
Markovian Models for Performance and

Dependability Evaluation

Boudewijn R. Haverkort

Laboratory for Performance Evaluation and Distributed Systems
Department of Computer Science, RWTH Aachen, 52056 Aachen, Germany

haverkort@cs.rwth-aachen.de

Abstract. Markovian models have been used for about a century now
for the evaluation of the performance and dependability of computer
and communication systems. In this paper, we give a concise overview
of the most widely used classes of Markovian models, their solution and
application.
After a brief introduction to performance and dependability evaluation
in general, we introduce discrete-time Markov chains, continuous-time
Markov chains and semi-Markov chains. Stepwisely, we develop the main
equations that govern the steady-state and the transient behaviour of
such Markov chains. We thereby emphasise on intuitively appealing ex-
planations rather than on mathematical rigor. The relation between the
various Markov chain types is explained in detail. Then, we discuss means
to numerically solve the systems of linear equations (both direct and it-
erative ones) and the systems of differential equations that arise when
solving for the steady-state and transient behaviour of Markovian mod-
els.

1 Introduction

Markovian models have inherited their name form the pioneering work by the
Russian mathematician A.A. Markov around the turn of the twentieth century
(see Figure 1). He introduced finite-state Markov chains in [49]; a translation
of another important article of his hand appears in Appendix B of [37]. In fact,
his work launched the area of stochastic processes. In the first two decades of
the twentieth century, the Danish mathematician A.K. Erlang (see Figure 2)
applied Markovian techniques (then not yet named as such) to solve capacity
planning problems for the Copenhagen Telephone Company [20]. His models
were soon adapted by others, among others by the Britisch Post Office; one of
his first models will be presented later in this paper. The Russian mathematician
A.N. Kolmogorov (see Figure 3) developed the theory for Markov chains with
infinite (denumerable and continuous) state spaces in the 1930’s [46].

Throughout the twentieth century the work of these pioneers became better
understood and more wide-spread. These days, Markov chains and stochastic
processes form the basis for model-based system evaluations in many areas of
science and engineering. For instance, in biology to model growth and decay of

E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.): FMPA2000, LNCS 2090, pp. 38–83, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Markovian Models for Performance and Dependability Evaluation 39

Fig. 1. Andrei Andreevich Markov (∗ June 14, 1856; † July 20, 1922)

Fig. 2. Agner Krarup Erlang (∗ January 1, 1878; † February 3, 1929)

40 Boudewijn R. Haverkort

Fig. 3. Andrey Nikolaevich Kolmogorov (∗ April 25, 1903; † October 20, 1987)

populations, in physics to model interactions between elementary particles, in
chemical engineering to model (chain) reactions between molecules or to model
mixing processes, in management science to model the flow of commodities in
logistic or flexible manufacturing systems or to model the availability of pro-
duction lines and, most notably, in computer and communication science and
engineering to model system performance and dependability in a wide variety of
settings. In this paper, we focus on the use of Markovian models for the perfor-
mance and dependability evaluation of computer and communication systems.

But let us first take one step back, and address the question what perfor-
mance or dependability evaluation really is. Performance or dependability eval-
uation is the craft that tries to answer questions related to the performance or
dependability of systems. Typical questions take the following form:

(i) how many clients can this server adequately support?
(ii) what is the typical response time to load a WWW page from MIT?
(iii) how large should the buffer space in this IP router be to guarantee a packet

loss ratio of less than 10−6?
(iv) how many jobs can be processed before a system failure occurs?
(vi) how long does it take before this system crashes?

The above questions can only be answered when they are made more exact,
i.e., when some of the informally stated requirements or aims are made concrete.
For instance, we will have to define what “adequately” really means in question
(i), or what “typical” means in question (ii). More precisely, we have to define

Markovian Models for Performance and Dependability Evaluation 41

clearly what the measure of interest is, in order to express the performance or
dependability criterion we are interested in, in the best possible way. Before we
will come to this issue, we will restrict the class of evaluation techniques con-
siderably. In this paper, we will only address so-called model-based evaluation
techniques, meaning that we are not addressing measurement-based techniques
such as benchmarking. Even though measurement-based evaluation techniques
are very important and accurate (they address the real system, or at least a
prototype) these methods are also very costly, and sometimes even inappropri-
ate, for instance when the interest is in very rare events; a measurement-based
approach then takes too long to be practically feasible. Hence, we restrict our-
selves to model-based evaluation techniques, meaning that we have to develop
models, in order to evaluate the system under study. According to [36], a model
is a “small-scale reproduction or representation of something” and modelling is
“the art of making models”. The latter definition states an important aspect
of model-based performance and dependability evaluation: the construction of
appropriate models is a challenging task for which, as of yet, no general recipe
is available.

Let us now come back to the measures of interest in a performance or depend-
ability evaluation. The choice of measure strongly depends on the standpoint of
the model user (the person using the results of the model evaluation). System en-
gineers are most often interested in system-oriented measures like queue lengths,
component utilisations or the number of operational components. For system
users, seeing the system as a service-providing black box, these measures are not
that interesting; for them what counts is how fast or how many service invoca-
tions can be performed per unit of time. Examples of such user-oriented measures
are waiting times, throughput and downtime minutes per year. On top of this
classification comes the question how detailed the measure of interest should
be evaluated: does a mean value suffice, or is knowledge of higher moments or
even of the complete distribution necessary? Furthermore, is the measure to be
evaluated for a particular time instance in the operation of the system, that is,
is there an interest in so-called transient measures, or is the interest more in
long-term average values, that is, in so-called steady-state measures.

With the class of Markovian models we will address in the rest of this paper,
we have available a versatile modelling formalism, allowing us (i) to model system
performance and dependability at various levels of detail, (ii) to study a wide
variety of user- and system-oriented measures, at (iii) either in steady-state or
at some time instance t.

It should be noted that by the availability of good software tools for perfor-
mance and dependability evaluation, the actual Markov chains being used and
solved often remain hidden from the end-user. That is, users specify their per-
formance or dependability model using some high-level modelling language, for
instance based on queueing networks, stochastic Petri nets or stochastic process
algebras of some sort, from which the underlying Markov chain can automati-
cally be generated and analysed. The analysis results are then presented such
that they can be interpreted correctly in the context of the high-level model,

42 Boudewijn R. Haverkort

so that, in fact, the translations to and from the Markov chain level remain
transparant. High-level specification techniques for Markov chains are an active
area of research, but are not addressed in more detail in this paper; the inter-
ested reader is referred to a number of surveys addressing these issues [31,30,29]
as well as to three other papers in this volume [6,10,60].

A final point of notice is the following. Model-based performance and de-
pendability evaluation necessarily have to be based on abstractions of the real
system. In that sense, it is intrinsically approximate. This is both a strength, as
it can be applied always (albeit more or less accurate), and a weakness, as its
accuracy is not known in advance. In any case, the results from an evaluation
should be interpreted with care; the results are never more accurate than the
numerical parameters used in the models! Furthermore, note that even though
model-based performance and dependability evaluation provides us with num-
bers, the insight gained in the (functional) operation of the system under study
is often even more important. As Alan Scherr, IBM’s time-sharing pioneer, puts
it in an interview with Communications of the ACM [22]: “model-based perfor-
mance evaluation is about finding those 10% of the system that explains 90% of
its behaviour”.

After this more general introduction, the rest of this paper completely fo-
cusses on Markov chains. In Section 2 we introduce discrete-time Markov chains,
followed by the introduction of semi-Markov chains and continuous-time Markov
chains in Section 3 and Section 4, respectively. We then address techniques to
solve these Markov chains with respect to their steady-state and their transient-
state probabilities in Section 5 and Section 6, respectively. A variety of important
issues not addressed in this paper is presented in Section 7. The paper ends with
Section 8.

2 Discrete-Time Markov Chains

We define discrete-time Markov chains in Section 2.1, followed by a derivation
of the steady-state and transient state probabilities in Section 2.2. We comment
on the state residence time distribution in Section 2.3 and discuss convergence
properties in Section 2.4.

2.1 Definition

Discrete-time Markov chains (DTMCs) are a class of stochastic processes. A
stochastic process can be regarded as a family of random variables {Xt, t ∈ T },
of which each instance Xt is characterisedby a distribution function. The index
set T is mostly associated with the passing of time. In DTMCs, time passes in
discrete steps, so that the subsequent time instances are denumerable and can be
seen as elements of IN , hence, one typically denotes a DTMC as {Xn, n ∈ IN}.
The continuous counterpart to DTMCs, that is, continuous-time Markov chains,
will be discussed in Section 4.

Markovian Models for Performance and Dependability Evaluation 43

The set of values the random variables Xn can assume is denoted the state
space I of the DTMC. In performance and dependability evaluation, most often
the state space of a DTMC is denumerable. We do restrict ourselves to that case
here. Given a denumerable set I, it can either be finite or infinitely large. We
will only address the finite case here; a few remarks with respect to denumerable
infinite state space will be given in the examples in Section 4.

The fact that we deal with a finite-state discrete-time stochastic process does
not directly imply that we are dealing with a DTMC. The distinctive property
of a DTMC is that the Markov property has to hold for it. This means that
given the current state of the DTMC, the future evolution of the DTMC is
totally described by the current state, and is independent of past states. This
property is intuitively so appealing, that one sometimes tends to forget that it is
a very special property. Mathematically, the Markov property can be described
as follows. Assuming T = {0, 1, 2, · · ·} and I = {i0, i1, · · ·} we have

Pr{Xn+1 = in+1|X0 = i0, · · · , Xn = in} = Pr{Xn+1 = in+1|Xn = in}.

From this equation we see that the future (at time instance n+1) only depends
on the current state (at time instance n) and is independent of states assumed
in the past (time instances 0 through n − 1). At this point, we also note that
the DTMCs we study are time-homogeneous, which means that the actual time
instances are not important, only their relative differences, that is:

Pr{Xn+1 = i|Xn = j} = Pr{Xm+1 = i|Xm = j}, for all n,m ∈ IN,

with i, j ∈ I. This means that in a time-homogeneous DTMC the state-transition
behaviour itself does not change over time.

We now define the conditional probability pj,k(m,n) = Pr{Xn = k|Xm = j},
for allm = 0, · · · , n, i.e., the probability of going from state j ∈ I at time m ∈ IN
to state k ∈ I at time n ∈ IN . Since we deal with time-homogeneous Markov
chains, these transition probabilities only depend on the time difference l = n−m.
We can therefore denote them as pj,k(l) = Pr{Xm+l = k|Xm = j}, the so-
called l-step transition probabilities. The 1-step transition probabilities are simple
denoted pj,k (the parameter 1 is omitted). The 0-step probabilities are defined
as pj,k(0) = 1, whenever j = k, and 0 elsewhere. The initial distribution π(0) of
the DTMC is defined as π(0) = (π0(0), · · · , π|I|(0)). By iteratively applying the
rule for conditional probabilities, it can easily be seen that

Pr{X0 = i0, X1 = i1, · · · , Xn = in} = πi0(0) · pi0,i1 · · · pin−1,in . (1)

This implies that the DTMC is totally described by the initial probabilities
and the 1-step probabilities pi,j . The 1-step probabilities are summarised in the
state-transition probability matrix P = (pi,j). The matrix P is a stochastic matrix
because all its entries pi,j satisfy 0 ≤ pi,j ≤ 1, and

∑
j pi,j = 1, for all i.

A DTMC can be visualised as a labeled directed graph with the elements
of I as vertices. A directed edge with label pi,j exists between vertices i and
j whenever pi,j > 0. Such representations of Markov chains are called state

44 Boudewijn R. Haverkort

transition diagrams. Notice the similarity with the usual graphical notation for
finite-state machines (FSMs). In fact, a DTMC can be viewed as an FSM in
which the successor function is specified in a probabilistic manner, that is, given
state i, the next state will be state j with probability pi,j .

Example 1. Graphical representation of a DTMC. In Figure 4 we show the state
transition diagram for the DTMC with state-transition probability matrix

P =
1
10


6 2 2

1 8 1
6 0 4


 . (2)

0

1 2

6
10

1
10

2
10

2
10

1
10

6
10

8
10

4
10

Fig. 4. State transition diagram for the example DTMC (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

2.2 Transient and Steady-State Probabilities

We can now proceed to calculate the 2-step probabilities of a DTMC with state-
transition probability matrix P. We have

pi,j(2) = Pr{X2 = j|X0 = i} =
∑
k∈I

Pr{X2 = j,X1 = k|X0 = i}, (3)

since in going from state i to state j in two steps, any state k ∈ I can be visited
as intermediate state. Now, due to the rule of conditional probability as well as
the Markov property, we can write

pi,j(2) =
∑
k∈I

Pr{X2 = j,X1 = k|X0 = i}

=
∑
k∈I

Pr{X1 = k|X0 = i}Pr{X2 = j|X1 = k,X0 = i}

=
∑
k∈I

Pr{X1 = k|X0 = i}Pr{X2 = j|X1 = k}

=
∑
k∈I

pi,kpk,j . (4)

Markovian Models for Performance and Dependability Evaluation 45

In the last summation we recognise the matrix product. Thus, the 2-step prob-
abilities pi,j(2) are elements of the matrix P2. The above derivation can be
applied iteratively, yielding the n-step probabilities pi,j(n) as elements of the
matrix Pn. For the 0-step probabilities we find the matrix I = P0. The equation
that establishes a relation between the (m + n)-step probabilities and the m-
and n-step probabilities, that is,

Pm+n = PmPn, (5)

is known as the Chapman-Kolmogorov equation.
The probability of residence in state j after n steps, that is πj(n), can be

obtained by conditioning:

πj(n) = Pr{Xn = j} =
∑
i∈I

Pr{X0 = i}Pr{Xn = j|X0 = i}

=
∑
i∈I

πi(0)pi,j(n). (6)

Writing this in matrix-vector notation, with π(n) = (π0(n), π1(n), · · ·), we arrive
at

π(n) = π(0)Pn. (7)

Since the index n in (7) can be interpreted as the step-count in the DTMC, this
equation expresses the time-dependent or transient behaviour of the DTMC.

Example 2. Transient behaviour of a DTMC. Let us compute π(n) = π(0)Pn

for n = 1, 2, 3, · · · with P as given in (2), and π(0) = (1, 0, 0). Clearly, π(1) =
π(0)P = (0.6, 0.2, 0.2). Then, π(2) = π(0)P2 = π(1)P = (0.50, 0.28, 0.22). We
proceed with π(3) = π(2)P = (0.460, 0.324, 0.216). We observe that the succes-
sive values for π(n) seem to converge somehow, and that the elements of all the
vectors π(n) always sum to 1.

For many DTMCs (but not all; we will discuss conditions in Section 2.4) all
the rows in Pn converge to a common limit when n → ∞. For the time being,
we assume that such a limit indeed exists. Defining v = (· · · , vj , · · ·) as

vj = lim
n→∞πj(n) = lim

n→∞Pr{Xn = j} = lim
n→∞

∑
i∈I

πi(0)pi,j(n). (8)

Writing this in matrix-vector notation, we obtain

v = lim
n→∞π(n) = lim

n→∞π(0)Pn. (9)

However, we also have

v = lim
n→∞ π(n+ 1) = lim

n→∞π(0)Pn+1 =
(
lim
n→∞ π(0)Pn

)
P = vP. (10)

46 Boudewijn R. Haverkort

Hence, whenever the limiting probabilities v exist, they can be obtained by
solving the system of linear equations

v = vP ⇒ v(I − P) = 0, (11)

with, since v is a probability vector,
∑

i vi = 1, and 0 ≤ vi ≤ 1. The equivalent
form on the right, i.e., v(I−P) = 0, will be discussed in Section 4 in relation to
CTMCs.

The vector v is called the stationary or steady-state probability vector of the
DTMC, which, for the DTMCs we will encounter, will most often uniquely exist.
Furthermore, in most of the practical cases we will encounter, this steady-state
probability vector will be independent of the initial state probabilities π(0).

Example 3. Steady-state probability vector calculation. Let us compute v = vP
with P as in (2) and compare it to the partially converged result obtained there.
Denoting v = (v0, v1, v2) we derive from the system of three linear equations
that v0 = v1 and v2 = v0/2. Using the fact that v0 + v1 + v2 = 1 (normalisation)
then gives us v = (4

10 ,
4
10 ,

2
10).

The steady-state probabilities can be interpreted in two ways. One way is
to see them as the long-run proportion of time the DTMC “spends” in the
respective states. The other way is to regard them as the probabilities that the
DTMC would be in a particular state if one would take a snapshot after a very
long time. It is important to note that for large values of n state changes do still
take place!

2.3 State-Residence Time Distribution

The matrix P describes the 1-step state transition probabilities. If, at some
time instance n, the state of the DTMC is i, then, at time instance n + 1,
the state will still be i with probability pi,i, and will be j �= i with probability
1−pi,i =

∑
j 	=i pi,j . For time instance n+1, a similar reasoning holds, so that the

probability of still residing in state i at time instance n+2 (given residence there
at time instance n and n+ 1) equals p2

i,i. Taking this further, the probability to
reside in state i for exactly m consecutive epochs equals (1− pi,i)pm−1

i,i , that is,
there are m− 1 steps in which the possibility (staying in i) with probability pi,i
is taken, and one final step with probability 1−pi,i where indeed a step towards
another state j �= i is taken. Interpreting leaving state i as a success and staying
in state i as a failure, i.e., a failure to leave, we see that the state residence times
in a DTMC obey a geometric distribution. The expected number of epochs in
state i then equals 1/(1−pi,i) and the variance of the number of epochs in state
i then equals pi,i/(1− pi,i)2.

The fact that the state residence times in a DTMC are geometrical distribu-
tions need not be a surprise. From the Markov property, we know that only the
actual state, at any time instance, is of importance in determining the future,
irrespective of the residence time in that state. The geometric distribution is the

Markovian Models for Performance and Dependability Evaluation 47

only discrete distribution exhibiting this memoryless property, that is, when a
random variable M is geometrically distributed the following holds:

Pr{M = n+m|M > n} = Pr{M = m}, m ≥ 1.

2.4 Convergence Properties

Previously, we stated that the steady-state probability distribution of a DTMCs
can be determined when the DTMC fulfills certain conditions. In this section
we discuss concisely a number of properties of DTMCs that help us in deciding
whether a DTMC has a unique steady-state probability distribution or not.

Let us start with a classification of the states in a DTMC. A state j ∈ I is
said to be reachable from state i ∈ I if, for some value n, pi,j(n) > 0, which
means that there is a step number for which there is a nonzero probability of
going from state i to j. For such a pair of states, we write i → j. If i → j
and j → i, then i and j are said to be communicating states, denoted i ∼ j.
Clearly, the communicating relation (∼) is (i) transitive: if i ∼ j and j ∼ k
then i ∼ k, (ii) symmetric: by its definition in terms of →, i ∼ j is equivalent
to j ∼ i, and (iii) reflexive: for n = 0, we have pi,i(0) = 1, so that i → i and
therefore i ∼ i. Consequently, ∼ is an equivalence relation which partitions the
state space in communicating classes. If all the states of a DTMC belong to
the same communicating class, the DTMC is said to be irreducible. If not, the
DTMC is reducible.

The period di ∈ IN of state i is defined as the greatest common divisor of those
values n for which pi,i(n) > 0. When di = 1, state i is said to be aperiodic, in
which case, at every time step there is a non-zero probability of residing in state
i. It has been proven that within a communicating class all states have the same
period. Therefore, one can also speak of periodic and aperiodic communicating
classes, or, in case of an irreducible DTMC, of an aperiodic or periodic DTMC.

A state i is said to be absorbing when limn→∞ pi,i(n) = 1. Recall that for an
absorbing state i we have

∑
j 	=i pi,j = 0. When there is only a single absorbing

state, the DTMC will, with certainty, reach that state for some value of n.
A state is said to be transient or non-recurrent if there is a nonzero probability

that that state is not visited again at some point in the future. If this is not the
case, the state is said to be recurrent. For recurrent states, we can address the
time between successive visits. Let fi,j(n) denote the probability that exactly
n steps after leaving state i, state j is visited for the first time. Consequently,
fi,i(n) is the probability that exactly n steps are taken between two successive
visits to state i. Defining fi,i =

∑
n fi,i(n), it follows that if fi,i = 1, then state

i is recurrent. If state i is nonrecurrent then fi,i < 1. In the case fi,i = 1 we
can make a further classification based upon the mean recurrence time mi of
state i, defined as mi =

∑∞
n=1 nfi,i(n). A recurrent state i is said to be positive

recurrent (or recurrent non-null) if the mean recurrence time mi is finite. If mi

is infinite, state i is said to be null recurrent.
Having defined the above properties, the following theorem expresses when

a DTMC has a (unique) steady-state probability distribution.

48 Boudewijn R. Haverkort

Theorem 1. Steady-state probability distributions in a DTMC. In an
irreducible and aperiodic DTMC with positive recurrent states:

– for all j, the limiting probability vj = limn→∞ πj(n) = limn→∞ pi,j(n) does
exist;

– v is independent of the initial probability distribution π(0);
– v is the unique steady-state probability distribution.

In typical performance and dependability models, the Markov chains will be
irreducible and aperiodic. When dealing with continuous-time Markov chains,
similar conditions apply as for DTMC.

3 Semi-Markov Chains

We define semi-Markov chains in Section 3.1 and give an alternative interpreta-
tion of their dynamics in Section 3.2.

3.1 SMCs as Generalisation of DTMCs

We can leave the discrete-time domain and move to the continuous-time domain
by associating with every state in a DTMC a positive residence time distribution
Fi(t) and density fi(t). In doing so, we end up with a semi-Markov chain (SMC),
which is fully described by the matrix with 1-step probabilities P (as known from
DTMCs), the initial probability vector π(0) and the vector of state residence
distributions F (t) = (F1(t), · · · , F|I|(t)). A simple interpretation of an SMC is
the following. At epochs when the state changes take place (transition epochs),
the SMC behaves as a DTMC in the sense that the state changes are completely
governed by the state transition probability matrix P, and are independent of
the past. When state i is entered, a random amount of time has to be passed,
distributed according to Fi(t), before the next state transition takes place.

To obtain the steady-state probabilities of an SMC, we first solve the steady-
state probabilities for the so-called embedded DTMCs characterisedby P. Since
the SMC behaviour at transition epochs is the same as for this DTMC, we can
compute the steady-state probabilities v for the embedded DTMC in the usual
way. Now, we have to compute the average state residence times hi for all states
i in the SMC. We do this directly from the state residence time distributions:

hi =
∫ ∞

0

tfi(t)dt.

We then obtain the steady-state probabilities in the SMC by taking these resi-
dence times into account, as follows:

πi =
vihi∑
j vjhj

, for all i.

Note that for the steady-state probabilities of the SMC only the mean state
residence times hi are of importance. Hence, in many applications, these mean

Markovian Models for Performance and Dependability Evaluation 49

values are given directly, so that the explicit integration above does not need to
be performed.

The computation of transient state probabilities for an SMC is far more com-
plex than for DTMCs (and for CTMCs). A derivation of the relevant equations
as well as their solution go beyond the scope of this paper, but can be found in
[48].

3.2 Alternative View on SMCs

We can also view an SMCs in a slightly different, but equivalent, way. Consider
a DTMC in which the transition probabilities are dependent on the time already
spent in (current) state i since the last entrance there, but not on states visited
before entering state i nor on any previous residence times. Thus, we deal with a
time-dependent probability matrix K(t) known as the kernel of the SMC, where
an entry ki,j(t) provides the probability that, after having entered state i, it
takes at most t time units to switch to state j, given that no transition to any
other state takes place.

From K(t), we can derive two well-known other quantities. First of all, the
limit pi,j = limt→∞ ki,j(t) expresses the probability that once state i has been
entered, the next state will be j. The thus resulting probabilities indeed coincide
with the entries of P for the embedded DTMC in Section 3.1. Furthermore, the
state residence time distribution Fi(t) can be written as Fi(t) =

∑
j ki,j(t).

Hence, once K(t) is known, both P and F (t) can be derived and the solution
procedure of Section 3.1 can be applied.

4 Continuous-Time Markov Chains

In this section, we focus on continuous-time Markov chains (CTMCs). We first
present how CTMCs can be seen as generalisations of DTMCs, by enhancing
them with negative exponential state residence time distributions in Section 4.1.
We then present the evaluation of the steady-state and transient behaviour of
CTMCs in Section 4.2.

4.1 From DTMC to CTMC

In DTMCs time progresses in abstract steps. With CTMCs, as for SMCs, we
associate positive state-residence time distributions with each state; hence we
address Markov chains in continuous-time. In SMCs, we associated general resi-
dence time distributions with states. As a result, the state transition probability
matrix K(t) became time dependent, so that the complete state of an SMC is
given by the current state number i and the time already spent in that state
(denoted in the sequel as tres).

With CTMCs, we strive for a considerably more simple notion of state. We
will chose the state residence time distribution such that the current state index
i describes the state of the chain completely. This can only be achieved when

50 Boudewijn R. Haverkort

the chosen state residence time distribution is memoryless, so that it does not
matter what the actual value of tres is. In doing so, the Markov property is valid,
and reads for the case at hand, for all non-negative t0 < t1 < · · · < tn+1 and
x0, x1, · · · , xn+1:

Pr{X(tn+1) = xn+1|X(t0) = x0, · · · , X(tn) = xn}
=

Pr{X(tn+1) = xn+1|X(tn) = xn},
(12)

hence, the probability distribution for the (n + 1)-th state residence time only
depends on the current (n-th) state and neither on the time passed in the current
state, nor on states visited previously.

The only memoryless continuous-time distribution is the exponential distri-
bution. Thus, we have to associate with every state i in a CTMC a parameter µi
describing the rate of an exponential distribution; the residence time distribution
in state i then equals

Fi(t) = 1− e−µit, t ≥ 0. (13)

The vector µ = (· · · , µi, · · ·) thus describes the state residence time distributions
in the CTMC. To be precise, this vector describes the rates of these distribu-
tions, but these rates fully characterise the distribution. We can still use the
state transition probability matrix P to describe the state transition behaviour.
The initial probabilities remain π(0). The dynamics of the CTMC can now be
interpreted as follows. When state i is entered, this state will remain for a ran-
dom amount of time, distributed according to the state residence distribution
Fi(t). After this delay, a state change to state j will take place with probability
pi,j . To ease understanding at this point, assume that pi,i = 0 for all i; we come
back to this issue below.

Instead of associating with every state just one negative exponentially dis-
tributed delay, it is also possible to associate as many delays with a state as there
are transition possibilities. We therefore define the matrix Q with qi,j = µipi,j ,
in case i �= j, and qi,i = −

∑
j 	=i qi,j = −µi. Since pi,i = 0, we have qi,i = −µi.

Using this notation allows for the following interpretation. When entering state
i, for those states j that can be reached from i, i.e., for those with qi,j > 0, a
random variable is thought to be drawn, according to the (negative exponential)
distributions Fi→j(t) = 1−e−qi,jt. These distributions model the delay perceived
in state i when going to j. One of the “drawn” delays will be the smallest, mean-
ing that the transition corresponding to that delay will actually occur before any
of the others (race condition: the faster one wins). This interpretation is correct
due to the special properties of the negative exponential distribution. Let us
first address the state residence times. In state i, the time it takes to reach
state j is exponentially distributed with rate qi,j . When there is more than one
possible successor state, the next state will be such that the residence time in
state i is minimised (race condition). However, the minimum value of a set of
of exponentially distributed random variables with rates qi,j (j �= i) is again an
exponentially distributed random variable, with as rate the sum

∑
j 	=i qi,j of the

Markovian Models for Performance and Dependability Evaluation 51

original rates. This sum is, however, exactly equal to the rate µi of the residence
time in state i.

A second point to verify is whether the state-transition behaviour is still the
same. In general, if we have n negative exponentially distributed random vari-
ables Xk (with rates lk), then Xi will be the minimum of them with probability
li/
∑
k lk. In our case, we have a number of competing delays when starting from

state i, which are all negative exponentially distributed random variables (with
rates qi,j). The shortest one will then lead to state j with probability

qi,j∑
k 	=i qi,k

=
pi,jµi
µi

= pi,j , (14)

so that also the state-transition behaviour is as required.
Let us now discuss the case where pi,i > 0, that is, the case where, after having

resided in state i for an exponentially distributed period of time (with rate µi),
there is a positive probability of staying in i for another period. In particular,
we have seen in Section 2 that the state residence distributions in a DTMC
obey a geometric distribution (measured in “visits”), with mean 1/(1− pi,i) for
state i. Hence, if we decide that the expected state residence time in the CTMC
constructed from the DTMC is 1/µi, the time spent in state i per visit should on
average be (1− pi,i)/µi. Hence, the rate of the negative exponential distribution
associated with that state should equal µi/(1−pi,i). Using this rate in the above
procedure, we find that we have to assign the following transition rates for j �= i:

qi,j =
µipi,j
1− pi,i

= µi
pi,j

1− pi,i
= µi Pr{jump i → j|leave i}, j �= i, (15)

that is, we have renormalised the probabilities pi,j (j �= i) such that they make up
a proper distribution. To conclude, if we want to associate a negative exponential
residence time with rate µi to state i, we can do so by just normalising the
probabilities pi,j (j �= i) appropriately.

4.2 Evaluating the Steady-State and Transient Behaviour

CTMCs can be depicted conveniently using state-transition diagrams. i.e., as
labelled directed graphs, with the states of the CTMC represented by the vertices
and an edge between vertices i and j (i �= j) whenever qi,j > 0. The edges in
the graph are labelled with the corresponding rates.

Formally, a CTMC can be described by an (infinitesimal) generator matrix
Q = (qi,j) and initial state probability vector π(0). Denoting the system state
at time t ∈ T as X(t), we have, for h → 0:

Pr{X(t+ h) = j|X(t) = i} = Pr{X(h) = j|X(0) = i} = qi,jh+ o(h), i �= j,
(16)

where o(h) is a term that goes to zero faster than h. This result follows because
the CTMC is time-homogeneous and the fact that the state residence times
are negative exponentially distributed; in fact, (16) represents the first-order

52 Boudewijn R. Haverkort

Taylor/MacLaurin series expansion of 1−e−qi,jh around 0. The value qi,j (i �= j)
is the rate at which the current state i changes to state j. Denote with πi(t) the
probability that the state at time t equals i: πi(t) = Pr{X(t) = i}. Given πi(t),
we can compute the evolution of the Markov chain in the period [t, t + h) as
follows:

πi(t+ h) = πi(t) Pr
{
do not depart from i

during [t, t+ h)

}
+
∑
j 	=i

πj(t) Pr
{

go from j to i
during [t, t+ h)

}

= πi(t)


1−

∑
j 	=i

qi,jh


+


∑
j 	=i

πj(t)qj,i


h+ o(h). (17)

Now, using the earlier defined notation qi,i = −
∑
j 	=i qi,j , we have

πi(t+ h) = πi(t) +


∑
j∈I

πj(t)qj,i


 h+ o(h). (18)

Rearranging terms, dividing by h and taking the limit h → 0, we obtain

π′
i(t) = lim

h→0

πi(t+ h)− πi(t)
h

=
∑
j∈I

qj,iπj(t), (19)

which in matrix-vector notation has the following form:

π′(t) = π(t)Q, given π(0). (20)

We thus find that the time-dependent or transient state probabilities in a CTMC
are described by a system of linear differential equations.

In many cases, however, the transient behaviour π(t) of the Markov chain
is more than we really need. For performance evaluation purposes we are often
already satisfied when we are able to compute the long-term or steady-state
probabilities πi = limt→∞ πi(t). When we assume that a steady-state distribution
exists, this implies that the above limit exists, and thus that limt→∞ π′

i(t) = 0.
Consequently, for obtaining the steady-state probabilities we only need to solve
the system of linear equations:

πQ = 0,
∑
i∈I

πi = 1. (21)

The right part (normalisation) is added to ensure that the obtained solution is
indeed a probability vector; the left part alone has infinitely many solutions,
which upon normalisation all yield the same probability vector.

Note that the equation πQ = 0 is of the same form as the equation v = vP we
have seen for DTMCs. Since this latter equation can be rewritten as v(P−I) = 0,
the matrix (P − I), as already encountered in (11), can be interpreted as a
generator matrix.

Note that we can also solve the steady-state probabilities of a CTMC by
seeing it as a special case of an SMC, with embedded DTMC described by the
probabilities pi,j = qi,j/|qi,i| and mean state residence times hi = |qi,i|−1.

Markovian Models for Performance and Dependability Evaluation 53

0 1

µ

λ

Fig. 5. A simple 2-state CTMC (B.R. Haverkort, Performance of Computer
Communication Systems, 1998. c© John Wiley & Sons Limited. Reproduced
with Permission.)

Example 4. Evaluation of a 2-state CTMC. Consider a component that is either
operational or not. The time it is operational is exponentially distributed with
mean 1/λ. The time it is not operational is also exponentially distributed, with
mean 1/µ. Signifying the operational state as state “1”, and the down state as
state “0”, we can model this system as a 2-state CTMC with generator matrix
Q as follows:

Q =
(
−µ µ
λ −λ

)
.

Furthermore, it is assumed that the system is initially fully operational so that
π(0) = (0, 1). In Figure 5 we show the corresponding state-transition diagram.
Solving (21) yields the following steady-state probability vector:

π =
(

λ

λ+ µ
,

µ

λ+ µ

)
. (22)

This probability vector can also be computed from the embedded DTMC which
is given as:

P =
(
0 1
1 0

)
.

Solving for v yields us v = (1
2 ,

1
2), indicating that both states are visited equally

often. However, these visits are not equally long. Incorporating the mean state
residence times, being respectively 1/µ and 1/λ, yields

p =


 1

2
1
µ

1
2

(
1
µ + 1

λ

) , 1
2

1
λ

1
2

(
1
µ + 1

λ

)

 =

(
λ

λ+ µ
,

µ

λ+ µ

)
, (23)

which is the solution we have seen before.
For the transient behaviour of the CTMC we have to solve the corresponding

system of linear differential equations. Although this is difficult in general, for
this specific example we can obtain the solution explicitly. We obtain (see also
Section 6):

π(t) = π(0)eQt, (24)

54 Boudewijn R. Haverkort

from which we can derive

π0(t) =
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t,

π1(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t. (25)

Notice that π0(t) + π1(t) = 1 (for all t) and that the limit of the transient
solutions for t → ∞ indeed equals the steady-state probability vectors derived
before. In Figure 6 we show the transient and steady-state behaviour of the
2-state CTMC for 3λ = µ = 1.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

π.(t)

t

π0(t)
π1(t)

π1

π0

Fig. 6. Steady-state and transient behaviour of a 2-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. c© John
Wiley & Sons Limited. Reproduced with Permission.)

Example 5. Availability evaluation of a fault-tolerant system. Consider a fault-
tolerant computer system consisting of three computing nodes and a single voting
node. The three computing nodes generate results after which the voter decides
upon the correct value (by selecting the answer that is given by at least two
computing nodes). Such a fault-tolerant computing system is also known as a
triple-modular redundant system (TMR). The failure rate of a computing node
is λ and of the voter ν failures per hour (fph). The expected repair time of a
computing node is 1/µ and of the voter is 1/δ hours. If the voter fails, the whole
system is supposed to have failed and after a repair (with rate δ) the system is
assumed to start “as new”. The system is assumed to be operational when at
least two computing nodes and the voter are functioning correctly.

To model the availability of this system as a CTMC, we first have to define the
state space: I = {(3, 1), (2, 1), (1, 1), (0, 1), (0, 0)}, where state (i, j) specifies that

Markovian Models for Performance and Dependability Evaluation 55

i computing nodes are operational as well as j voters. Note that the circumstance
of the computing nodes does not play a role any more as soon as the voter goes
down; after a repair in this down state the whole system will be fully operational,
irrespective of the past state. Using the above description, the state-transition
diagram can be drawn easily, as given in Figure 7. The corresponding generator
matrix is given as:

Q =




−(3λ+ ν) 3λ 0 0 ν
µ −(µ+ 2λ+ ν) 2λ 0 ν
0 µ −(µ+ λ+ ν) λ ν
0 0 µ −(µ+ ν) ν
δ 0 0 0 −δ


 . (26)

We assume that the system is fully operational at t = 0. The following numerical
parameters are given: λ = 0.01 fph, ν = 0.001 fph, µ = 1.0 repairs per hour (rph)
and δ = 0.2 rph.

3, 1 2, 1 1, 1 0, 1

0, 0
δ

µ

ν

3λ 2λ λ

µµ

ν

ν

ν

Fig. 7. CTMC for the TMR system (B.R. Haverkort, Performance of Computer
Communication Systems, 1998. c© JohnWiley & Sons Limited. Reproduced with
Permission.)

We can now compute the steady-state probabilities by solving the linear
system πQ = 0 under the condition that

∑
i πi = 1 (see Section 5) which yields

the following values (note that we use the tuple (i, j) as state index here):

(i, j) (3, 1) (2, 1) (1, 1) (0, 1) (0, 0)
π(i,j) 9.6551× 10−1 2.8936× 10−2 5.7813× 10−4 5.7755× 10−6 4.9751× 10−3

The probability that the system is operational can thus be computed as 0.99444.
Although this number looks very good (it is very close to 100%) for a non-stop
transaction processing facility, it would still mean an expected down-time of 48.7
hours a year ((1− 0.99444)× 24× 365).

The transient behaviour of this small CTMC can be obtained by numerically
solving the differential equation for π(t) with a technique known as uniformisa-
tion (see Section 6). In Figure 8 we show the probability π(3,1)(t) for the first 10
hours of system operation. As can be observed, the transient probability reaches

56 Boudewijn R. Haverkort

the steady-state probability relatively fast. A similar observation can be made
for the other transient probabilities in Figure 9 (note the logarithmic scale of
the vertical axis).

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0 2 4 6 8 10

p31(t)

t

p31(t)

Fig. 8. Transient probability π(3,1) for the TMR system (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

Example 6. A finite-buffer queueing station. Consider a single server that accepts
requests to be processed in first-come first-served order. The processing time is
assumed to be exponentially distributed with mean 1/µ and the interarrival
times are exponentially distributed with mean 1/λ. An arrival process in which
the interarrival times are independent and negative exponentially distributed is
called a Poisson process. The number of arrivals taking place over a finite time
interval [0, t) in a Poisson process with rate λ follows a Poisson distribution with
mean λt; Pr{n arrivals in [0, t)} = e−λt (λt)n

n! , n ∈ IN , named after Professor
Siméon Denis Poisson, who lived in France from 1781 through 1840. Being an
excellent mathematician, he published largely over 300 articles, devoted to a
wide variety of topics. His name is attached to a wide area of concepts, e.g., as
in the probability-related examples above, but also in the Poisson integral, the
Poisson equation for potential energy and Poisson’s constant in electricity.

The state of the server is, due to the involved memoryless distributions,
completely given by the number of requests in the server. If we assume that the
server can hold at most K requests, (including the one actually being processed)
the state of the server is governed by a CTMC, as given in Figure 10. In fact,
we are dealing here with the CTMC underlying the so-called M|M|1|K queue,
in which both the interarrival and service times are memoryless (explaining the
two “M”s), hence negative exponentially distributed, there is 1 server and there

Markovian Models for Performance and Dependability Evaluation 57

-7

-6

-5

-4

-3

-2

-1

0

1

0 2 4 6 8 10

log pi,j(t)

t

p2,1(t)

p1,1(t)

p0,1(t)

p0,0(t)

Fig. 9. Transient probabilities π(i,j) for the TMR system (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

are K buffer spots (including the server itself). The notation employed here to
denote the particular queueing system is due to D.G. Kendall [43] (professor
emeritus of Oxford University since 1989).

By the fact that the CTMC has a structure in which only left and right
“neighbouring” states can be reached, this type of CTMC is called a birth-death
process. The (K+1)×(K+1) generator matrix for the CTMC is given as follows:

Q =




−λ λ 0 · · · · · ·
µ −(λ+ µ) λ 0 · · ·
.
0 0 0 µ −µ


 .

The special tridiagonal structure of Q is typical for birth-death processes. Ex-
ploiting the birth-death structure of the CTMC, we can solve the equation
πQ = 0 explicitly to reveal that πi = π0 · ρ, i = 1, · · · ,K. Here, ρ = λ/µ is
the ratio of the arrival rate and the service rate, which is also called the traf-
fic intensity or the utilisation. We observe that all steady-state probabilities
are related to the probability that the server is empty (π0). The normalisation∑

i πi = 1 then yields π0, in the following way:

π0

K∑
i=1

ρi = 1 ⇒ π0 =
1− ρ

1− ρK+1
,

where the latter equality follows from the geometric series:
∑K

i=0 a
i = (1 −

aK+1)/(1− a) (with a > 0, a �= 1). Note at this point that only the steady-state
probabilities can be obtained explicitly; the transient probabilities can only be
obtained numerically.

58 Boudewijn R. Haverkort

0 1 2 K

λ

µ µ µ µ

λ λ λ

Fig. 10. CTMC underlying the M|M|1|K queue

Example 7. An infinite-buffer queueing station. We can extend the previous ex-
ample by making the buffering capacity of the server unbounded. Surprisingly, a
closed-form solution for the steady-state probabilities then still exists. The state
space of the corresponding CTMC then equals IN and we still have πi = π0ρ.
Furthermore, if we require λ < µ, i.e., the average number of requests arriv-
ing per unit of time is smaller than the average number of jobs that can be
handled per unit of time, we have ρ < 1, so that πi becomes smaller for increas-
ing i. Moreover, the sum

∑∞
i=0 ρ

i = (1 − ρ)−1, so that we find for all i ∈ IN :
πi = (1 − ρ)ρi (which is a geometric distribution). Furthermore, we can simply
obtain a closed-form solution for the mean number of requests in the server:

E[N] =
∞∑
i=0

iπi =
∞∑
i=0

i(1− ρ)ρi =
ρ

1− ρ
, 0 ≤ ρ < 1.

This example shows that, provided a regular structure exists in the Markov
chain, steady-state probabilities can still be obtained explicitly, even if the state
space is infinitely large. For more information on this topic, refer for instance to
[27,67].

Example 8. Erlang’s loss model. As stated in the introduction, Erlang studied
Markovian models of telephone exchanges. In Kendall’s notation, his model can
now be described as an M|M|K|K queueing model, in which calls arrive according
to a Poisson process with rate λ and take an exponentially distributed time with
length 1/µ. Furthermore, the telephone switch considered can accommodate K
simultaneous calls (“there are K lines”) and cannot put calls on hold. Clearly,
when all K lines are busy, an arriving call will be lost; the caller will hear a
busy tone. The problem to be solved then, is to compute the required number
of lines K so that, given traffic characteristics in terms of λ and µ, the call loss
probability remains under some threshold.

Erlang’s model describes a birth-death process, as illustrated in Figure 11,
where the state number denotes the number of calls in progress. The call rate
λ is constant for all states. The service rate linearly depends on the number of
calls underway. For this birth-death process, the matrix Q has again a tridiag-
onal structure and we can easily solve the steady-state probabilities explicitly.
Defining ρ = λ/µ, we find:

Markovian Models for Performance and Dependability Evaluation 59

πi = π0
ρi

i!
, i = 0, · · · ,K, with π0 =


 K∑
j=0

ρj

j!


−1

,

where the expression for π0 follows from the normalisation equation. The prob-
ability that an arriving call is lost, is now given by the probability for state K,
that is:

Pr{arriving call lost;K, ρ} =
ρK/K!∑K
i=0 ρ

i/i!
.

This result is also known as Erlang’s loss formula B(K, ρ). As part of his studies,
Erlang published large tables with these loss probabilities, which were used to
dimension telephone switches.

0 1 2 K

λ

µ

λ λ λ

Kµ2µ 3µ

Fig. 11. CTMC underlying the M|M|K|K queue

5 Solution Methods for Steady-State Probabilities

As has become clear from the previous sections, in order to obtain the steady-
state probabilities of finite DTMCs and CTMCs (with N states; numbered 1
through N) we need to solve a system of N linear equations which takes the
following form (here given for a CTMC, but similar in the DTMC case):

πQ = 0,
N∑
i=1

πi = 1, (27)

We assume here that the Markov chain is irreducible and aperiodic such that π
does exist and is independent from π(0). Notice that the left part of (27) in fact
does not uniquely define the steady-state probabilities; however, together with
the normalisation equation a unique solution is found. For the explanations that
follow, we will transpose the matrix Q and denote it as A. Hence, we basically
have to solve the following system of linear equations:

AπT = b, with A = QT and b = 0T . (28)

Starting from this system of equations, two solution approaches can be chosen:
direct methods or iterative methods. These methods will be discussed in Section
5.1 and 5.2, respectively.

60 Boudewijn R. Haverkort

5.1 Direct Methods

The main characteristic of a so-called direct method is that it aims at rewriting
the system of equations in such a form that explicit expressions for the steady-
state probabilities are obtained. The rewriting procedure costs an a priori known
number of operations, given the number of states N .

Gaussian Elimination Perhaps the best-known direct solution technique is
Gaussian elimination, named after the famous German mathematician Johann
Carl Friedrich Gauss (1777–1855). The Gaussian elimination procedure consists
of two phases: a reduction phase and a substitution phase.

In the reduction phase repetitive subtractions of equations from one another
are used to make the system of equations upper-triangular (see also Figure 12).
To do so, let the i-th equation be

∑
j ai,jpj = 0 (this equals

∑
j pjqj,i = 0 in the

non-transposed system). We now vary i from 1 to N . The j-th equation, with
j = i + 1, · · · , N , is now changed by subtracting the i-th equation mj,i times
from it, where mj,i = aj,i/ai,i, that is, we reassign the aj,k values as follows:

aj,k := aj,k −mj,iai,k, j, k > i.

Clearly, aj,i := aj,i −mj,iai,i = 0, for all j > i. To avoid round-off errors, it is
important to set aj,i to zero. By repeating this procedure for increasing i, the
linear system of equations is transformed, in N −1 steps, to an upper-triangular
system of equations. The element ai,i that acts as a divisor is called the pivot.
If a pivot is encountered that equals 0, an attempt to divide by 0 results, which
indicates that the system of equations does not have a solution. Since Q is a
generator matrix of an irreducible ergodic CTMC, this problem will not occur.
Moreover, since A is weakly diagonal dominant (ai,i is as large as the sum of
all the values aj,i (j �= i) in the same column) we have that mj,i < 1 so that
overflow problems are unlikely to occur.

At the end of the reduction phase, the N -th equation will always reduce to
a trivial one (0 = 0). This is no surprise, since the system of equations without
normalisation is not of full rank. We might even completely ignore the last
equation. Since the right-hand side of the linear system of equations equals 0,
nothing changes there either. When the right-hand side is a non-zero vector b,
we would have to set bj := bj −mj,ibi, for all j > i in each step in the reduction
process.

After the reduction has been performed, the substitution phase can start. The
equation for πN does not help us any further; we therefore assume a value α > 0
for πN , which can be substituted in the first N − 1 equations, thus yielding
a system of equations with one unknown less. We implement this by setting
bj := bj − aj,NπN . Now, the (N − 1)-th equation will have only one unknown
left which we can directly compute as πN−1 = bN−1/aN−1,N−1. This new value
can be substituted in the N − 2 remaining equations, after which the (N − 2)-
th equation has only one unknown. This procedure can be repeated until all
probabilities have been computed explicitly in terms of πN (or α). We then use

Markovian Models for Performance and Dependability Evaluation 61

yet unreduced

row j

row i

A

zero

first i rows reduced

column i being reduced

ai,i

aj,i := aj,k − mj,iai,k

Fig. 12. Schematic representation of the i-th reduction step in the Gaussian
elimination procedure (B.R. Haverkort, Performance of Computer Communica-
tion Systems, 1998. c© John Wiley & Sons Limited. Reproduced with Permis-
sion.)

the normalisation equation to compute α to obtain the true probability vector,
that is, we compute σ =

∑N
i=1 πi and set πi := πi/σ, for all i.

Instead of assuming the value α for πN , we can also directly include the
normalisation equation in the Gaussian elimination procedure. The best way to
go then, is to replace the N -th equation with the equation

∑
i πi = 1. In doing

so, the last equation will directly give us πN . The substitution phase can proceed
as before.

Complexity Considerations for Gaussian Elimination The computational
complexity for Gaussian elimination is O(N3). By a more careful study of the
algorithm, one will find that about N3/3 +N2/2 multiplications and additions
have to be performed, as well as N(N+1)/2 divisions. Clearly, these numbers in-
crease rapidly with increasing N . The main problem with Gaussian elimination,
however, lies in its storage requirements. Although A will initially be sparse for
most models, the reduction procedure normally increases the number of non-
zeros in A. At the end of the reduction phase, most entries of the upper half
of A will be non-zero. The non-zero elements generated during this phase are
called fill-ins. They can only be inserted efficiently when direct storage structures
(arrays) are used. To store the upper-triangular matrix A, N2/2 floats have to
be stored, each taking at least 8 bytes, plus 2 to 4 bytes for the correspond-
ing indices. For moderately sized models, generated from some high-level model
specification, N can easily be as large as 105 or even 106. This then precludes the
use of Gaussian elimination. Fortunately, there are methods to compute π that
do not change A and that are very fast as well. We will discuss these methods
after we have discussed one alternative direct method.

62 Boudewijn R. Haverkort

LU Decomposition A method known as LU decomposition is advantageous to
use when multiple systems of equations have to be solved, all of the form Ax = b,
for different values of b. This occurs, for instance when one tries to invert A by
solving Axi = ei, where the vectors ei have as single nonzero element a 1 at the
i-th position; the matrix A−1 = (x1, x2, · · ·).

The LU method starts by decomposing A such that it can be written as the
product of two matrices L and U, where the former is lower-triangular, and the
latter is upper-triangular. We have:

Ax = b ⇒ L Ux︸︷︷︸
z

= b. (29)

After the decomposition has taken place, we solve Lz = b, after which we solve
Ux = z. Since the last two systems of equations are triangular, their solution
can be found by a simple forward- and back-substitution.

The main question then lies in the computation of suitable matrices L and
U. Since A is the product of these two matrices, we know that

ai,j =
N∑
k=1

li,kuk,j , i, j = 1, · · · , N. (30)

Given the fact that L and U are lower- and upper-triangular, we have to find
N2 +N unknowns: {

li,j , i = 1, · · · , N, k = 1, · · · , i,
uk,j , k = 1, · · · , N, j = k, · · · , N.

(31)

Since (30) only consists of N2 equations, we have to assume N values to de-
termine a unique solution. Two well-known schemes for this are [66]: (i) the
Doolittle decomposition where one assumes li,i = 1, i = 1, · · · , N ; (ii) the Crout
decomposition where one assumes ui,i = 1, i = 1, · · · , N .

Let us consider the Doolittle variant. First notice that in (30) many of the
terms in the summation are zero, since one of the multiplicants is zero. In fact,
we can rewrite (30) in a more convenient form as follows:

{
i ≤ j : ai,j = ui,j +

∑i−1
k=1 li,kuk,j ,

i > j : ai,j = li,juj,j
∑j−1

k=1 li,kuk,j .
(32)

From this system of equations, we can now iteratively compute the entries of L
and U as follows: {

i ≤ j : ui,j = ai,j −
∑i−1

k=1 li,kuk,j ,

i > j : li,j = 1
uj,j

(
ai,j −

∑j−1
k=1 li,kuk,j

)
,

(33)

by increasing i from 1 until N is reached.

Markovian Models for Performance and Dependability Evaluation 63

Example 9. LU decomposition after Doolittle. Suppose we want to decompose

A =


 3 2 5

−6 1 8
−7 2 −3


 ,

using a Doolittle LU decomposition. We then know that

L =


1 0 0

· 1 0
· · 1


 and U =


 · · ·

0 · ·
0 0 ·


 .

We start to compute u1,1 = a1,1 = 3. We then compute l2,1 = a2,1/u1,1 = −2
and u1,2 = a1,2 = 2. From this, we find u2,2 = a2,2 − l2,1u1,2 = 5. We then
compute l3,1 = − 7

3 and find l3,2 = 4
3 . Via u1,3 = a1,3 = 5 and u2,3 = 18 we find

u3,3 = a3,3 −
∑2
k=1 l3,kuk,3 = − 46

3 . We thus have:

A = LU with L =


 1 0 0

−2 1 0
−2 1

3 1 1
3 1


 and U =


3 2 5

0 5 18
0 0 −15 1

3


 .

To solve Ax = 1, we first solve for z in Lz = 1. A simple substitution procedure
yields z = (1, 3,− 2

3). We now continue to solve Ux = z; also here a substitution
procedure suffices to find x = 1

115 (−4, 51, 5).

Example 10. LU decomposition for a CTMC. We reconsider the CTMC for
which the matrix Q is given by

Q =


−4 2 2

1 −2 1
6 0 −6


 .

We form A = QT and directly include the normalisation equation. To find the
steady-state probabilities we thus have to solve:

−4 1 6
2 −2 0
1 1 1


 ·


π1

π2

π3


 =


0

0
1


 . (34)

We now decompose A using the Doolittle decomposition as follows:

A = LU =


 1 0 0

− 1
2 1 0

− 1
4 − 10

12 1




−4 1 6

0 − 3
2 3

0 0 5


 . (35)

The solution of Lz = (0, 0, 1)T now reveals, via a simple substitution, that
z = (0, 0, 1). We now have to find π from Uπ = z, from which we, again via a
substitution procedure, find π = (2

5 ,
2
5 ,

1
5), as we have seen before.

64 Boudewijn R. Haverkort

In the above example, we took a specific way to deal with the normalisa-
tion equation: we replaced one equation from the “normal” system with the
normalisation equation. In doing so, the vector b changes to b = (0, 0, 1) and
after the solution of Lz = b, we found z = (0, 0, 1)T . This is not only true for
the above example; if we replace the last equation, the vector z always has this
value, so that we do not really have to solve the system Lz = (0, 0, 1)T . Hence,
after the LU decomposition has been performed, we can directly solve π from
Uπ = (0, · · · , 0, 1)T .

Opposed to the above variant, we can also postpone the normalisation. We
then decompose A = QT = LU, for which we will find that the last row of U
contains only 0’s. The solution of Lz = 0 will then always yield z = 0, so that we
can immediately solve Uπ = 0. This triangular system of equations can easily be
solved via a back-substitution procedure; however, we have to assume πN = α
and compute the rest of π relative to α as well. A final normalisation will then
yield the ultimate steady-state probability vector π.

Postponing the normalisation is preferred in most cases for at least two rea-
sons: (i) it provides an implicit numerical accuracy test in that the last row of U
should equal 0; and (ii) it requires less computations than the implicit normali-
sation since the number of non-zeros in the matrices that need to be handled is
smaller. Of course, these advantages will become more apparent for larger values
of N .

Complexity Considerations for LU Decomposition The LU decomposi-
tion solution method has the same computational complexity of O(N3) as the
Gaussian elimination procedure. The decomposition can be performed with only
one data structure (typically an array). Initially, the matrix A is stored in it, but
during the decomposition the elements of L (except for the diagonal elements
from L, but these are equal to 1 anyway) and the elements of U replace the
original values.

Under- and Overflow We finally comment on the occurrence of over- and
underflow during the computations. Underflow can be dealt with by setting in-
termediate values smaller than some threshold, say 10−24, equal to 0. Overflow
is unlikely to occur during the reduction phase in the Gaussian elimination since
the pivots are the largest (absolute) quantities in every column. If in other parts
of the algorithms overflow tends to occur, which can be observed if some of the
values grow above a certain threshold, e.g., 1010, then an intermediate normal-
isation of the solution vector is required. A final normalisation then completes
the procedures.

5.2 Iterative Methods

Although direct methods are suitable to solve the system of equations (28), for
reasons of computational and memory efficiency they cannot be used when the
number of states N grows beyond about a thousand. Instead, we use iterative

Markovian Models for Performance and Dependability Evaluation 65

methods in these cases. With iterative methods, the involved matrices do not
change (fill-in is avoided), so that they can be stored efficiently using sparse
matrix methods. Moreover, these methods can be implemented such that in the
matrix-multiplications only the multiplications involving two non-zero operands
are taken into account.

Iterative procedures do not result in an explicit solution of the system of
equations. A key characteristic of iterative methods is that it is not possible
to state a priori how many computational steps are required. Instead, a simple
numerical procedure (the iteration step) is performed repeatedly until a desired
level of accuracy is reached.

The Power Method We have already seen the simplest iterative method to
solve for the steady-state probabilities of a DTMC in Section 2: the Power
method. The Power method performs successive multiplication of the steady-
state probability vector v with P until convergence is reached. The Power method
can also be applied to CTMCs. Given a CTMC with generator matrix Q, we can
compute the DTMC transition matrix P = I+Q/λ. If we take λ ≥ maxi{|qi,i|},
the matrix P is a stochastic matrix and describes the evolution of the CTMC in
time-steps of mean length 1/λ (see Section 6 for a more precise formulation). Us-
ing P and setting π(0) = π(0) as initial estimate for the steady-state probability
vector, we can compute π(k+1) = π(k)P and find that π = limk→∞ π(k).

In practice, the Power method is not very efficient. Since more efficient meth-
ods do exist, we do not discuss the Power method any further.

The Jacobi Method Two of the best-known (and simple) iterative methods
are the Jacobi and the Gauss-Seidel iterative methods. For these methods, one
first rewrites the i-th equation of the linear system (28) in the following way:

N∑
j=1

ai,jπj = 0 ⇒ πi = − 1
ai,i


∑
j<i

πjai,j +
∑
j>i

πjai,j


 .

We clearly need ai,i �= 0; when the linear system is used to solve for the steady-
state probabilities of an irreducible aperiodic Markov chain, this is guaranteed.

The iterative procedures now proceed with assuming a first guess for π,
denoted π(0). If one does know an approximate solution for π, it can be used
as initial guess. In other cases, the uniform distribution is a reasonable choice,
i.e.,π(0)

i = 1/N . The next estimate for π is then computed as follows:

π
(k+1)
i = − 1

ai,i


∑
j 	=i

π
(k)
j ai,j


 . (36)

This is the Jacobi iteration scheme. We continue to iterate until two successive
estimates for π differ less than some ε from one another, i.e., when ||π(k+1) −
π(k)|| < ε (difference criterion). Notice that when this difference is very small,

66 Boudewijn R. Haverkort

this does not always imply that the solution vector has been found. Indeed,
it might be the case that the convergence towards the solution is very slow.
Therefore, it is good to check whether ||Aπ(k)|| < ε (residual criterion). Since
this way of checking convergence is more expensive, often a combination of these
two methods is used: use the difference criterion normally; once it is satisfied use
the residual criterion. If the convergence is really slow, two successive iterates
might be very close to one another, although the actual value for π is still
“far away”. To avoid the difference criterion to stop the iteration process too
soon, one might instead check on the difference between non-successive iterates,
i.e., ||π(k) − π(k−d)|| < ε, with d ∈ IN+ (and d ≤ k).

The Gauss-Seidel Method The Jacobi method requires the storage of both
π(k) and π(k+1) during an iteration step. If, instead, the computation is struc-
tured such that the (k + 1)-th estimates are used as soon as they have been
computed, we obtain the Gauss-Seidel scheme:

π
(k+1)
i = − 1

ai,i


∑
j<i

π
(k+1)
j ai,j +

∑
j>i

π
(k)
j ai,j


 , (37)

where we assume that the order of computation is from π
(k+1)
1 to π

(k+1)
N . This

scheme then requires only one probability vector to be stored, since the (k+1)-
th estimate for πi immediately replaces the k-th estimate in the single stored
vector.

The SOR Method The last method we mention is the successive over-relaxation
method (SOR). SOR is an extension of the Gauss-Seidel method, in which the
vector π(k+1) is computed as the weighted average of the vector π(k) and the
vector π(k+1) that would have been used in the (pure) Gauss-Seidel iteration.
That is, we have, for i = 1, · · · , N :

π
(k+1)
i = (1− ω)π(k)

i − ω

ai,i


∑
j<i

π
(k+1)
j ai,j +

∑
j>i

π
(k)
j ai,j


 ,

where ω ∈ (0, 2) is the relaxation factor. When ω = 1, this method reduces to
the Gauss-Seidel iteration scheme; however, when we take ω > 1 (or ω < 1)
we speak over over-relaxation (under-relaxation). With a proper choice of ω,
the iterative solution process can be accelerated significantly. Unfortunately, the
optimal choice of ω cannot be determined a priori. We can, however, estimate ω
during the solution process itself; for details, refer to Stewart [66] or Hageman
and Young [26].

Example 11. Comparing the Power, the Jacobi and the Gauss-Seidel method.We
reconsider the CTMC for which the matrix Q is given by

Q =


−4 2 2

1 −2 1
6 0 −6


 .

Markovian Models for Performance and Dependability Evaluation 67

As starting vector for the iterations we take (1
3 ,

1
3 ,

1
3). In the Jacobi and Gauss-

Seidel method we renormalised the probability vector after every iteration. In
Table 1 we show the first ten iteration vectors for these methods. As can be seen,
the Power method convergest slowest, followed by the Jacobi and the Gauss-
Seidel method.

Power Jacobi Gauss-Seidel

1 (0.5000, 0.3333, 0.1667) (0.5385, 0.3077, 0.1538) (0.5833, 0.5833, 0.2917)
2 (0.3889, 0.3889, 0.2222) (0.4902, 0.3137, 0.1961) (0.4000, 0.4000, 0.2000)
3 (0.4167, 0.3889, 0.1944) (0.3796, 0.4213, 0.1991) (0.4000, 0.4000, 0.2000)
4 (0.3981, 0.3981, 0.2037) (0.3979, 0.4023, 0.1998) :
5 (0.4028, 0.3981, 0.1991) (0.4001, 0.3999, 0.2000) :
6 (0.3997, 0.3997, 0.2006) (0.4000, 0.4000, 0.2000) :
7 (0.4005, 0.3997, 0.1998) (0.4000, 0.4000, 0.2000) :
8 (0.3999, 0.3999, 0.2001) (0.4000, 0.4000, 0.2000) :
9 (0.4001, 0.3999, 0.2000) : :
10 (0.4000, 0.4000, 0.2000) : :

Table 1. The first few iteration vectors for three iterative solution methods
(B.R. Haverkort, Performance of Computer Communication Systems, 1998. c©
John Wiley & Sons Limited. Reproduced with Permission.)

Complexity Considerations Iterative methods can be used to solve the lin-
ear systems arising in the solution of the steady-state probabilities for Markov
chains, with or without the normalisation equation. Quite generally we can state
that it is better not to include the normalisation equation; if the normalisation
equation is included, the second largest eigenvalue of the coefficient matrix A
generally increases (the largest one is 1) which normally reduces the speed of
convergence.

All iterative methods require the storage of the matrix A. For larger mod-
elling problems, A has to be stored sparsely; it is then important that the sparse
storage structure is structured such that row-wise access is very efficient since
all methods require the product of a row of A with the (column) iteration vec-
tor π(k). The Power and the Jacobi method require two iteration vectors to be
stored, each of length N . The Gauss-Seidel and the SOR method only require
one such vector. In all the iteration schemes the divisions by −ai,i (and for SOR
the multiplication with ω) need to be done only once, either before the actual
iteration process starts or during the first iteration step, by changing the ma-
trix A accordingly. This saves N divisions (and N multiplications for SOR) per
iteration. A single iteration can then be interpreted as a single matrix-vector
multiplication (MVM). In a non-sparse implementation, a single MVM costs
O(N2) multiplications and additions. However, in a suitably chosen sparse stor-
age structure only O(η) multiplications and additions are required, where η is

68 Boudewijn R. Haverkort

the number of non-zero elements in A. Typically, the number of nonzero ele-
ments per column in A is limited to a few dozen. For example, if the CTMC is
derived from a high-level model specification, the number of nonzero elements
per row in Q equals the number of enabled activities in a particular state. This
number is normally much smaller than N . Hence, it is reasonable to assume that
one iteration step only takes O(N) operations.

An important difference between iterative methods is the number of required
iterations. Typically, the Power method converges slowest, and the Gauss-Seidel
method typically outperforms the Jacobi method. With the SOR method, a
proper choice of the relaxation factor ω accelerates the iteration process, so that
it often is the fastest method. In practical modelling problems, the required
number of iterations can range from just a few to a few thousands.

There do exist more advanced methods to solve linear systems of equations
which often convergence in less iteration steps. This then mostly comes at the
cost of either more complex iteration steps (more computation time required per
step) or iteration steps requiring much more intermediate solution vectors, or
both. A fast method, for instance, requiring 7 iteration vectors is CGS (conju-
gate gradient squared), an example of a so-called Krylov subspace method [66,
Chapter 4]. It goes beyond the scope of the current paper to go in more detail
here.

6 Solution Methods for Transient-State Probabilities

In this section, we discuss the solution of the time-dependent behaviour of
Markov chains. As we have seen in Section 2, the time-dependent behaviour
of a DTMC is simply obtained by successive matrix-vector multiplications and
is therefore not further considered here. The time-dependent behaviour of an
SMC is much more complex; it goes beyond the scope of this paper. Hence, we
focus on the transient behaviour of CTMCs in this section.

In Section 6.1 we explain why transient behaviour is of interest and which
equations we need to solve for that purpose. We discuss “traditional” methods to
solve these equations in Section 6.2 and continue with the use of uniformisation
in Section 6.3. Finally, in Section 6.4, we comment on the use of uniformisation
to compute so-called cumulative measures.

6.1 Introduction

Steady-state measures (probabilities) do suffice for the evaluation of the perfor-
mance of most systems. There are, however, exceptions to this rule, for instance

– when the system life-time is so short that steady-state is not reached;
– when the period towards the steady-state situation itself is of interest;
– when temporary overload periods, for which no steady-state solution exists,

are of interest;

Markovian Models for Performance and Dependability Evaluation 69

– when reliability and availability properties are taken into account in the
model, e.g., non-repairable systems that are failure-prone are of no interest
in steady-state, since then they will have completely failed.

The time-dependent state probabilities of a CTMC are specified by a linear
system of differential equations (as already given in (20)):

π′(t) = π(t)Q, given π(0). (38)

Measures that are specified in terms of π(t) are called instant-of-time measures.
If we associate a reward ri with every state, the expected reward at time t can
be computed as

E[X(t)] =
N∑
i=1

riπi(t). (39)

The rewards express the amount of gain (or costs) that is accumulated per unit
of time in state i; E[X(t)] then expresses the speed of gain accumulation (per
time-unit).

In many modelling applications, not only the values of the state probabilities
at a time instance t are of importance, but also the total time spent in any state
up to some time t, as expressed in so-called cumulative measures. We define the
cumulative state vector l(t) as

l(t) =
∫ t

0

π(s)ds. (40)

Notice that the entries of l(t) are no longer probabilities; li(t) denotes the overall
time spent in state i during the interval [0, t). Integrating (38), we obtain∫ t

0

π′(s)ds =
∫ t

0

π(s)Qds, (41)

which can be rewritten as

π(t)− π(0) = l(t)Q, (42)

which can, after having substituted l′(t) = π(t), be written as

l′(t) = l(t)Q + π(0). (43)

hence, l(t) follows from the solution of a linear non-homogeneous system of
differential equations. If ri is the reward obtained per time-unit in state i, then

Y (t) =
N∑
i=1

rili(t) (44)

expresses the total amount of reward gained over the period [0, t). The distribu-
tion FY (y, t) = Pr{Y (t) ≤ y} has been defined by Meyer as the performability
distribution [50,51]; it expresses the probability that a reward of at most y is
gained in the period [0, t). Meyer developed his performability measure in order
to express the effectiveness of use of computer systems in failure prone environ-
ments.

70 Boudewijn R. Haverkort

Example 12. Measure interpretation. Consider a three-state CTMC with gener-
ator matrix

Q =


−2f 2f 0

r −(f + r) f
0 r −r


 .

This CTMC models the availability of a computer system with two processors.
In state 1 both processors are operational but can fail with rate 2f . In state
2 only one processor is operational (and can fail with rate f); the other one is
repaired with rate r. In state 3 both processors have failed; one of them is being
repaired. Note that we assume that both the processor life-times and the repair
times are negative exponentially distributed. Since in state 1 both processors
operate, we assign a reward 2µ to state 1, where µ is the effective processing
rate of a single processor. Similarly, we assign r2 = µ and r3 = 0. We assume
that the system is initially fully operational, i.e.,π(0) = (1, 0, 0). The following
measures can now be computed:

– Steady-state reward rate
∑

i riπi: the expected processing rate of the system
in steady-state, i.e., the long-term average processing rate of the system;

– Expected instant reward rate
∑

i riπi(t): the expected processing rate at a
particular time instance t;

– Expected accumulated reward
∑

i rili(t): the expected number of jobs (of
length 1) processed in the interval [0, t);

– Accumulated reward distribution FY (y, t): the probability that at most y
jobs (of length 1) have been processed during [0, t).

2f f

r r

2 31

r2 = µr1 = 2µ r3 = 0

Fig. 13. A three-state CTMC (B.R. Haverkort, Performance of Computer Com-
munication Systems, 1998. c© John Wiley & Sons Limited. Reproduced with
Permission.)

6.2 Runge-Kutta Methods

The numerical solution of systems of differential equations of type (38) and
(43) has since long been an important topic in numerical mathematics. Many
numerical procedures have been developed for this purpose, all with specific

Markovian Models for Performance and Dependability Evaluation 71

strengths and weaknesses. Below, we will present one such method in a concise
way, thereby focusing on the computation of π(t); for details, see [66].

With Runge-Kutta methods (RK-methods) the continuous vector function
π(t) that follows from the differential equation π′(t) = π(t)Q, given π(0), is
approximated by a discrete function π̃i (i ∈ IN), where π̃i ≈ π(ih), i.e.,h is
the fixed step-size in the discretisation; the smaller h, the better (but more
expensive) the solution.

With RK-methods, the last computed value for any point π̃i is used to com-
pute π̃i+1. The values π̃0 through π̃i−1 are not used to compute π̃i+1. For
this reason, RK-methods are called single-step methods. They are always sta-
ble, provided the step-size h is taken sufficiently small. Unlike Euler-methods,
RK-methods do not require the computation of derivatives of the function of
interest, which keeps them fairly efficient. RK-methods are distinguished on the
basis of their order: a RK-method is of order k if the exact Taylor series for
π(t + h) and the solution of the RK-scheme for time instance t + h coincide as
far as the terms up to hk are concerned.

One of the most widely used RK-methods is the 4th-order RK-method (nor-
mally denoted as “RK4”). For a vector-differential equation π′(t) = π(t)Q, given
π(0), successive estimates for π̃i are computed as follows:

π̃i+1 = π̃i +
h

6
(k1 + 2k2 + 2k3 + k4), (45)

with 


k1 = π̃iQ,
k2 = (π̃i +

h
2k1)Q,

k3 = (π̃i +
h
2k2)Q,

k4 = (π̃i + hk3)Q.

(46)

Since the RK4 method provides an explicit solution to π̃i, it is called an explicit
4th-order method. Per iteration step of length h, it requires 4 matrix-vector
multiplications, 7 vector-vector additions and 4 scalar-vector multiplications.
Furthermore, apart from Q and π̃ also storage for at least two intermediate
probability vectors is required.

In contrast, implicit RK-methods yield a system of linear equations in which
the vector π̃i appears implicitly. Such methods are normally more expensive to
employ and can therefore only be justified in special situations, e.g., when the
CTMC under study is stiff, meaning that the ratio of the largest and smallest
rate appearing in Q is very large, say of the order of 104 or higher.

6.3 Uniformisation for Transient Measures

Consider the scalar differential equation p′(t) = p(t)Q, given p(0) and scalar con-
stant Q. From elementary analysis we know that the solution to this differential
equation is p(t) = p(0)eQt. When dealing with CTMCs, the transient behaviour

72 Boudewijn R. Haverkort

is defined by the linear system of differential equations (20); the transient be-
haviour then can still be computed as an exponential, however, now in terms of
vectors and matrices, that is,

π(t) = π(0)eQt. (47)

Direct computation of this matrix exponential, e.g., via a Taylor/MacLaurin se-
ries expansion as

∑∞
i=0(Qt)i/i!, is in general not a good idea [52]: (i) the infinite

summation that appears in the Taylor series cannot be truncated efficiently; (ii)
severe round-off errors usually will occur due to the fact that Q contains posi-
tive as well as negative entries; and (iii) the matrices (Qt)i become non-sparse,
thus requiring too much storage capacity for practically relevant applications. To
avoid these problems, a method known as uniformisation, also known as Jensen’s
method or randomisation, is regarded as the method of choice [24,25,39]. To use
uniformisation, we define the matrix

P = I+
Q
λ

⇒ Q = λ(P − I). (48)

If λ is chosen such that λ ≥ maxi{|qi,i|}, then the entries in P are all between 0
and 1, whereas the rows of P sum to 1. In other words, P is a stochastic matrix
and describes a DTMC. The value of λ is called uniformisation rate.

Example 13. Uniformising a CTMC. Consider the CTMC given by

Q =


−4 2 2

1 −2 1
6 0 −6


 . (49)

and initial probability vector π(0) = (1, 0, 0). For the uniformisation rate we find
by inspection: λ = 6, so that the corresponding DTMC is given by:

P =
1
6


2 2 2

1 4 1
6 0 0


 . (50)

The CTMC and the DTMC are given in Figure 14.

The process of uniformising a CTMC can be understood as follows. In the
CTMC, the state residence times are exponentially distributed. The state with
the shortest residence times provides us with the uniformisation rate λ. For
that state, one epoch in the DTMC corresponds to one negative exponentially
distributed delay with rate λ, after which one of the successor states is selected
probabilistically. For the states in the CTMC that have total outgoing rate λ,
the corresponding states in the DTMC will have no self-loops. For states in the
CTMC having a state residence time distribution with a rate smaller than λ
(these states have on average a longer state residence time), one epoch in the
DTMC might not be long enough; hence, in the next epoch these states might

Markovian Models for Performance and Dependability Evaluation 73

1 21 21

2

1
6

6
2 3 1

2
6

2
6

4
6

1
6

2
6

1

3

Fig. 14. A small CTMC (left) and the corresponding DTMC (right) after uni-
formisation (B.R. Haverkort, Performance of Computer Communication Sys-
tems, 1998. c© John Wiley & Sons Limited. Reproduced with Permission.)

be revisited. This is made possible by the definition of P, in which these states
have self-loops, i.e., pi,i > 0. Using (48) we can write

π(t) = π(0)eQt = π(0)eλ(P−I)t = π(0)e−λIteλPt = π(0)e−λteλPt. (51)

We now employ a Taylor-series expansion for the matrix exponential as follows:

π(t) = π(0)e−λt
∞∑
n=0

(λt)nPn

n!
= π(0)

∞∑
n=0

ψ(λt;n)Pn, (52)

where

ψ(λt;n) = e−λt
(λt)n

n!
, n ∈ IN, (53)

are Poisson probabilities, i.e.,ψ(λt;n) is the probability of n events occurring
in [0, t) in a Poisson process with rate λ. Of course, we still deal with a Taylor
series approach here, however, the involved P-matrix is a probabilistic matrix
with all its entries between 0 and 1, as are the Poisson probabilities. Hence, this
Taylor series “behaves nicely”, as we will discuss below.

Equation (52) can be understood as follows. At time t, the probability mass
of the CTMC, initially distributed according to π(0) has been redistributed
according to the DTMC with state-transition matrix P. During the time interval
[0, t), with probability ψ(λt;n) exactly n jumps have taken place. The effect of
these n jumps on the initial distribution π(0) is described by the vector-matrix
product π(0)Pn. Weighting this vector with the associated Poisson probability
ψ(λt;n), and summing over all possible numbers of jumps in [0, t), we obtain,
by the law of total probability, the probability vector π(t).

Uniformisation allows for an iterative solution without matrix-matrix multi-
plications, so that matrix fill-in do not occur. Instead of directly computing the
n-th Power of P as suggested by (52) one considers the following sum of vectors:

π(t) =
∞∑
n=0

ψ(λt;n) (π(0)Pn) =
∞∑
n=0

ψ(λt;n)π̂(n), (54)

where π̂n is the state probability distribution vector after n epochs in the DTMC
with transition matrix P, which can be derived recursively as

π̂(0) = π(0) and π̂(n) = π̂(n− 1)P, n ∈ IN+. (55)

74 Boudewijn R. Haverkort

Clearly, the infinite sum in (54) has to be truncated, say after kε epochs in the
DTMC. The actually computed state probability vector π̃(t) then equals:

π̃(t) =
kε∑
n=0

ψ(λt;n)π̂(n). (56)

The number of terms that has to be added to reach a prespecified accuracy ε
can now be computed a priori as follows. It can be shown that the difference
between the computed and the exact value of the transient probability vector is
bounded as follows:

||π(t)− π̃(t)|| ≤ 1−
kε∑
n=0

e−λt
(λt)n

n!
. (57)

Thus, we have to find that value of kε such that 1 −
∑kε

n=0 e
−λt(λt)n/n! ≤ ε.

Stated differently, we need the smallest value of kε that satisfies

kε∑
n=0

(λt)n

n!
≥ 1− ε

e−λt
= (1− ε)eλt. (58)

For reasons that will become clear below, kε is called the right truncation point.

Example 14. How large should we take kε? In Table 2 we show the number of
required steps kε as a function of ε and the product λt in the uniformisation
procedure. As can be observed, kε increases sharply with increasing λt and de-
creasing ε.

If the product λt is large, kε tends to be of order O(λt). On the other hand, if λt
is large, the DTMC described by P might have reached steady-state along the
way, so that the last matrix-vector multiplications do not need to be performed
any more. Such a steady-state detection can be integrated in the computational
procedure (see [57] and the example below).

λt
ε 0.1 0.2 1 2 4 8 16

0.0005 2 3 6 8 12 19 31
0.00005 3 3 7 10 14 21 34
0.000005 3 4 8 11 16 23 37

Table 2. The number of required steps kε as a function of ε and the product λt
(B.R. Haverkort, Performance of Computer Communication Systems, 1998. c©
John Wiley & Sons Limited. Reproduced with Permission.)

Markovian Models for Performance and Dependability Evaluation 75

Example 15. Transient solution of a three-state CTMC. We consider the tran-
sient solution of the CTMC given in Figure 14; we already performed the uni-
formisation to form the matrix P with uniformisation rate λ = 6.

We first establish how many steps we have to take into account for increasing
t. This number can be computed by checking the inequality (58) and taking
ε = 10−4. We find:

t 0.1 0.2 0.5 1 5 10 20 50 100
kε 5 7 11 17 52 91 163 367 693

We then continue to compute π̃(t) according to (56) to find the curves for πi(t)
as indicated in Figure 15. As can be observed, for t ≥ 2 steady-state is reached.
Although for larger values of t we require very many steps to be taken, the
successive vectors π̂(n) do not change any more. Denote with kss < kε the value
after which π̂i does not change any more. Instead of explicitly computing the
sum (56) for all values of n, the last part of it can then be computed more
efficiently as follows:

π̃(t) =
kε∑
n=0

ψ(λt;n)π̂(n) =
kss∑
n=0

ψ(λt;n)π̂(n) +

(
kε∑

n=kss+1

ψ(λt;n)

)
︸ ︷︷ ︸

1−
∑kss

n=0
ψ(λt;n)

π̂(kss), (59)

thus saving the computation intensive matrix-vector multiplications in the last
part of the sum. The point kss is called the steady-state truncation point.

If the product λt is very large, the first group of Poisson probabilities is very
small, often so small that the corresponding vectors π̂(n) do not really matter.
We can exploit this by only starting to add the weighted vectors π̂(n) after the
Poisson weighting factors become reasonably large. Of course, we still have to
compute the matrix-vector products (55). The point where we start to add the
probability vectors is called the left truncation point.

Finally, we note that the Poisson probabilities ψ(λt;n), n = 0, · · · , N, can be
computed efficiently when taking into account the following recursive relations:

ψ(λt; 0) = e−λt, and ψ(λt;n+ 1) = ψ(λt;n)
λt

n+ 1
, n ∈ IN. (60)

When λt is large, say larger than 25, overflow might easily occur. However, for
these cases, the normal distribution can be used as an approximation. Fox and
Glynn report on a stable algorithm to compute Poisson probabilities [21].

To use uniformisation, the sparse matrix P has to be stored, as well as two
probability vectors. Given an N -state Markov chain, two probability vectors of
length N have to be stored. Given that the matrix P is sparse, which typically is
the case, the cost to store it is of order N . Hence, the overall storage complexity
is O(N).

The main computational complexity lies in the min{kss, kε} matrix-vector
multiplications that need to be performed (plus the subsequent multiplication

76 Boudewijn R. Haverkort

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2

πi(t)

t

π1(t)

π2(t)

π3(t)

Fig. 15. First two seconds in the evolution of the three-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. c© John
Wiley & Sons Limited. Reproduced with Permission.)

of these vectors with the precomputed Poisson probabilities). As we have seen
above, for large λt, kε is of order O(λt). A single matrix-vector multiplication
costs, in case of a sparse matrix P only O(N), and in case of a non-sparse
matrix O(N2). Taking the sparse case, we arrive at an overall time complexity
of O(λtN).

To increase the efficiency of uniformisation in specific situations, various vari-
ants have been developed. A good overview can be found in [53,55,54].

6.4 Uniformisation for Cumulative Measures

Let us now address a uniformisation-based efficient procedure for computing the
expected accumulated reward over [0, t), that is:

E[Y (t)] = E

[
N∑
i=1

rili(t)

]
. (61)

We first note that in the interval [0, t), that is, an interval of length t, the expected
time between two jumps, when k jumps have taken place according to a Poisson
process with rate λ equals t/(k + 1). Interpreting λ as the uniformisation rate,
the expected accumulated reward until time t, given k jumps, in the uniformised
chain equals

t

k + 1

N∑
i=1

ri

k∑
m=0

π̂i(m).

This expression can be explained as follows. The right-most sum expresses the
sum of the probabilities to reside in state i over the k + 1 intervals addressed;

Markovian Models for Performance and Dependability Evaluation 77

multiplied with the mean interval length (left-most factor), this gives the ex-
pected time spent in state i. The first summation weights these times with the
corresponding reward and adds over all states.

We can now sum the above expression over all possible number of jumps that
might occur during the interval [0, t) and weight them with the usual Poisson
probabilities, to arrive at:

E[Y (t)] =
∞∑
k=0

ψ(λt; k)
t

k + 1

N∑
i=1

ri

k∑
m=0

π̂i(m). (62)

Based on this expression, efficient numerical procedures can be devised as follows
(see also [63,64]). First define

φ(λt; k) = ψ(λt; k)
t

k + 1
= e−λt

λntn+1

(k + 1)!
,

which can be computed recursively in a similar way as ψ(λt; k). When we define
the diagonal matrix R = diag(r), i.e.,R is a matrix with on the diagonal the
rewards ri, we can rewrite (62) by transforming the summation over all states
in a matrix-vector multiplication as follows:

E[Y (t)] = 1

(∞∑
k=0

φ(λt; k)
k∑

m=0

π̂(m)

)
R, (63)

where φ is computed recursively and π̂(m) = π̂(m− 1)P, with P the transition
matrix for the uniformised DTMC. By defining the vector C(k), which denotes
the cumulative probability over k steps to reside at each of the states, in the
following way: C(0) = π̂(0) and C(k) = C(k − 1) + π̂(k), we finally arrive at

E[Y (t)] = 1

(∞∑
k=0

φ(λt; k)C(k)

)
R. (64)

As for the transient measures, a truncation criterion for the infinite summation
can be easily developed. Similar storage and computational complexity consid-
erations apply as in Section 6.3.

We finally comment on the solution of the performability distribution FY (y, t),
i.e., the probability distribution Pr{Y (t) ≤ y} [50,51]. Also here, uniformisation
can be employed; however, a direct summation over all states does not suffice any
more. Instead, we have to sum the accumulated reward over all paths of length
l (given a starting state) that can be taken through the DTMC, after which
we have to compute a weighted sum over all these paths and their occurrence
probabilities; for details we refer to [63,64,59].

7 Other Issues

In this section, a number of important issues not covered in detail in this chapter
will be addressed briefly; pointers to relevant literature will be provided.

78 Boudewijn R. Haverkort

Phase-Type Distributions In this paper, we did not further address ab-
sorbing Markov chains, even though their applicability is substantial. Given a
CTMC with a single absorbing state, the time from the initial state to absorp-
tion in that absorbing state has a so-called phase-type distribution, a distribution
that can be seen as the sum of a possibly infinite number of exponential phases.
Many well-known distributions are indeed of this type, e.g., the Erlang or an
hyperexponential distribution. Moreover, almost any other distribution can be
approximated very well with phase-type distributions. The birth-death processes
we encountered in the examples, can be extended such that instead of exponen-
tial distributions, phase-type distributions are used. The thus resulting Markov
chains are of so-called quasi-birth-death type and can still be solved efficiently
using matrix-geometric methods, even when the state spece is infinitely large.
For details, we refer to [58], [66, Chapter 5] or [27, Chapter 8].

Product-Form Solutions There is a large class of Markov chains that exhibits
a so-called product-form solution. Most often such Markov chains arise when
modelling systems not directly at the Markov chain level by identifying states
and state-transitions, but when modelling systems as networks of queues. The
structure of the Markov chain underlying the queueing network then results in
an overall steady-state probability vector that can be written as the product
of steady-state probabilities over smaller parts of the model. The book by Van
Dijk on queueing networks and product-forms [18] is an excellent source on
this topic. Also the more general books on performance evaluation mentioned
above address product-form models. Hillston addresses product-form results for
stochastic process algebras [35].

Distributed Solution of Markovian Models Especially when Markov chains
are automatically generated from high-level specifications, these Markov chains
tend to become very large. To cope with Markov chains with several millions (or
more) states, specialised data structures have to be employed that are efficient
both from a memory and a computational point of view. Recent advances in
the use of tensor algebra and binary decision diagrams (and variants) should
be mentioned here [15,13]. Furthermore, recently also the use of parallel and
distributed computer systems has been advocated for both the generation of large
Markov chains from high-level model specifications, as well as their numerical
solution. Early work in this area can be found in [11,14]. With the PARSECS
prototype tool, the generation and solution of Markov chains with more than
750 million states has recently been reported [7,28].

Tools for Markovian Modelling The practical application of Markovian
modelling techniques has become widespread since the beginning of the 1980’s.
At that time, powerful workstations with larger memories became available for
daily use. Since then, a large number of software tools has been built that sup-
port, in one way or another, the generation and solution of Markovian models.

Markovian Models for Performance and Dependability Evaluation 79

Typically, the Markovian models are constructed using either general-purpose
high-level modelling formalisms such as queueing networks (cf. QNAP2 [68],
NUMAS [56] and MACOM [47]), stochastic Petri nets (cf. GreatSPN [12] and
SPNP [16]), the “balls and buckets” formalism (cf. MARCA [65] and [66, Chap-
ter 10.2–3]) stochastic activity networks (cf. UltraSAN [61,62]) or stochastic
process algebras (cf. the PEPA workbench [34], TIPPtool [32] or TwoTowers
[8]) or are more application-specific formalisms (cf. SAVE [23] for availability
evaluation). It goes beyond the scope of the current paper to give an overview
of all these tools; the interested reader is referred to a number of surveys: [31,30]
and [29, Chapter 10].

Model Checking Markovian Models Recently, there has been an increased
interest in the merging of Markovian modelling and evaluation techniques (as de-
scribed in this paper) and techniques for formal system verification, in particular
model checking [19,17,41]. Where previously timing aspects were not addressed
in model checking, this becomes a necessity when model checking systems and
protocols for real-time systems. By adding time in a specific stochastic manner
to a finite-state machine, it can be interpreted as a Markov chain. By extend-
ing the logic to express time-related properties over the finite-state machine,
as has been done with the logic CSL, a stochastically timed extension of CTL,
such properties can be checked efficiently using evaluation techniques for Markov
chains. Seminal work in this direction has been reported by Aziz et al. [2,1]; more
recent developments can be found in [5,4,3,33].

8 Concluding Remarks

In the preceding sections we have addressed in a nutshell a large number of
aspects of the use and solution of Markovian models. However, the amount
of literature on Markovian models, their solution and application is vast. To
conclude, let me refer to a number of well-known textbooks in the field. An
absolute “must-read” on the numerical solution of Markov chains is Stewart’s
textbook [66]. Very readable is the two-volume work by Howard [37,38] as is the
book by Kemeny and Snell [42]. A variety of books on performance evaluation
in general address Markov chains in more or less detail, most often providing
numerous examples [9,27,40,44,45,67].

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In R. Alur and T. Henzinger, editors, Lecture Notes in Computer Science
1102, pages 269–276, 1996.

2. A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It
usually works: the temporal logic of stochastic systems. In P. Wolper, editor,
Lecture Notes in Computer Science 939, pages 155–165, 1995.

80 Boudewijn R. Haverkort

3. C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns. On the logical character-
isation of performability properties. In U. Montanari, J.D.P. Rolin, and E. Welzl,
editors, Lecture Notes in Computer Science 1853, pages 780–792, 2000.

4. C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns. Model checking
continuous-time Markov chains by transient analysis. In E.A. Emerson and A.P.
Sistla, editors, Lecture Notes in Computer Science 1855, pages 358–372, 2000.

5. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In J.C.M. Baeten and S. Mauw, editors, Lecture
Notes in Computer Science 1664, pages 146–161, 1999.

6. G. Balbo. Introduction to stochastic Petri nets. This volume.
7. A. Bell and B.R. Haverkort. Serial and parallel out-of-core solution of linear sys-

tems arising from generalised stochastic Petri net models. In Proceedings High
Performance Computing 2001. Society for Computer Simulation, 2001.

8. M. Bernardo, R. Cleaveland, S. Sims, and W. Stewart. TwoTowers: a tool inte-
grating functional and performance analysis of concurrent systems. In Proceedings
FORTE/PSTV 1998, pages 457–467, 1998.

9. G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing Networks and Markov
Chains. John Wiley & Sons, 1998.

10. E. Brinksma and H. Hermanns. Process algebra and Markov chains. This volume.
11. S. Caselli, G. Conte, and P. Marenzoni. Parallel state space exploration for GSPN

models. In G. De Michelis and M. Diaz, editors, Applications and Theory of
Petri Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 181–
200. Springer-Verlag, 1995.

12. G. Chiola. A software package of the analysis of generalized stochastic Petri nets.
In Proceedings of the 1st International Workshop on Timed Petri Nets, pages 136–
143, Torino, Italy, July 1985. IEEE Computer Society Press.

13. G. Ciardo. Distributed and structured analysis approaches to study large and
complex systems. This volume.

14. G. Ciardo, J. Gluckman, and D. Nicol. Distributed state space generation of
discrete-state stochastic models. INFORMS Journal of Computing, 10(1):82–93,
1998.

15. G. Ciardo and A.S. Miner. Storage alternatives for large structured state spaces.
In R. Marie, B. Plateau, M. Calzarossa, and G. Rubino, editors, Computer Perfor-
mance Evaluation, Lecture Notes in Computer Science 1245, pages 44–57. Springer
Verlag, 1997.

16. G. Ciardo, J. Muppala, and K. S. Trivedi. SPNP: Stochastic Petri net package.
In Proceedings of the 3rd International Workshop on Petri Nets and Performance
Models, pages 142–151. IEEE Computer Society Press, 1989.

17. E.M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
18. N.M. van Dijk. Queueing Networks and Product Form: A Systems Approach. John

Wiley & Sons, 1993.
19. E.M.Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244–263, 1986.

20. A.K. Erlang. Solution of some problems in the theory of probabilities of significance
in automatic telephone exchanges. The Post Office Electrical Engineer’s Journal,
10:189–197, 1917.

21. B.L. Fox and P.W. Glynn. Computing Poisson probabilities. Communications of
the ACM, 31(4):440–445, 1988.

22. K.A. Frenkel. Allan L. Scherr — Big Blue’s time-sharing pioneer. Communications
of the ACM, 30(10):824–828, 1987.

Markovian Models for Performance and Dependability Evaluation 81

23. A. Goyal, S.S. Lavenberg, and K.S. Trivedi. The system availability estimator.
Annals of Operations Research, 8:285–306, 1987.

24. W.K. Grassmann. Finding transient solutions in Markovian event systems through
randomization. In W.J. Stewart, editor, Numerical Solution of Markov Chains,
pages 357–371. Marcel Dekker, 1991.

25. D. Gross and D.R. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research, 32(2):343–
361, 1984.

26. A.L. Hageman and D.M. Young. Applied Iterative Methods. Academic Press, 1981.
27. B. R. Haverkort. Performance of Computer Communication Systems: A Model-

Based Approach. John Wiley & Sons, 1998.
28. B. R. Haverkort, A. Bell, and H. Bohnenkamp. On the efficient sequential and

distributed generation of very large Markov chains from stochastic Petri nets. In
Proceedings of the 8th International Workshop on Petri Nets and Performance
Models, pages 12–21. IEEE Computer Society Press, 1999.

29. B. R. Haverkort, R. Marie, G. Rubino, and K.S. Trivedi (editors). Performability
Modelling: Techniques and Tools. John Wiley & Sons, 2001.

30. B.R. Haverkort and I.G. Niemegeers. Performability modelling tools and tech-
niques. Performance Evaluation, 25:17–40, 1996.

31. B.R. Haverkort and K.S. Trivedi. Specification and generation of Markov reward
models. Discrete-Event Dynamic Systems: Theory and Applications, 3:219–247,
1993.

32. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Com-
positional performance modelling with the tipptool. Performance Evaluation,
39:5–35, 2000.

33. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain model
checker. In S. Graf and M. Schwartzbach, editors, Lecture Notes in Computer
Science 1785, pages 347–362. Springer-Verlag, 2000.

34. J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
University of Edinburgh, 1994.

35. J. Hillston. Exploiting structure in solution: decomposing compositional models.
This volume.

36. A.S. Hornby. Oxford Advanced Learner’s Dictionary of Current English. Oxford
University Press, 1974.

37. R.A. Howard. Dynamic Probabilistic Systems; Volume I: Markov models. John
Wiley & Sons, 1971.

38. R.A. Howard. Dynamic Probabilistic Systems; Volume II: Semi-Markov and deci-
sion processes. John Wiley & Sons, 1971.

39. A. Jensen. Markov chains as an aid in the study of Markov processes. Skand.
Aktuarietidskrift, 3:87–91, 1953.

40. K. Kant. Introduction to Computer System Performance Evaluation. McGraw-Hill,
1992.

41. J.-P. Katoen. Concepts, Algorithms and Tools for Model Checking. Universität
Erlangen-Nürnberg, 1999.

42. J.G. Kemeny and J.L. Snell. Finite Markov chains. Van Nostrand, Princeton,
1960.

43. D.G. Kendall. Some problems in the theory of queues. Journal of the Royal
Statistical Society, Ser. B, 13:151–185, 1951.

44. L. Kleinrock. Queueing Systems; Volume 1: Theory. John Wiley & Sons, 1975.
45. L. Kleinrock. Queueing Systems; Volume 2: Computer Applications. John Wiley

& Sons, 1976.

82 Boudewijn R. Haverkort

46. A.N. Kolmogorov. Anfangsgründe der Theorie der Markoffschen Ketten mit un-
endlichen vielen möglichen Zuständen. Mat. Sbornik N.S., pages 607–610, 1936.

47. U. Krieger, B. Müller-Clostermann, and M. Sczittnick. Modelling and analysis of
communication systems based on computational methods for Markov chains. IEEE
Journal on Selected Areas in Communications, 8(9):1630–1648, 1990.

48. V.G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall,
London, Glasgow, Weinheim, 1995.

49. A.A. Markov. Investigations of an important case of dependent trails. Izvestia
Acad. Nauk VI, Series I (in Russian), 61, 1907.

50. J.F. Meyer. On evaluating the performability of degradable computing systems.
IEEE Transactions on Computers, 29(8):720–731, 1980.

51. J.F. Meyer. Closed-form solutions of performability. IEEE Transactions on Com-
puters, 31(7):648–657, 1982.

52. C. Moler and C.F. van Loan. Nineteen dubious ways to compute the exponential
of a matrix. SIAM Review, 20(4):801–835, 1978.

53. A.P.A. van Moorsel. Performability Evaluation Concepts and Techniques. PhD
thesis, University of Twente, 1993.

54. A.P.A. van Moorsel and B.R. Haverkort. Probabilistic evaluation for the analytical
solution of large Markov models: Algorithms and tool support. Microelectronics
and Reliability, 36(6):733–755, 1996.

55. A.P.A. van Moorsel and W.H. Sanders. Adaptive uniformization. Stochastic Mod-
els, 10(3):619–648, 1994.

56. B. Müller-Clostermann. NUMAS – a tool for the numerical analysis of computer
systems. In D. Potier, editor, Proceedings of the International Conference on
Modelling Techniques and Tools for Performance Analysis, pages 141–154. North-
Holland, 1985.

57. J.K. Muppala and K.S. Trivedi. Numerical transient solution of finite Markovian
queueing systems. In U. Bhat, editor, Queueing and Related Models. Oxford Uni-
versity Press, 1992.

58. M.F. Neuts. Matrix Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Johns Hopkins University Press, 1981.

59. M.A. Qureshi and W.H. Sanders. A new methodology for calculating distributions
of reward accumulated during a finite interval. In Proceedings of the 26th Sym-
posium on Fault-Tolerant Computer Systems (Sendai, Japan, June 1996), pages
116–125. IEEE Computer Society Press, 1996.

60. W.H. Sanders and J.-F Meyer. Stochastic activity networks: Formal definitions
and concepts. This volume.

61. W.H. Sanders and J.F. Meyer. Reduced-base model construction for stochastic
activity networks. IEEE Journal on Selected Areas in Communications, 9(1):25–
36, 1991.

62. W.H. Sanders, W.D. Obal, M.A. Qureshi, and F.K. Widnajarko. The UltraSAN
modeling environment. Performance Evaluation, 24:89–115, 1995.

63. E. de Souza e Silva and H.R. Gail. Calculating availability and performability
measures of repairable computer systems using randomization. Journal of the
ACM, 36(1):171–193, 1989.

64. E. de Souza e Silva and H.R. Gail. Performability analysis of computer systems:
from model specification to solution. Performance Evaluation, 1:157–196, 1992.

65. W.J. Stewart. MARCA: Markov chain analyzer. a software package for Markov
modelling. In W.J. Stewart, editor, Numerical Solution of Markov Chains, pages
37–62. Marcel Dekker, 1991.

Markovian Models for Performance and Dependability Evaluation 83

66. W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

67. K.S. Trivedi. Probability and Statistics with Reliability, Queueing and Computer
Science Applications. Prentice-Hall, 1982.

68. M. Veran and D. Potier. QNAP2: A portable environment for queueing system
modelling. In D. Potier, editor, Modelling Techniques and Tools for Computer
Performance Evaluation, pages 25–63. North-Holland, 1984.

	Introduction
	Discrete-Time Markov Chains
	Definition
	Transient and Steady-State Probabilities
	State-Residence Time Distribution
	Convergence Properties

	Semi-Markov Chains
	SMCs as Generalisation of DTMCs
	Alternative View on SMCs

	Continuous-Time Markov Chains
	From DTMC to CTMC
	Evaluating the Steady-State and Transient Behaviour

	Solution Methods for Steady-State Probabilities
	Direct Methods
	Iterative Methods

	Solution Methods for Transient-State Probabilities
	Introduction
	Runge-Kutta Methods
	Uniformisation for Transient Measures
	Uniformisation for Cumulative Measures

	Other Issues
	Concluding Remarks

