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Abstract

This article is an attempt to generalize the classical theory of reversible com-
puting, principally developed by Bennet [IBM J. Res. Develop., 17(1973)] and by
Fredkin and Toffoli [Internat. J. Theoret. Phys., 21(1982)], to the quantum case.
This is a fundamental step towards the construction of a quantum computer be-
cause a time efficient quantum computation is a reversible physical process. The
paper is organized as follows. The first section reviews the classical theory of re-
versible computing. In the second section it is showed that the designs used in the
classical framework to decrease the consumption of space cannot be generalized to
the quantum case; it is also suggested that quantum computing is generally more
demanding of space than classical computing. In the last section a new model of
fully quantum and reversible automaton is proposed. The computational power
of this automaton is at least equal to that of classical automata. Some conclusion
are drawn in the last section.

1 Reversible computing: a glance

The classical theory of reversible computing has been analyzed extensively ([2, 3]). The
main results are the following: 1. Every irreversible computation f : x → f(x) can be
effectively enclosed in a reversible computation F : (x, 0) → (f(x), x). F is reversible
because its input (x, 0) is uniquely determined by its output (f(x), x). 2. The time and
space required to compute F are linearly dependent on those required to compute f .
These results imply that there are no effects on the complexity hierarchy when the time
and space required to compute f are those required to compute its reversible realization
F (reversible space equal irreversible space). To investigate whether is it possible to
extend the above classical results to the quantum case, we first revisit the ideas behind
classical reversible computing.
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1.1 Reversible gates

In order to transform an irreversible gate into a reversible one, not only the gate com-
putation result is to be codified in the gate output, but also some other information
necessary to reverse the computation (garbage). To store the garbage more output lines
are needed and, since a reversible gate has the same numbers of input and output lines,
even more input lines are required (source). Note that, since reversibility implies that
the output of a reversible gate depends on the state of the source, its state has to be
properly set to compute a given boolean function by a reversible gate. Figure 1 here
below outlines the logical structure of a reversible gate.

source

garbage

input

output

Figure 1: Logical structure of a reversible gate

Example: Reversible AND gate. The AND gate is a two-input one-output gate,
whereas its reversible realization is a three-input three-output gate. The adjunctive
input line (s) constitutes the source and the two adjunctive output lines (g1 and g2) are
the garbage. The transition function of the reversible AND gate is reported in Table 1.

Table 1: Reversible AND gate

s i1 i2 AND g1 g2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1

Table 1 could be completed by adding the three possible inputs with s = 1. In this
case, however, reversibility implies that the gate does not realize the AND function. As

2



already remarked, to use a reversible gate the value of the source lines must be prepared
appropriately.

1.2 Reversible combinatorial circuits

To build up a reversible combinatorial circuit (i.e. a circuit without loop) from an
irreversible one, every gate can be replaced by its reversible realization (that is, every
boolean function is computable by a reversible circuit). However, although the final
circuit works, it often has too many source and garbage lines. In fact [3]:

Note that, in general, (in a combinatorial circuit) the number of gates in-

creases exponentially with the number of input lines. This is so because

almost all Boolean functions are “random”, i.e., cannot be realized by a cir-

cuit simpler than one containing an exhaustive look-up table. Thus, in the

“wasteful” approach the amount of garbage grows exponentially with the size

of the argument.

This explains why a reversible realization of a combinatorial circuit seems less effi-
cient than the combinatorial circuit itself with regard to space consumption. Actually,
in classical case there is a way to recycle the garbage that implies a linear relation be-
tween the space required to compute a boolean function by a reversible or irreversible
computation. This process, outlined in Figure 2, rests on two considerations: 1. An
inverse circuit exists for every reversible circuit, and 2. A copy circuit: (x, 0) → (x, x)
does exist.

source garbage0 source 0

input x input xF F

Copy

source 0 f(x)

f(x) f(x) -1

Figure 2: Reversible combinatorial circuit with garbage recycle

To be honest, the above process is really useful only when applied in a nested fashion.

1.3 Reversible sequential circuits

If the output lines of a combinatorial circuit are used as input lines, one ends up with
a sequential circuit (finite automaton), as outlined in Figure 3. A sequential circuit
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constantly works in (discrete) interaction with the environment, that changes the state
of the input lines. Its evolution is a three-step loop starting from a given internal state:
1. The environment sets the value of the input lines. 2. The combinatorial circuit (i.e.
the transition function) is computed. 3. Some output lines are used as input lines (they
codify the new internal state).

By substituting the combinatorial part of a sequential circuit for its reversible real-
ization one does not end up with a reversible sequential circuit. In fact, every time the
combinatorial circuit (transition function) is computed, the garbage is modified and the
information necessary to reverse the computation is lost. Therefore, in order to build
up a reversible sequential circuit, every time the transition function is computed the
produced garbage has to be registered. In the following section we present a scheme
of sequential circuits, or finite automata, that is able to register the output and the
garbage appropriately.

1.4 Reversible Turing machines

Bennet [2] has proposed an effective procedure that transforms every irreversible one-
tape Turing machine into a reversible three-tape Turing machine. The computation of
this machine, that recycles the garbage with the same trick used by reversible combina-
torial circuits (Fig. 2), proceeds as follows:

1. Initially the three tapes contain input-source-source. The reversible function is
computed.

2. The tapes contain garbage-result-source. The 2nd tape result is copied on the 3rd

tape.

3. The tapes contain garbage-result-result. The inverse reversible function is com-
puted.

4. The tapes contain input-source-result.

2 Space consumption of quantum computing

2.1 Space consumption of reversible computing

In the classical framework we seldom care about space consumption. In fact, since
P − T ime ⊆ P − Space = NP − Space ⊆ Exp− T ime, we first have to trouble about
time consumption. This relation stems from the fact that if a computation needs some
space, then it needs also some time to use it. Therefore every consumption of space
requires a consumption of time, whereas the consumption of time does not implies a
consumption of space.
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In the case of reversible computing, not only every consumption of space requires
a consumption of time, but also every consumption of time requires a consumption of
space. In fact every unit of time, that corresponds to the execution of an elementary
step, as a (reversible) gate or a transition of a (reversible) Turing machine, requires
its own source. Time and space seem to be strictly tied. Let T and S be the time
and space required by an irreversible Turing machine to end its computation, supposing
that the machine halts, and let T ′ and S ′ be the time and space that its reversible
realization does need. Then exists such c > 1 that T ′ ≃ c + cT and S ′ ≃ c + c(S + T )
[2]. From a computational complexity point of view this suggests that reversible and
irreversible computation differ. In fact S ′ = O(S + T ): if an irreversible computation is
space efficient but time inefficient, then its reversible simulation is both time and space
inefficient.

However, as we saw in the previous section, Bennet has proposed a way to reduce
the amount of space the reversible simulation requires. His scheme has been improved
overtime [5], and today we know that reversible and irreversible computation have the
same complexity, i.e. T ′ ≃ O(T ) and S ′ ≃≃ S2). The consumption of space of a
reversible computation does not depend on the consumption of time of the irreversible
one. This result is appreciated because, although the need of space S ′ ≃ c + c(T + S)
does not generally imply that the reversible computation is space inefficient, nevertheless
it can be an unacceptable amount of space for many practically computations [5].

2.2 The quantum case

The design proposed to recycle the garbage relies on the possibility of retracing the
computation, once duplicated the result. In the quantum framework this design does
not work because of the no cloning theorem: it is not possible to make a copy of the
state of a quantum system. This is especially true for a quantum computation that is
more efficient than a classical one, for it uses superposition states. On the contrary, if
a quantum computation is simply a small version of a classical reversible computation,
then this problem does not arise.

It could be possible to let quantum computation be less hungry of space by relax-
ing reversibility. A quantum computation could proceed by applying alternatively a
reversible evolution operator and an irreversible reuse of garbage. This way reversibility
is lost because the garbage is erased, but this is not warring because we do not want
to compute backward. With this scheme a quantum system for information processing
would act in a way similar to that of the current model of quantum automata [6, 1] (we
will review it later on).

The problem of this design of garbage recycles stems from entanglement. Because
the output of a time efficient quantum computation is entangled with the garbage,
as in Shor’s factoring algorithm, the latter cannot be recycled without messing the
computation.
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From these considerations we conclude that a quantum system that computes a
function f consumes more space than a classical system (reversible or not) that computes
the same function. Moreover, these considerations suggest that a quantum computation
is necessarily reversible, i.e., it must be possible to retrace the input starting from the
output (before the final measurement), not only because of the unitarity of the evolution
operator, but also because output and garbage are generally entangled.

3 Quantum automata

Since a quantum computational system is a generalization of a classical one, it follows
that its computational power should be greater or equal than that of the classical system.
However, the computational power of quantum automata has been shown to be smaller
than that of classical automata. We argue that this paradox origins from the fact that
the currently accepted definition of quantum automaton neglects the concept of quan-
tum reversibility. Here below, we revisit the role that reversibility plays into quantum
automata and propose a new model of quantum finite automaton whose computational
power is at least able to recognize regular languages.

3.1 The currently accepted definition of quantum automata

The currently accepted definition of quantum finite automaton has been proposed by
Moore and Crutchfield [6] and Ambanis and Freivalds [1]. A quantum finite automaton
[6] Q consists of:

- A Hilbert space H ,

- An initial state vector |sinit〉 ∈ H with 〈sinit|sinit〉 = 1,

- A subspace Haccept ⊆ H and an operator Paccept that projects into it,

- An input alphabet A, and

- A unitary transition matrix Ua for each symbols a ∈ A.

Using the shorthand Uw = Uw1
Uw2

. . . Uwk
the language accepted by Q is the function

fQ(w) = |PacceptUw|sinit〉|
2 from words in A∗ to probabilities in [0, 1].

The input alphabet consists of classical elements, whereas the internal states are
represented by quantum systems (by vectors of a Hilbert space): this automaton is not
fully quantum. Moreover, it is neither reversible. In fact from the final state Uw|sinit〉
one cannot trace back the computation because w is unknown. To trace back the
computation one will need some information that is not encoded in the final state. As
to the computational power of this kind of quantum automaton, first A. Kondacs and
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J. Watrous [4] have showed that there is a regular language that cannot be accepted by
a quantum finite automaton. Then, A. Brodosky and N. Pippenger have demonstrated
that there is a whole class of regular languages that cannot be accepted by quantum
finite automata.

3.2 (Quantum) Definite events

To build up a fully reversible model of quantum automaton we begin setting up a re-
versible quantum system that recognizes definite events1. If LQ is the language accepted
by the finite automaton Q, whose reversible transition function is f , then the definite
event Ln

Q is: Ln
Q = {x|x ∈ LQ and |x| = n}. Ln

Q is recognized by the reversible combina-
torial circuit of Figure 4, where q is the initial state, and xi and si are the i

th input and
his associated source respectively. This circuit is set up by connecting many combina-
torial circuits that compute the transition function, each with its own input and source.
Of the three output lines of these circuits, the first two (g1i and g2i ) contain the garbage,
while the third encodes the new internal state. Reversibility is preserved by recording
the value of the output and garbage each time the transition function is computed.

We have assumed that every gate has three input lines. In general you can suppose
that every line represents a group of lines, so as the internal states set and the input
symbols set may contain more that two elements.

Since the transition function is invertible this circuit could be thought as a quantum
circuit. In the classical case it is possible to recycle the garbage either with the typical
scheme, i.e., coping of the result and computing backward, or erasing the garbage and
using it as new source. These solutions, as we saw in the previous section, are not
generally useful in the quantum case.

3.3 A new model: an informal presentation

To realize a quantum finite automaton we extend the previous construction to the case of
inputs of arbitrary finite length. We do not want different systems, even if constructed
uniformly, to accept L1

Q,L
2
Q, . . . ,L

n
Q. We want one system that accepts all of them

simultaneously.
The solution consists in storing the input in a quantum tape, that is a collection of

equal quantum systems. Because of the presence of the source, actually we introduce
two quantum tapes: the input and the source-garbage tape. This is exactly what Bennet
did in his model of reversible Turing machine. However we know that the length of our
tapes must be equal to that of the input sequence, while in the Turing machine case the
determination of the maximums tape length is an undecidable problem.

1A definite event is a subset of a regular event whose elements have fixed length.

7



Our automaton has a read/write head and an internal quantum state. The head
reads one cell on the input tape and a corresponding cell on the source-garbage tape.
Then, according to the internal state and to the reversible transition function, it changes
the internal state and the states of the cells it read (these cells become garbage). Then,
it moves to the right and read the next cell, and the loop restart. Our automaton acts
like a reversible two-tape Turing machine whose head is ever moving to the right. It
repeats its loop n times, where n is the length of the input string.

3.4 A new model: formal definition

A quantum finite automaton Q consists of:

- A Hilbert space Hin. This is the space of the internal states.

- An initial vector |s0〉 ∈ Hin with 〈s0|s0〉 = 1.

- A subspace Haccept ⊆ Hin and an operator Paccept that projects into it.

- A quantum tape I composed by a sequence of quantum systems whose states are
described in the Hilbert space I.

- A quantum tape SG composed by a sequence of quantum systems whose states
are described in the Hilbert space SG.

- A unitary evolution operator U : Hin ⊗ I ⊗ SG → Hin ⊗ I ⊗ SG.

The input alphabet is composed by an orthonormal basis of I, a quantum system
whose dimension depend on the automaton we are constructing. If we are generalizing
to the quantum case a classical reversible automatonQ, then the dimension of I depends
on the number of input symbols of this automaton.

The dimension of SG is related to the way the unitary evolution operator U acts.
In particular, if we want generalize to the quantum case the reversible automaton Q,
constructed from the irreversible automaton Qirr following Bennet’s procedure, then the
dimension of SG is equal to the number of elements on which the transition function
of Qirr is defined (i.e., to the number of quadruples of Qirr). In fact, to construct the
reversible version of Qirr, following Bennet [2] we have to introduce a new ‘garbage-
symbol’ for each transition of Qirr.

The state of the kth ‘cell’ of I is described by a vector belonging to the space Ik = I,
while the state of the kth ‘cell’ of SG is described by a vector belonging to SGk = SG.
If the input string is |w〉 = |w1〉|w2〉 . . . |wn〉, with |wk〉 ∈ Ik, then the tape SG contains
|01〉|02〉 . . . |0n〉, with |0k〉 ∈ SGk.

In order to understand how the automaton works, we first suppose that the states
of the internal state, both I and SG tapes, are continuously factorizing. In this case, if
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Pin projects into Hin, the internal state |s〉 evolves as in Table 2. The input string |w〉

is accepted with probability
∣∣Paccept|s(n)〉

∣∣2. In this case the automaton is similar to a

t |s(t)〉
1 |s(1)〉 = |s0〉
2 |s(2)〉 = PinU

(
|s(1)〉 ⊗ |w1〉 ⊗ |01〉

)

3 |s(3)〉 = PinU
(
|s(2)〉 ⊗ |w2〉 ⊗ |02〉

)
...

...
n |s(n)〉 = PinU

(
|s(n− 1)〉 ⊗ wn−1〉 ⊗ |0n−1〉

)

Table 2: Evolution of the quantum automaton internal state (particular case).

classical reversible one2. Indeed, we can schematize our automaton as in Figure 5.
When the automaton is not anymore restricted the states of the quantum register and

those of the quantum tapes are not generally factorizing. Although the mathematical
description of the system evolution is a little trickier, the automaton works in the same
way.

In this case it turns useful to define:

Ũi = I1 ⊗ I2 ⊗ . . .⊗ Ii−1 ⊗ Ii+1 ⊗ . . .⊗ In ⊗ Ui,

where Ik is the identity of Ik ⊗ SGk, Ui the unitary operator U when applied to Hin ⊗
Ii ⊗ SGi, and

|0〉n = |01〉 ⊗ |02〉 ⊗ . . .⊗ |0n〉, |0k〉 ∈ SGk.

With this notation |w〉 = |w1〉|w2〉 . . . |wn〉 is accepted with probability

P (|w〉) =
∣∣PacceptŨnŨn−1 . . . Ũ1|s0〉 ⊗ |w〉 ⊗ |0〉n

∣∣2.

It is worth noting that, although when you apply Ũk you formally act on the space(⊗n

i=0
Ii ⊗ SGi

)
⊗Hin, actually: 1. A local operation is performed, and 2. The states

of Ii and SGi with i > k do not modify. Therefore, when Ũk with k < i is applied, you
do not have to dispose the ‘cells’ described by Ii or SGi. This further implies that at
the beginning of the computation the tapes length are not to be specified and that more
‘cells’ can be added as the computation moves on. This is exactly what happens in the
classical case.

2Note that in the literature a classical automaton with a reversible evolution and an irreversible reuse
of garbage as new source (see Fig. 2) is frequently said ‘reversible’ (as in [7]). This is the definition
of ‘reversible’ automaton that has been generalized to the quantum case [1, 6]. We refer to another
definition of reversible classical automaton: a reversible Turing machine [2] whose head moves only to
the right.
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3.5 Computational power

From [2] we can deduce that every classical automaton can be effectively transformed
into a classical reversible automaton. This reversible automaton acts on two tapes, and
moves only to the right. In fact, If we apply Bennet’s procedure [2] to a Turing machine
whose head move only to the right, we end up to a reversible two-tape Turing machine
that moves only to the right (as already remarked in the quantum case we do not use the
third tape). Since our model of quantum automaton can clearly simulate this classical
reversible automaton, it follows that it has at least the same computational power of
classical automata.

4 Conclusion and future developments

In this paper we have revisited the classical theory of reversible computing and studied
its generalization to the quantum case.

We have showed that it is not possible to generalize to the quantum case the design
that made classical reversible computation space efficient (because of the ‘no cloning
theorem’), and pointed out that, because of the entanglement, it is not possible to reuse
the garbage without messing the computation. Moreover we clarified that the quantum
computing reversibility, namely the possibility of tracing back the computation from the
final result, due to the unitarity of the quantum evolution, is not eliminable because of
the presence of non-local correlation.

These consideration had led us to propose a new model of fully quantum and re-
versible automaton that has at least the same computational power of classical automata.
This automaton is, however, ‘angry’ of space. This is a relevant result since the compu-
tational power of the currently accepted model of quantum finite automata is thought to
be smaller than that of classical finite automata. The main difference between the quan-
tum automata here proposed and the currently accepted model of quantum automata
concerns reversibility.

In future the computational power of the proposed model of quantum finite automa-
ton should be investigated. Particularly, I am interested in the role of the garbage.
Dose the computational power of the proposed model vary by allowing or preventing
interference between the final state and the garbage. In other words: is the garbage
useful, or is it simply a by-product of quantum computing?
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Figure 3: Sequential circuit built on a reversible combinatorial circuit.
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Figure 4: Reversible combinatorial circuit that accepts definite events.

12



|b1〉

|a1〉

|b2〉

|a2〉

|bi〉

|ai〉

|0n−1〉

|wn−1〉

|0n〉

|wn〉

|s1〉 |s2〉 |si〉 |sn〉

Figure 5: Quantum finite automata (particular case).
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