problem. Namely, find a
minimum size set of links that covers the edges of T . We extend this terminology
and refer to covering a an edge (u, v) where v is the parent of u as covering the
node u.

We say that a link (u′, v′) is a shadow of a link (u, v) if p(u′, v′) ⊆ p(u, v), and
(u′, v′) is a proper shadow of (u, v) if the inclusion is proper, that is p(u′, v′) ⊂
p(u, v). A link is maximal if it is not a proper shadow of any other link. We say
that a cover F of T is shadows-minimal if for every link (u, v) ∈ F replacing
(u, v) by a proper shadow of (u, v) results in a link set that does not cover T .

An edge (u, v) of a tree T is reducible w.r.t. a link set E if there is an edge
(u′, v′) such that every maximal link that covers (u′, v′) also covers (u, v).

A 3/2-Approximation Algorithm 93

Definition 1. A tree T and an edge set E defined over the same vertex set
are proper if (a) for every edge (u, v) of T , there are at least 2 maximal links
covering it, and (b) no edge in T is reducible.

Note that non-proper TAP instances can be reduced without effecting the
size of the solution. Hence from this point we assume that every tree we wish to
cover is proper. One convenient property of proper trees is that every parent of
a leaf has at least two children. By induction, it follows that if (T,E) is a proper
pair, then there cannot be a path (of length 2 or more) consisting of degree-2
vertices ending at a leaf.

The following assumption simplifies many of the arguments we make.

Assumption 2. The set of links E is closed under shadows, that is, if (u, v) ∈ E
and p(u′, v′) ⊆ p(u, v) then (u′, v′) ∈ E.

Every instance can be made to be closed under shadows by adding shadows of
existing links as new links (i.e. shadow completion). Shadow completion does
effect the solution size, since every shadow can be replaced by a maximal link.

In what follows, the TAP instance consists of the input tree T = (V, E) and
the set of links E. We assume that E covers T , that is, the graph (V, E ∪ E) is
2-connected; this can be tested beforehand by contracting all the links.

3 Motivation: A 2-Approximation Algorithm

We start the discussion with a 2-approximation algorithm. This rather simple
algorithm introduces the notions of leaf-closed subtrees, up-links, and the dis-
jointness condition. Our 3/2-approximation extends these ideas.

For a set of links or edges F and a vertex v, let degF (v) denote the degree
of v in the graph (V, F). Consider an arbitrary cover F ⊆ E of T . A simple well
known lower bound follows from the degree-sum of F , namely,

∑
v degF (v), as

follows. Every leaf of T has at least one link of F incident to it, so the degree-sum
of F is at least |L(T)|, and hence |F | ≥ |L(T)|/2.

The ratio between the value of an optimal solution and this lower bound
can be arbitrarily large; if T is a path, and E consists of links parallel to the
edges of T , then |L(T)|/2 = 1, but the value of an optimal solution is |V | − 1.
An approximation algorithm based on this lower bound requires applying the
lower bound to a subproblem of the original problem and that a local ratio
argument be used. This means that we compare the cost invested in covering the
subproblem with the cost the optimum invests in this subproblem. We recurse
on the remaining subproblem. Since we compare the cost of our cover of the
subproblem with the cost of an optimal solution of the subproblem, it is necessary
that the an optimal solution covers each of the charged subproblems by disjoint
sets of links. We refer to this requirement as the disjointness condition.

Suppose the subproblem we choose is to cover the leaves (namely, the edges
in E incident to the leaves of T). This can be done using |L(T)| links; we just

94 Guy Even et al.

choose a set of links F with one link per leaf. The cost of covering the leaves is
|L(T)|, and the leaf lower bound is |L(T)|/2, so the local approximation ratio for
solving the subproblem is 2. However, recursing on T/F and repeating the same
approximation argument fails. The reason is that a link in an optimal solution
can cover a leaf in L(T) as well as a leaf in L(T/F). Hence, the disjointness
condition is not met. This motivates the following definition and lemma, which
appeared in the paper of Nagamochi and Ibaraki [11] for U = L(T).

Definition 3. Let U ⊆ V . A rooted subtree T ′ of T is U -closed (w.r.t. E) if
every link in E having one node in U ∩ V (T ′) has it other node in V (T ′).

For every U ⊆ V , the tree T is U -closed. Hence the set of rooted subtree that
are U -closed is not empty. This implies that, for every U ⊆ V , there exists a
rooted subtree that is U -closed minimal.

The highest link incident to a node u is denoted by up(u). Namely, among
the links emanating from u and whose other endpoint is along the path p(r, u),
up(u) is the link that covers the largest subpath of p(r, u). For U ⊆ V , let
up(U) =

⋃{up(u) : u ∈ U}.
Lemma 4. Let U ⊆ V , and let T ′ be a U -closed minimal rooted subtree of T .
Then up(U ∩ V (T ′)) covers T ′.

Lemma 4 is interesting when L(T ′) ⊆ U (otherwise T ′ consists of single leaf).
A rooted subtree T ′ of T is leaf-closed if it is L(T ′)-closed. Lemma 4 implies

the following claim, that appears in [11].

Claim 5. [11] A leaf-closed minimal subtree T ′ of T is covered by up(L(T ′)).

We now present a simple 2-approximation algorithm. The algorithm is recur-
sive and its parameter is a tree T and a link set F . The algorithm starts with
the whole tree T and an empty link set F = ∅. It finds a minimally leaf-closed
subtree T ′, adds up(L(T ′)) to F , and recurses on T/up(L(T ′)) and F , until T is
contracted into a single node.

Initialization: F ← ∅.
Algorithm cover(T, F):
1. If |V (T)| = 1, then return F and stop.
2. Compute a leaf-closed minimal subtree T ′ of T .
3. F ← F ∪ up(L(T ′)), T ← T/up(L(T ′)).
4. Recurse: cover(T, F).

Clearly, the algorithm returns a feasible cover. We can prove that the size of
the computed cover is 2-optimal by induction on k, the number of iterations of
the algorithm. The induction base k = 1 follows from Claim 5. For the induc-
tion step, consider a leaf-closed minimal subtree T ′ of the first iteration of the
algorithm. Let F ∗ be an arbitrary optimal cover of T . Let F ∗

L be the links in F ∗

incident to the leaves of T ′, and let F ∗
res be the links in F ∗ that cover at least

one link not in T ′. Then |F ∗
L| ≥ |L(T ′)|/2, and since T ′ is leaf closed, all the links

A 3/2-Approximation Algorithm 95

in F ∗
L have their both endpoints in V (T ′). Hence, F ∗

L and F ∗
res are disjoint. By

the induction hypothesis, the recursive call for covering T/up(L(T ′)) produces a
solution Fres with at most 2|F ∗

res| links. Hence, the total number of links in the
solution produced by the algorithm is:

|up(L(T ′))|+ |Fres| = |L(T ′)|+ |Fres| ≤ 2|F ∗
L|+ 2|F ∗

res| = 2|F ∗|.

In the following section we present a lower bound that strengthens the leaf
lower bound, as well as a generalization of the idea of leaf-closed minimal subtrees
in order to improve the approximation ratio to 3/2.

4 Lower Bound and the Credit Scheme

In this section we present a new lower bound on the size of a minimum cover.
This lower bound is based on a maximum matching consisting of a subset of
links. A credit scheme is established based on the lower bound.

Notation and Preliminaries. A non-root node s ∈ V − r is a stem of a tree T
if it has exactly two children, both of them are leaves, such that there is a link
joining them. Such two leaves are called a twin pair, and the link between them
is called a twin link. The edge connecting a stem s and its parent is called a
stem-edge. We denote the the set of stems of a tree T by St(T).

Leaves and stems play a special role in our algorithm. For short, we say that
node of T is special it is a leaf or a stem. We denote the set of special nodes in
T by Sp(T). We denote the set of non-special nodes in T by Sp(T). We often
use L,St,Sp for short to denote the set of leaves, the set of stems, and the set of
special nodes if the context is clear. A rooted subtree T ′ of T is leaf-stem-closed
if it is L(T) ∪ St(T)-closed.

For X,Y ⊆ V and a set of links F , let FX,Y denote the be the set of links
in F that have one endpoint in X and the other in Y . We denote the number
of links in F that emanate from a node v by degF (v). For a subset U ⊆ V of
nodes we denote the degree-sum of nodes in U with respect to a set of links F
by degF (U). Namely, degF (U) =

∑
v∈U degF (v).

A link (u, v) is called a backward link if u is a descendant of v or vice-versa. A
link that is not a backward link is called a side link. A link e with a non-special
endpoint is called a bad link.

We can also take advantage of another property of shadow-minimality. Let
F be a shadow minimal cover of T . Every two links in F that share an endpoint
cover disjoint sets of edges. Therefore, there is exactly one link in F emanating
from every leaf v of T , and FL(T),L(T) is a matching.

Consider a matching M that consists of leaf-to-leaf links. A leaf � ∈ L is un-
matched with respect toM ifM lacks a link incident to �. The set of unmatched
leaves in T with respect toM is denoted by ULT (M). A stem s ∈ S is uncovered
with respect to M if the corresponding stem-edge is not covered by the links of
M . The set of uncovered stems in T with respect to M is denoted by UST (M).

96 Guy Even et al.

Let F ∗ denote an optimal shadows minimal cover of T . The optimality of F ∗

implies that it is not possible that both the links (s, �1) and (s, �2) are in F ∗, for
a stem s and its children �1 and �2. The reason is that these two links can be
replaced by the link (�1, �2).

Assumption 6. Without loss of generality, a cover F ∗ of T lacks links from a
stem to one of its children.

We use Assumption 6 to assume that a stem s is uncovered with respect to
F ∗

L,L iff F ∗ contains the twin-link between the children of s. The following claim
follows.

Claim 7. Let s denote a stem. If F ∗ satisfies Assumption 6, then, degF ∗(s) ≤ 1.
Moreover, degF ∗(s) = 1 iff s is uncovered with respect to F ∗

L,L.

4.1 Two Special Small Trees

In this section we consider two special subtrees. Subtrees of the first kind are
called H-structures and play an important role in the algorithm. Subtrees of
the second kind can be reduced to H-structures. Part (A) of Figure 1 depicts a
twin-thorn subtree. This is a rooted subtree with 3 leaves: twin leaves a1, b1, and
a leaf b2 called the “thorn”. The leaves a1 and b1 are a twin-pair that are the
children of a common stem s. The stem s is connected to the root-node v by a
path, all the internal nodes along which are nodes of degree 2. The node v has
two children, one is an ancestor of s, and the other is a leaf b2.

v

b1 a1

b2

s

v

b1 a1

b2

s

v

b1 a1

b2

s

(B)(A) (C)

Fig. 1. (A) a twin-thorn subtree (B) an H-structure (C) A twin-thorn reducible to an
H-structure.

Definition 8. A subtree Tv is defined as an H-structure if: (i) Tv is isomorphic
to a twin-thorn subtree, (ii) one of the twin-leaves is linked only to nodes that
are its ancestors, and (iii) the other twin-leaf is linked to the thorn (b1 may have
other links incident to it). Part (B) of Figure 1 depicts an H-structure.

A 3/2-Approximation Algorithm 97

The twin-leaf in an H-structure that is linked only to ancestors is called a locked-
leaf (node a1 in Fig. 1). The twin-link in an H-structure that has at least one
side-link emanating from it is called a locking-leaf (node b1 in Fig. 1). The link
between the locking-leaf and the thorn is called the locking-link (link (b1, b2) in
Fig. 1). A key observation is that if (a1, b1) does not belong to a feasible cover,
then a1 is covered by a bad link. Let F denote a set of links. An H-structure Tv

is called F -activated if F contains the locking-link in Tv.

Reducible Twin-Thorn Subtrees. Consider the twin-thorn subtree Tv depicted in
part (C) of Figure 1. Suppose that the links incident to nodes in Tv satisfy the
following conditions: (a) (a1, b2) and (b1, b2) are links in E, and (b) the only side
links emanating from a1 and b1 are (a1, b2) and (b1, b2), respectively.

Observe that if (b1, b2) ∈ F ∗, then without loss of generality up(a1) ∈ F ∗.
Similarly, if (a1, b2) ∈ F ∗, then up(b1) ∈ F ∗. Assume that the path covered by
the link up(a1) is not shorter than the path covered by the link up(b1). Informally,
this means that up(a1) is “higher reaching” than up(b1). It follows that the links
up(a1) and (b1, b2) cover all the edges that are covered by up(b1) and (a1, b2).
Hence, we may discard the link (a1, b2) from E without increasing the size of an
optimal solution. Note that this reduces Tv to an H-structure.

The above discussion justifies the first stage of the algorithm in which every
twin-thorn subtree that satisfies the conditions described above is reduced to an
H-structure. We summarize this reduction in the following assumption.

Assumption 9. Let Tv denote a twin-thorn subtree. If the twin-leaves are linked
only to the thorn or to their ancestors, then exactly one of the twin-leaves is
linked to the thorn.

4.2 Matchings

Our algorithm first computes maximum matching consisting of leaf-to-leaf links
except for twin-links and locking-links. We denote this matching by M .

Now, consider an H-structure Tv. If both endpoints of a locking link (b1, b2)
are unmatched leaves in UL(M), we can add the locking-link (b1, b2) into the
matching M . Let M+ denote a maximal matching obtained by augmenting the
matching M with all possible locking links. Let LLM+ denote the set of locking-
links in M+, namely, LLM+ =M+ −M .

The following notation is now defined. Let M∗ denote the set of leaf-to-
leaf links in F ∗, except for twin-links. Let diff(M,M∗) denote the set of links
in M both endpoints of which are not matched by links in M∗. Observe that
diff(M,M∗) is non-empty only if M∗ is not a maximal matching. A link e ∈
diff(M,M∗) is referred to as a singleton; the reason is that e shares no endpoints
with other links in the symmetric difference of M∗ and M . Let LLF ∗ be the
set of locking links in F ∗. Note that |LLF ∗ | equals the number of F ∗-activated
H-structures.

Consider the following two terms: (a) |M∗|−|M+|+diff(M,M∗); the number
of non-twin links in F ∗

L,L minus the number of links in M+ plus the number of

98 Guy Even et al.

singletons, and (b) |LLF ∗ |−|LLM+ |; the number of F ∗-activeH-structures minus
the number of M+-active H-structures.

Claim 10. |M∗| − |M+|+ |diff(M,M∗)| ≤ |LLF ∗ | − |LLM+|
Observe that Claim 10 also holds if one considers a leaf-stem closed subtree T ′

and only considers the matching links and the H-structures within T ′.

The Lower Bound. Consider a leaf-stem closed subtree T ′ of T . Recall that
F ∗ denote a shadows-minimal optimal cover of T that satisfies Assumption 6.
The following claim proves a lower bound on the number of links of F ∗ both
endpoints of which are inside T ′ in terms of the number of leaves, uncovered
stems, unmatched leaves and bad links in T ′.

Claim 11. Let T ′ denote a leaf-stem closed subtree, then

|F ∗
V (T ′),V (T ′)| ≥

1
2
· L+

1
3
· |UST ′(F ∗

L,L)|+
1
6
· |ULT ′(F ∗

L,L)|

+
1
3
· degF ∗

V (T ′),V (T ′)
(Sp).

In the following lower bound claim, T ′ is a leaf-stem closed subtree, F ∗ is a
shadows-minimal optimal cover of T , and M is a maximum matching consisting
of leaf-to-leaf links without twin links or locking links. Let M+ denote its aug-
mentation with locking links. We denote by MT ′ and M+

T ′ the set of links in M
and M+ that incident to leaves in T ′.

For every non-special node v let deg′
F ∗

V (T ′),V (T ′)
(v) denote the degree of v

with respect to links of F ∗ both endpoints of which are in T ′ not including links
connecting it to locked leaves in F ∗-activated H-structures.

In the next claim MS refers only to singletons internal to T ′.

Claim 12. (The matching lower bound)

3
2
· |F ∗

V (T ′),V (T ′)| ≥
3
2
· |M+

T ′ |+
(|L| − 2 · |M+

T ′ |
)
+

1
2
|LLMT ′ |+ |MS(F ∗)|

2

+
1
2
· deg′

F ∗
V (T ′),V (T ′)

(Sp).

5 A 3/2-Approximation Algorithm

In this section we present the techniques used in our 3/2-approximation al-
gorithm. The algorithm is listed at the end of this section for reference. The
algorithm is rather elaborate; more details and analysis will appear in the full
version.

5.1 The Coupon Scheme

In order to use our lower bound, we need to apply a credit scheme. We say that
a coupon can pay for a contraction of one link. We distribute coupons based on

A 3/2-Approximation Algorithm 99

the matching lower bound from Claim 12. We assign 3/2 coupons to every pair
of vertices that are matched by a link in M+, and we assign 1 coupon to every
leaf of T not covered byM+. Furthermore, everyM+-activated H-structure gets
half a coupon. By the matching lower bound, the number of coupons used is no
more than 3|F ∗|/2.

In addition to coupons, we have tickets. Each ticket is worth half a coupon.
We consider two types of tickets: (a) matching tickets - a matching ticket is given
to each link in MS . (b) golden tickets - a non-special node that has a link of F ∗

incident to it receives a golden ticket.
The difference between coupons and tickets is that the algorithm can assign

coupons directly from the matchingM+ it computes. Tickets are harder to reveal
and require a proof that they exist.

5.2 Algorithm Techniques

In the 2-approximation algorithm, we covered a leaf-closed subtree and recursed.
In this algorithm, we are looking to cover a leaf-stem-closed subtree, and recurse.
The main difficulty is to find enough coupons to pay for some leaf-stem-closed
subtree. One important insight is that by using the coupon distribution described
above, and maintaining the proper invariants, we can contract parts of the tree
in order to find a leaf-stem-closed tree on which to recurse.

One invariant we maintain is a set A of active nodes, each of which always
contain a coupon. We also build a set J of candidate links. As we add links to
J , we contract the paths that the links of J cover. Hence we operate mostly on
the tree T/J . The set A begins as the set of unmatched leaves.

The first step we take is to apply greedy contractions. An α-greedy contrac-
tion is defined as follows. Let T ′ be a subtree of T/J , (not necessarily rooted)
coverable by α links (i.e. T ′ is a connected union of α paths, each covered by a
link). If there are at least α+1 coupons contained in T ′, then we can add these α
links to J . The new node (created by contracting all the vertices of T ′ together)
inherits the extra coupon, and becomes an active node. Thus we maintain the
invariant that all active nodes contain a coupon.

After applying all possible 1-greedy and 2-greedy steps, we attempt to find
a leaf-stem-closed subtree by finding an A-closed (or active-closed) subtree T ′ of
T/(J ∪M+), the tree obtained by contracting all the links of J and those of the
matching M+. If this is leaf-stem-closed, we are done, and we can recurse, since
we have enough coupons to pay for the links of J and M+. The disjointness
condition requires that the portions of F ∗ that are charged for solving each of
the subproblems be disjoint. This way “double charging” is avoided. Note that
the matching lower bound is applied to the links that are contained in a leaf-
stem closed subtree T ′. If the algorithm succeeds in contracting T ′, then the
disjointness condition holds since F ∗ does not cover edges in T − T ′ using links
that are contained in T ′. Hence the algorithm may recurse with T − T ′.

If T ′ is not leaf-stem-closed, we need to be more careful. This requires some
sophisticated case-analysis, and the details will appear in the full version of the

100 Guy Even et al.

paper.

Algorithm Tree-Cover(T)

1. If T contains a single node, then Return(∅).
2. Reduce the pair (T,E) to a proper pair.
3. Compute a maximum matching M consisting of leaf-to-leaf links

that are not twin-links and not locking links. Augment it into M+.
4. Define the set of active nodes A to be the set of unmatched leaves.
5. Initialize the set of candidate links: J ← ∅.
6. Apply 1-greedy contractions or 2-greedy contractions to T/J while

possible. Update M+, A, and J accordingly.
7. Find an active-closed minimal subtree (T/(J∪M+))v of T/(J∪M+).

Let T ′ denote the subtree (T/J)v.
8. While T ′ is not leaf-stem closed, do:

(a) If T ′ exhibits certain technical conditions, apply case analysis on
the size and structure of T ′ (see full version for details).

(b) Otherwise, cover T ′ by the basic cover. Formally,
i. J ← J ∪ (M+ ∩ T ′) ∪ up(active(T ′)),
ii. A← A− active(T ′) + v, and
iii. M+ ←M+ − T ′.

9. Cover Tv and recurse. Formally,
(a) J ← (J ∩ Tv) ∪ up(active((T/J)v))) ∪ (M+ ∩ (T/J)v), and
(b) Return(J ∪ Tree-Cover(T/J)).

References

1. R. Bar-Yehuda, “One for the Price of Two: A Unified Approach for Approximating
Covering Problems”, Algorithmica 27(2), 2000, 131-144.

2. J. Cheriyan, T. Jordán, and R. Ravi, “On 2-coverings and 2-packing of laminar fam-
ilies”, Lecture Notes in Computer Science, 1643, Springer Verlag, ESA’99, (1999),
510–520.

3. J. Cheriyan, A. Sebö, and Z. Szigeti, “An improved approximation algorithm for
minimum size 2-edge connected spanning subgraphs”, Lecture Notes in Computer
Science, 1412, Springer Verlag, IPCO’98, (1998), 126–136.

4. K. P. Eswaran and R. E. Tarjan, “Augmentation Problems”, SIAM J. Computing,
5 (1976), 653–665.

5. A. Frank, “Connectivity Augmentation Problems in Network Design”, Mathemat-
ical Programming, State of the Art, Ed. J. R. Birge and K. G. Murty, 1994, 34–63.

6. A. Frank, “Augmenting Graphs to Meet Edge-Connectivity Requirements”, SIAM
Journal on Discrete Mathematics, 5 (1992), 25–53.

7. G. N. Frederickson and J. Jájá, “Approximation algorithms for several graph aug-
mentation problems”, SIAM J. Computing, 10 (1981), 270–283.

8. M. X. Goemans and D. P. Williamson, “A General Approximation Technique for
Constrained Forest Problems”, SIAM J. on Computing, 24, 1995, 296–317.

9. Kamal Jain, “Factor 2 Approximation Algorithm for the Generalized Steiner Net-
work Problem”, FOCS 1998, 448-457.

A 3/2-Approximation Algorithm 101

10. H. Nagamochi, “An approximation for finding a smallest 2-edge connected sub-
graph containing a specified spanning tree”, TR #99019, (1999), Kyoto University,
Kyoto, Japan.
http://www.kuamp.kyoto-u.ac.jp/labs/or/members/naga/TC/99019.ps

11. H. Nagamochi and T. Ibaraki, “An approximation for finding a smallest 2-edge-
connected subgraph containing a specified spanning tree”, Lecture Notes In Com-
puter Science, vol. 1627, Springer-Verlag, 5th Annual International Computing and
Combinatorics Conference, July 26-28, Tokyo, Japan, (1999) 31-40.

12. S. Khuller, Approximation algorithms for finding highly connected subgraphs, In
Approximation algorithms for NP-hard problems, Ed. D. S. Hochbaum, PWS Pub-
lishing co., Boston, 1996.

13. S. Khuller and R. Thurimella, “Approximation algorithms for graph augmenta-
tion”, J. of Algorithms, 14 (1993), 214–225.

14. S. Vempala and A. Vetta, “On the minimum 2-edge connected subgraph”, Proc.
of the 3rd Workshop on Approximation , Saarbrücken, 2000.

	Introduction
	Preliminaries
	Motivation: A 2-Approximation Algorithm
	Lower Bound and the Credit Scheme
	Two Special Small Trees
	Matchings

	A $3/2$-Approximation Algorithm
	The Coupon Scheme
	Algorithm Techniques

