Skip to main content

Structured Randomized Rounding and Coloring

Extended Abstract

  • Conference paper
  • First Online:
Book cover Fundamentals of Computation Theory (FCT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2138))

Included in the following conference series:

Abstract

In this paper we propose an advanced randomized coloring algorithm for the problem of balanced colorings of hypergraphs (discrepancy problem). It allows to use structural information about the hypergraph in the design of the random experiment. This yields colorings having smaller discrepancy than those independently coloring the vertices. We also obtain more information about the coloring, or, conversely, we may enforce the random coloring to have special properties. Due to the dependencies, these random colorings need fewer random bits to be constructed, and computing their discrepancy can be done faster. We apply our method to hypergraphs of d-dimensional boxes. Among others, we observe a factor 2d/2 decrease in discrepancy and a reduction of the number of random bits needed by a factor of 2d.

Since the discrepancy problem is a particular rounding problem, our approach is a randomized rounding strategy for the corresponding ILP-relaxation that beats the usual randomized rounding.

supported by the graduate school ‘Effiziente Algorithmen und Multiskalen-methoden’, Deutsche Forschungsgemeinschaft

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and J. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 2nd edition2000.

    Google Scholar 

  2. J. Beck and T. Fiala. “Integer making” theorems. Discrete Applied Mathematics, 3:1–8, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Babai, T. P. Hayes, and P. G. Kimmel. The cost of the missing bit: Communication complexity with help. In Proceedings of the 30th STOC, pages 673–682, 1998.

    Google Scholar 

  4. J. Beck and J. Spencer. Integral approximation sequences. Math. Programming, 30:88–98, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Chazelle. The Discrepancy Method. Princeton University, 2000.

    Google Scholar 

  6. V. Chvátal. The tail of the hypergeometric distribution. Discrete Math., 25:285–287, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Doerr and A. Srivastav. Recursive randomized coloring beats fair dice random colorings. In A. Ferreira and H. Reichel, editors, Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS) 2001, volume 2010 of Lecture Notes in Computer Science, pages 183–194, Berlin-Heidelberg, 2001. Springer Verlag.

    Google Scholar 

  8. L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancies of set-systems and matrices. Europ. J. Combin., 7:151–160, 1986.

    MATH  Google Scholar 

  9. J. Matoušek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  10. K. F. Roth. Remark concerning integer sequences. Acta Arithmetica, 9:257–260, 1964.

    MATH  MathSciNet  Google Scholar 

  11. A. Srinivasan. An extension of the Lovász local lemma, and its applications to integer programming. In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996), pages 6–15, New York, 1996. ACM.

    Google Scholar 

  12. A. Srivastav. Derandomization in combinatorial optimization. In P. Pardalos, S. Rajasekaran, J. Reif, and J. D. P. Rolim, editors, Handbook of Randomization. Kluver, to appear in 2001.

    Google Scholar 

  13. J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications with limited independence. SIAM J. Discrete Math., 8:223–250, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Uhlmann. Vergleich der hypergeometrischen mit der Binomial-Verteilung. Metrika, 10:145–158, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wsk., 15:212–216, 1927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doerr, B. (2001). Structured Randomized Rounding and Coloring. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-44669-9_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42487-1

  • Online ISBN: 978-3-540-44669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics