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Abstract. Support vector machines have gotten wide acceptance for
their high generalization ability for real world applications. But the ma-
jor drawback is slow training for classification problems with a large
number of training data. To overcome this problem, in this paper, we
discuss extracting boundary data from the training data and train the
support vector machine using only these data. Namely, for each training
datum we calculate the Mahalanobis distances and extract those data
that are misclassified by the Mahalanobis distances or that have small
relative differences of the Mahalanobis distances. We demonstrate the
effectiveness of the method for the benchmark data sets.

1 Introduction

Support vector machines are based on the theoretical learning theory developed
by Vapnik [1], [2], [3, pp. 47–61]. In support vector machines, an n-class problem
is converted into n two-class problems in which one class is separated from
the remaining classes. For each two-class problem, the original input space is
mapped into the high dimensional dot product space called feature space and
in the feature space, the optimal hyperplane that maximizes the generalization
ability from the standpoint of the VC dimension is determined.

The high generalization ability compared to other methods has been shown
for many applications but the major problem is slow training especially when
the number of training data is large. Therefore, many methods for speeding
up training have been proposed [2]. If support vectors are known in advance,
training of support vector machines can be accelerated using only those data as
the training data. Thus, in this paper we calculate the Mahalanobis distances for
each data and estimate, as candidates of the boundary data, the training data
that are misclassified by the Mahalanobis distances or that have small relative
differences of the Mahalanobis distances. Finally, using two benchmark data sets
we demonstrate the speedup of training by the proposed method.

2 Architecture of Support Vector Machines

Let m-dimensional inputs xi (i = 1, . . . , M) belong to Class 1 or 2 and the
associated labels be yi = 1 for Class 1 and −1 for Class 2. If these data are



linearly separable, we can determine the decision function:

D(x) = wt x + b, (1)

where w is an m-dimensional vector, b is a scalar, and

yi (wt xi + b) ≥ 1 for i = 1, . . . , M. (2)

The hyperplane D(x) = wt x + b = c for − 1 < c < 1 forms a separating
hyperplane that separates xi (i = 1, . . . , M). The distance between the separat-
ing hyperplane and the training datum nearest to the hyperplane is called the
margin. The hyperplane D(x) = 0 with the maximum margin for −1 < c < 1 is
called the optimal separating hyperplane.

Now consider determining the optimal separating hyperplane. The Euclidean
distance from a training datum x to the separating hyperplane is given by
|D(x)|/‖w‖. Thus assuming the margin δ, all the training data must satisfy

ykD(xk)
‖w‖ ≥ δ for k = 1, . . . , M. (3)

If w is a solution, aw is also a solution where a is a scalar. Thus we impose
the following constraint:

δ ‖w‖ = 1. (4)

From (3) and (4), to find the optimal separating hyperplane, we need to find w
with the minimum Euclidean norm that satisfies (2).

The data that satisfy the equality in (2) are called support vectors.
Now the optimal separating hyperplane can be obtained by minimizing

1
2
‖w‖2 (5)

with respect to w and b subject to the constraints:

yi (wt xi + b) ≥ 1 for i = 1, . . . , M. (6)

The number of variables for the convex optimization problem given by (5)
and (6) is the number of features plus 1: m + 1. We convert (5) and (6) into the
equivalent dual problem whose number of variables is the number of training
data.

First we convert the constrained problem given by (5) and (6) into the un-
constrained problem:

Q(w, b, α) =
1
2

wt w −
M∑

i =1

αi {yi (wt xi + b) − 1}, (7)

where α = (α1, . . . , αM )t is the Lagrange multiplier. The optimal solution of (7)
is given by the saddle point where (7) is minimized with respect to w and b and



it is maximized with respect to αi (≥ 0). Then, we obtain the following dual
problem. Namely, maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑

i, j =0

αi αj yi yj xt
i xj (8)

with respect to αi subject to the constraints

M∑

i =1

yi αi = 0, αi ≥ 0 for i = 1, ..,M. (9)

Solving (8) and (9) for αi (i = 1, . . . , M), we can obtain the support vectors
for Classes 1 and 2. Then the optimal hyperplane is placed at the equal distances
from the support vectors for Classes 1 and 2.

To allow the data that do not have the maximum margin to exist, we intro-
duce the nonnegative slack variables into (2). The resulting optimization problem
is similar to the above formulation. The difference is the addition of the upper
bound C for αi.

If the original input x are not sufficient to guarantee linear separability of
the training data, the obtained classifier may not have high generalization abil-
ity although the hyperplanes are determined optimally. Thus to enhance linear
separability, in the support vector machines, the original input space is mapped
into a high-dimensional dot product space called feature space using the kernel
function that satisfies Mercer’s condition. The kernel functions used in this paper
are 1) polynomials with the degree of d: H(x,x′) = (xt x′ + 1)d, and 2) radial
basis functions: H(x,x′) = exp(−γ ‖x− x′‖).

3 Speeding-up Training by Extracting Boundary Data

According to the architecture of the support vector machine, only the training
data that are near the boundaries are necessary. In addition, since the training
time becomes longer as the number of training data increases, the training time is
shortened if the data that are far from the boundary are deleted. Therefore, if we
can delete unnecessary data from the training data efficiently prior to training,
we can speed up the training. In the following, we estimate the data that are
near the boundaries using the classifier based on the Mahalanobis distance [4]
and extracting the misclassified data and the data that are near the boundaries.

3.1 Approximation of Boundary Data

The decision boundaries of the classifier using the Mahalanobis distance are
expressed by the polynomials, of the input variables, with the degree of two.
Therefore, the boundary data given by the classifier are supposed to well ap-
proximate the boundary data for the support vector machine, especially with
the polynomials with the degree of two as kernel functions.



For the class i data x, the Mahalanobis distance di(x) is given by

d2
i (x) = (ci − x)tQ−1

i (ci − x), (10)

where ci and Qi are the center vector and the covariance matrix for the data
belonging to class i, respectively:

ci =
1

|Xi|
∑

x∈Xi

x, (11)

Qi =
1

|Xi|
∑

x∈Xi

(x− ci) (x− ci)t. (12)

Here, Xi denotes the set of data belonging to class i and |Xi| is the number
of data in the set. The data x is classified into the class with the minimum
Mahalanobis distance. The most important feature of the Mahalanobis distance
is that it is invariant for linear transformation of input variables. Therefore, we
do not worry about the scaling of each input variable.

For the datum belonging to class i, we check whether

r(x) =
min

j �=i,j=1,...,n
dj(x) − di(x)

di(x)
≤ η (13)

is satisfied, where r(x) is the relative difference of distances, η (> 0) controls
the nearness to the boundary. If r(x) is negative, the datum is misclassified. We
assume the misclassified data are near the decision boundary. Inequality (13)
is satisfied when the second minimum Mahalanobis distance is shorter than or
equal to (1 + η) di(x) when the datum is correctly classified.

In extracting boundary data, we set some appropriate value to η and for each
class we select the boundary data that are at least equal to or more than the
prespecified minimum number Nmin and that are equal to or smaller than the
maximum number Nmax. Here the minimum number is set so that the number
of boundary data is not too small for some classes because the data that satisfy
(13) are scarce. The maximum number is set not to allow too many data to be
selected. The general procedure for extracting boundary data is as follows.

1. Calculate the centers and covariance matrices for all the classes using (11)
and (12).

2. For the training datum x belonging to class i, we calculate r(x) and we
put the data into the stack for class i, Si, whose elements are sorted in the
increasing order of the value of r(x) and whose maximum length is Nmax.
We iterate this for all the training data.

3. If the stack Si includes more than Nmin data that satisfy (13), we select
these data as the boundary data for class i. Otherwise, we select the first
Nmin data as the boundary data.



3.2 Performance Evaluation

Although the performance varies as kernels vary, the polynomial kernels with the
degree of two performed relatively well. Thus in the following, unless otherwise
stated, we use the polynomials with the degree of two as the kernel functions in
evaluating the iris data [5] and blood cell data [6].

We ran the software developed by Royal Holloway, University of London
[7] on a SUN UltraSPARC-IIi (335MHz) workstation. The software used the
pairwise classification [8] to resolve unclassified regions that arise by the original
two-class formulation.

Iris Data Since the number of the iris data is small, we checked only the lowest
rankings, in the relative difference of the Mahalanobis distances, of support vec-
tors for the pairs of classes. Table 1 lists the results when the boundary data were
extracted for each class. The numeral in the ith row and the jth column shows
the lowest ranking of the support vector, belonging to class i, that separate class
i from class j. The diagonal elements show the number of training data for the
associated class. The maximum value among lowest rankings was 8, which was
smaller than half the number of class data. Thus, the relative difference of the
Mahalanobis distances well reflected the boundary data.

Table 1. The lowest rankings of support vectors for the iris data

Class 1 2 3

1 (25) 1 2
2 8 (25) 3
3 2 3 (25)

Blood Cell Data We set Nmax as the half of the maximum number of class
data, namely 200. And we set Nmin = 50 and evaluated the performance chang-
ing η. Table 2 lists the results for the blood cell data. When η ≥ 1, sufficiently
good recognition rates were obtained for the test data and training was speeded
up two to three times. (The numerals in the brackets in the “Rates” column
show the recognition rates of the training data.)

Table 3 lists the speed-up of training for different kernels when η = 2.0. For
each kernel, the upper row shows the results using all the training data and the
lower row shows the results using the extracted boundary data. For different
kernels, training was speeded up about two times and the recognition rates of
the test data were almost the same.

4 Conclusions

We discussed fast training of support vector machines by extracting boundary
data that are determined by the relative differences of the Mahalanobis distances.



Table 2. Performance for the blood cell data

η Data Rates (%) Time (s) Speedup

0.5 1136 90.81 (97.45) 96 (2) 9.4
1.0 1693 92.06 (99.61) 266 (2) 3.4
1.5 1978 92.10 (99.29) 390 (2) 2.4
2.0 2102 92.13 (99.29) 448 (2) 2.1

— 3097 92.13 (99.32) 924 1

Table 3. Performance for the blood cell data for different kernels (η = 2.0)

Kernel Parameter Rates (%) Time (s) Speedup

Polynomial d = 3 91.94 (99.94) 937 1
92.00 (99.81) 461 2.0

d = 4 92.10 (100) 948 1
92.10 (99.90) 471 2.0

RBF γ = 1 92.13 (100) 2736 1
92.13 (99.97) 1331 2.1

γ = 0.1 92.16 (100) 2799 1
92.13 (99.97) 1387 2.0

The computer simulations using the iris data and blood cell data showed that
by this method the boundary data were efficiently extracted and training was
speeded up about two times for the blood cell data.
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