Predictive Coscheduling Implementation in a
Non-dedicated Linux Cluster”

Francesc Solsona!, Francesc Giné!, Porfidio Herndndez?, and Emilio Luque?

! Departamento de Informatica e Ingenierfa Industrial, Universitat de Lleida, Spain
{francesc,sisco}@eup.udl.es
2 Departamento de Informética, Universitat Autdnoma de Barcelona, Spain
{p.hernandez,e.luque}@cc.uab.es

Abstract. Our research is focussed on keeping both local and parallel
jobs together in a non-dedicated cluster or NOW (Network Of Worksta-
tions) and efficiently scheduling them by means of coscheduling mecha-
nisms.

A real implementation of a predictive coscheduling technique in a Linux
cluster is presented in this article and its performance analyzed and
compared with other coscheduling algorithms in the literature.

1 Introduction

The studies in [1] indicate that the workstations in a non-dedicated cluster or
NOW are normally underloaded. There are basically two methods of making
use of these CPU idle cycles, namely task migration [3] and job scheduling [5,8].
In a NOW, in accordance with the research carried out by Arpaci [0], task
migration overheads and the unpredictable behavior of local users may lower
the effectiveness of this method.

A large number of scheduling schemes have been proposed for parallel ma-
chines. One of these is gang scheduling [2], successfully implemented in the Con-
nection Machine CM-5, SGI workstations and so on. In gang scheduling, all the
threads in a job are scheduled and de-scheduled at the same time, so threads
making up jobs should be known in advance. In distributed systems like clus-
ters or NOWSs, this information is very difficult to obtain. The alternative is
to identify them during execution [1]. Thus, only a sub-set of the processes are
scheduled together, leading to coscheduling rather than gang scheduling.

Coscheduling deals with minimizing synchronization/communication waiting
time between remote processes. Thus, coscheduling may be applied to reduce
message waiting time and to make good use of the idle CPU cycles by execut-
ing distributed applications in a cluster or NOW system. Some of the relevant
coscheduling work is explained below, attention being focussed on real imple-
mentations.

Explicit coscheduling [5] ensures that a simultaneous global context switch
is performed in all the processors. In [12], a real explicit coscheduling algo-
rithm was implemented in a Linux cluster. Despite the speedup achieved in

* This work was supported by the CICYT under contract TIC98-0433

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 732-742, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster 733

intensive message-passing distributed applications, the response time of the lo-
cal workload slowed down significantly. Consequently, a mechanism to detect
high-communicating distributed applications was incorporated into the origi-
nal explicit coscheduling technique. This added more overhead in managing the
overall system and detecting advantageous situations where this technique can
be applied. Due to the centralized nature of this technique, fault tolerance is a
problem: the possibility of master crashes or abnormal behavior of the explicit
scheme should be taken into account.

In [9], implicit coscheduling ([6,7,8,9]) was implemented in an MPI envi-
ronment, achieving performance for various coarse-grain message-passing dis-
tributed applications. In implicit coscheduling, a process waiting for messages
spins for a determined time before blocking. In [13], a variation of implicit
coscheduling was also implemented and evaluated in a Linux cluster. Even for
low spin values, the spinning gain in blocked receives due to context switch re-
duction was exceeded by the overhead introduced in active waiting for messages.
Also, the penalty in both return and response time added in local tasks gener-
ally yields poor performance. The conclusion is that active waiting for an event
to occur (in our case blocking receive) is not a good solution in time sharing
systems.

Demand-Based (divided between dynamic and predictive) coscheduling was
first introduced in [10]. In contrast to implicit coscheduling, dynamic coschedul-
ing deals with all message arrivals (not just those directed to blocked tasks). It is
based on increasing the receiving task priority, even causing CPU preemption of
the task being executed inside. It also provides a mechanism for avoiding local
task starvation. In [11], despite the good behavior of this technique in a real
system, only the execution of one distributed application was evaluated. Pre-
dictive coscheduling is based on scheduling the correspondents -the most recent
communicated- processes in the overall system at the same time. Apart from
this definition, there is no other predictive coscheduling work in the literature.
It thus remains an open question.

The implementation of a predictive coscheduling algorithm in a non-
dedicated cluster (the main aim of this article) implies that the sets of cor-
responding processes must be known in advance to schedule each of them at the
same time. However, in such systems, this information is very difficult to obtain.
The selection of the corresponding processes in each node is proposed, taking
into account both high message communicating frequency and low penalty in-
troduction into the delayed processes. An implicit and distributed nature is thus
provided for this method and no centralized extra work need be done in manag-
ing or controlling the system, as in explicit techniques [5,12].

Furthermore, the obtaining of the communicating frequency is based on both
message sending and receiving, not only on message receiving as in implicit
and dynamic techniques [6,7,3,9,10,11]. There is perhaps no need to coschedule
those processes only performing receiving messages. This is also true for sending
processes. We think that processes performing both sending and receiving have

734 Francesc Solsona et al.

a higher potential need for coscheduling than those performing only sending or
receiving. This way, an approximation to predictive coscheduling is performed.

2 The Linux Scheduler and Design Decisions

In this section, the Linux scheduler behavior is explained. Based on this, some
predictive coscheduling design decisions are also commented on.

In Linux, the Ready to run task Queue (RQ) is implemented by a double
linked list of task_struct structures, the Linux PCB’s (Process Control Block).
The fields used in implementing predictive coscheduling are:

— policy: scheduling policy. There are four scheduling policies in Linux. The
“normal” tasks policy and three “real-time” scheduling policies (with more
scheduling priority than the normal ones).

— rt_priority: scheduling priority between real-time tasks.

— priority -“static” priority-: scheduling priority between normal tasks. This
ranges from 1 (low priority) to 40 (high priority). Default value = 20.

— counter: “dynamic” normal tasks priority. The initial value is set to the
priority one. When the task is executing, each tick', counter is decremented
towards 0 in one unit, then the CPU is yielded. Thus, the maximum time
slice for a normal task with a default static priority is 210 ms.

— files: open files structure. This saves information about the task open files.

— freq: sending and receiving message frequency. Added field to the structure
and used later for implementing predictive coscheduling (see sec. 3). The
initial value is 0.

There are other fields like pid (process identifier), state and so on, but these have
no influence on our coscheduling scheme and so there are no more comments
about them (see [16] or the Linux source for more information).

Tasks making up distributed applications are normally executed in a cluster
as local (owner or interactive) ones, so no explicit information is supposed in
advance for differentiating between both kinds of task. This way, all these tasks
will have a “normal” scheduling policy. In Linux, the normal tasks have a Round
Robin scheduling policy, with a variable time slice. Real-time tasks must acquire
this condition explicitly, so we are not interested in, for example, promoting
distributed tasks to real-time. Field rt_priority will have no influence on our
coscheduling implementation and only one policy (the normal one) will be taken
into account. However, a means to promote distributed tasks must be provided
to implement predictive coscheduling in the normal task queue. As will be seen
below, field priority and counter for “normal” tasks (in field policy) jointly with
a new one (freg), will be used to do so.

In normal task creation, the field counter is set equal to the field priority
and then it is appended to the RQ. The Linux scheduler picks up the next
process to be executed (current) by means of the internal function goodness

11 tick ~ 10 ms

Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster 735

Algorithm 1 Linux scheduler algorithm

Step 1: While (RQ is empty) do skip // the CPU is idle

Step 2: Lock RQ // the scheduling must be performed in an exclusive manner
Step 3: Schedule current = task with the highest goodness in the RQ

Step 4: Unlock RQ // exclusive access (to the RQ) deactivation
Step 5: Dispatch current // execution in the CPU

Step 6: Do current accounting // the accounting fields are updated accordingly
Step 7: Goto Step 1

(Algorithm 1, Step 3), which depends on the counter and priority values for
normal tasks and field ri_priority for real-time tasks. Higher values indicate
higher priority of execution, that is, the task with the highest returned value
from the goodness function is scheduled. If all the returned RQ tasks values are
0, the field counter of every normal task is reset to be equal to priority and the
scheduling process begins again. Note that to implement predictive coscheduling
in an implicit manner, it is only necessary to increase the goodness value for
the normal tasks proportionally to both receiving and sending communicating
frequency (as mentioned earlier in section 1).

The socket packet-buffering queues, in the Linux system layer, have been
chosen to collect message sending/receiving frequency information. Accordingly,
packets would be a more accurate terminology for messages. The reason for
doing so in the kernel space is that, coscheduling can thus be applied to any dis-
tributed application. For example, PVM ([17]) uses the sockets. If coscheduling
were implemented in the user space, in the PVM sending or receiving libraries, no
means for promoting the correspondents would be possible inside PVM (in the
user space) when potential coscheduling was met. A new daemon or system call
should be added, leading to extra overhead that could reduce coscheduling per-
formance. Implementing coscheduling in the kernel space provides transparency
to the overall system and allows the application of coscheduling independently
of the message passing environment (PVM, MPI, etc ...). The drawback is in
portability. A patch must be introduced into each cluster node in the Linux
source. However, the Linux modifications are minimum.

3 Implementing a Predictive Coscheduling Algorithm

The proposed predictive algorithm (Algorithm 2) is based on the assumption
that high receive-send message frequencies imply that potential coscheduling
with remote processes is met and an accurate selection of the correspondents
in each node can be made. Thus, a predictive coscheduling technique could be
implemented by increasing the priority of the correspondents. The algorithm is
based on the task frequency (freq) in sending and receiving messages, defined
as:

freq =P x freq+ (1 — P) x cur_ fregq, (1)

736 Francesc Solsona et al.

where P is the percentage assigned to the past frequency (freq) and (1 — P) is
the current frequency percentage (cur_ freq), which is also defined as:

cur_ freq = rq + sq, (2)

where rq (sq) is the number of packets in the receive (send) socket packet-
buffering queue.

Algorithm 2 Predictive algorithm. Inside function goodness(task)

1 if (task-jpolicy != “normal”) weight = task-;rt_priority + 1000;

2 else {

3 weight = task-;counter;

4 if (! weight) {

5 weight += task-; priority;

6 task-jfreq = freq(); // freq() = P *task -jfreq+ (1 — P) x cur— freq
7 weight += task-;freq; }}

8 return weight;

In Algorithm 1, Step 3, the task with the highest goodness is scheduled.
Algorithm 2 shows how the goodness value (weight) for a task is obtained. In
line 1, the weight for a real-time task is obtained with the help of the policy
and rt_priority task fields. The returned value for the normal tasks is weight =
counter + priority (lines 3 to 5).

To implement predictive coscheduling, only lines 6 and 7 are added to the
original goodness algorithm. The implemented function “freq()” returns the
communicating frequency computed as in formulas (1) and (2), and is used
to increase the priority of distributed tasks. The frequency value obtained is
saved in the PCB freq field to compute the following values for the frequency
as past frequency. The current frequency (cur_freq) is obtained by the function
number_packets (explained below). Initially, the first four values for task-sfreq
are the mean of the obtained cur_freq values. This way a more approximated
initial value for the communicating frequency is obtained.

Starvation of local tasks is avoided because when the counter field of any
normal task reaches 0, it can not be executed while there are other tasks with
non zero values in their respective counter fields.

Finally, it only remains to explain how the current frequency is obtained.
To do so, the send and receiving socket packet-buffering queues must be ac-
cessed. The implemented function number_packets(task) (Algorithm 3) returns
the number of received/transmitted packets by a task and used as cur_freq in
line 6, Algorithm 2.

In Unix (Linux), the sockets are treated as files. Thus, it will first be neces-
sary to identify the open files that correspond to sockets. To do so, the structure
that represents each file in Linux (the inode) must be accessed. As Fig. 1 shows,
it will be necessary to descend through the following structures in this order:

Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster 737

struct task_struct (PCB) struct files_struct struct file struct dentry struct inode

()
rt_priority (File table) J—> f_dentry ! d_inode ! ‘ socket —’»—P

priority —
fd[max_fd]

LRl

policy receive_queue struct sk_buff
files struct sock i "‘ ‘ ‘control info. ‘
struct socket ‘ rmem_alloc ‘ S | [packet |
freq (*) R
| write_queue
4" sk ! ‘ wmem_alloc ‘ -

| | \ |

Fig. 1. Main used Linux structures (and its fields)

Algorithm 3 Function number_packets(task)

1 rq=rs=0;

2 if (task-ifiles) {

3 for (fd = 0; fd j task-;files-jmax_fds; fd++) {

4 file = task-;files-; fd[fd];

5 if (file) {

6 inode = file-;f_dentry-;d_inode;

7 if (inode && inode-ji_sock && (socket = socki_lookup(inode))) {
8 rq += [socket-jsk-;rmem_alloc.counter / 4096 1;

9 sq += [socket-jsk-; wmem_alloc.counter / 4096 |; }}}}

10 return (rq + sq);

task_struct, files_struct, file, dentry, and finally inode. Then, if the inode corre-
sponds to a socket (condition “inode-jisock” of the Algorithm 3) it will be nec-
essary to access the socket related structures (socket and sock) by means of the
obtained pointer to the socket, socket = socki_lookup(inode), where socki_lookup
is an internal Linux function.

The sock structure points to two lists of sk_buf structures, which buffer pack-
ets (the socket transmission unit, = 4096 Bytes or 4KB). One such list, called the
recetve_queue, buffers receiving packets, and the other, called the write_queue,
buffers packets to be transmitted. The rmem_alloc sock field saves the number
of bytes in receive_queue, and the wmem_alloc field saves the number of bytes
in the write_queue. The returned value for this function is then assigned to the
current frequency (cur_freq).

4 Experimentation

The experimental environment used in this study was composed of four 350MHz
Pentium II with 128MB of memory and 512KB of cache. They were all con-
nected through a 100Mbps bandwidth Ethernet network and a minimal latency

738 Francesc Solsona et al.

in the order of 0.1 ms. The performance of the coscheduling implementation
was evaluated by running IS and MG, two PVM distributed applications from
the NAS parallel benchmarks suite ([14],[15]) and another synthetic one (called
master-slave).

Three different environments were evaluated and compared between them,
the plain Linux scheduler, (denoted as LINUX), Predictive coscheduling (de-
noted as PRED) and Dynamic coscheduling (denoted as DYN). DYN is a par-
ticular case of PRED, where only receiving frequency is taken into account. That
is, line 9 in Algorithm 3 is not executed.

The local or user workload characterization in each node of the cluster was
carried out by means of running an application (called calcula) which performs
floating point operations indefinitely (or a variable number of times when the
local task overhead is measured). This loading is not typical in real clusters
(normally, more interactive, I/O-bound and with more unpredictable behavior).
In the other hand, it is more helpful in obtaining and comparing performance of
the different environments.

4.1 Predictive Coscheduling Performance

Fig. 2 shows the execution time of both NAS benchmarks when the number of
local tasks (instances of calcula) is increased. As in the rest of the Figures of this
experimentation, one of the low axis (local tasks) indicates the number of local
tasks in the ready queue and the other one the different models and P values
for DYN and PRED. The value P=0 and P=1 represents values for P close to 0
and 1 (i.e. P~0 and P~1) respectively.

In general, the performance of both coscheduling models was better than
the LINUX one as the multiprogramming level increased (except for the case
DYN and P~1). In both benchmarks, the best results were obtained with the
predictive model (and more precisely when P~1). This difference was due to pre-
dictive coscheduling takes both the sending and receiving messages into account,
whereas dynamic only considers the receiving ones, so the opportunity for pro-
moting through the ready queue is greater in the predictive case. The necessity
for coscheduling and the communicating pattern is more closely approximated
to by such a model.

The NAS benchmarks were executed simultaneously to evaluate performance
in executing various distributed applications (see Fig. 3). It is important to
mention that both benchmarks fit in the main memory together with the local
workload. If not, the page faulting mechanism (one or two orders of magnitude
slower than the network latency) would corrupt the performance results. In this
case, and for the memory fitting requirement explained above, IS is class A and
MG is class T (with 600 iterations). In all the rest of the experimentation, both
IS and MG are class A. The difference between the different classes is that class
A of every benchmark is scaled with respect to the same one in class T.

In general, better IS results were even obtained for the PRED case. It con-
firms the good behavior of the predictive model with respect to LINUX and
DYN. The MG results are very similar because class T is not as message-passing

Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster 739

IS class A MG class A
600 80
500 70 I
60
400 50
300 40
200 30
20
100 5 10 45
3 3
0 0 L]
X 1 2 LocaL X 1 2 LocaL
Q° Ot ° 6 0 TASKS R O 0 L A 0 TASKS
\e Q \é Q
DYN V PRED DYN V PRED

Fig. 2. NAS bench. execution times (in seconds): (left) IS, (right) MG

MG-IS: IS class A IS-MG: MG class T (600 iterations)

5 3
o ~" 1 © LOCAL
O o 6 x 0 TASKS

Fig. 3. Simultaneously IS and MG execution times (in seconds): (left) IS,
(right) MG

intensive as class A or even as IS class A, and consequently synchronization mea-
sures provided by DYN and PRED models have fewer opportunities to improve
performance.

4.2 Local Tasks Overhead and P Tuning

Fig. 4(left) shows the overhead introduced by the coscheduling models in the
execution of calcula together with IS, MG, and both IS (class A) and MG (class
T, 600 iterations).

It can be seen that the results are very similar in the three cases (with a
slightly better result obtained for the LINUX model, as the communicating fre-
quency is not taken into account). This means that this coscheduling implemen-
tation avoids the starvation of the local tasks. The reason is that the local tasks
are executed when all the PCB counter fields of the distributed applications
reach the value 0 (they have consumed their time slices). Thus, an opportunity
arises for the execution of local tasks. The coscheduling methods advance the
execution of distributed tasks (because it is necessary for them to be coscheduled
with their correspondents) without delaying the local ones excessively.

740 Francesc Solsona et al.

LOCAL TASK OVERHEAD MASTER-SLAVE (5 local tasks)

900

800

700

600

500

400 ~

300 -

1 0.5 0 LINUX 0 0.5 1
DYN PRED

Fig. 4. Execution times (in seconds): (left) calcula, (right) master-slave

Finally, a synthetic distributed application (master-slave) was developed.
It illustrates a case where the P parameter has more importance than in the
previous ones. The master-slave application is made up of one master and six
slave tasks. There are also two kinds of slaves, one that only receives messages
(r_slave) and other that performs both receiving and sending messages (rs_slave).
The mapping in 4 nodes is performed as follows: the master is assigned to one
node and two slaves (of different kinds) to each remaining node. The master
performs a predetermined number of iterations and then, both master and the
slaves finish execution and the master reports the return time for the application.
In each iteration, the master sends a message to all the slaves. All the slaves, after
receiving the message, perform a simple floating-point computation. In addition,
the rs_slaves reply to the master with the computation result. After receiving
all the rs_slave messages, the master repeats the process again.

Fig. 4(right) shows the good performance of the predictive model in the ex-
ecution of the synthetic application with a workload of five local tasks in each
node. As was expected, PRED promoted the rs_slave tasks earlier than DYN
and LINUX, so the round-trip time of each iteration decreased. Moreover, P~0
obtained the best results because taking the current receiving frequency into
account, a closer approximation to the message pattern was obtained. However,
any mean between the current and past receiving frequency caused a drop in per-
formance. Note as P has more influence in the DYN case: performance decreases
strongly by increasing P.

5 Conclusions and Future Work

A predictive coscheduling technique with reasonable performance was imple-
mented in a Linux cluster and discussed and compared with dynamic coschedul-
ing and the plain Linux scheduler. The experimental results obtained corrobo-
rated the importance of applying a coscheduling technique over a non-dedicated
cluster and the predictive model in particular.

Future work is directed towards proposing more coscheduling techniques tak-
ing into account network latency, paging faults, context switch costs, etc... More-

Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster 741

over, as was shown, the coscheduling performance may vary depending on P, the
message pattern of distributed applications and their relationship. Consequently,
a more accurate analysis based on this should be performed.

The future trend is to determine metrics for evaluating the effects of
coscheduling techniques on execution time. They should be employed this way
in tuning parameters while the distributed tasks are executing and not in later
executions. The traditional ones (speedup, efficiency, etc...) only serve for per-
formance evaluation at execution end.

References

1. Anderson, T., Culler, D., Patterson, D. and the Now team: A case for NOW (Net-
works of Workstations). IEEE Micro. 1995. 732

2. Ousterhout, J. K.: Scheduling Techniques for Concurrent Systems. 3rd Interna-
tional Conference on Distributed Computing Systems. 1982. 732

3. Litzkow, M., Livny, M. and Mutka, M.: Condor - A Hunter of Idle Workstations.
8th Int’l Conference of Distributed Computing Systems. 1988. 732

4. Feitelson, D. G. and Rudolph, L.: Coscheduling Based on Runtime Identification
of Activity Working Sets. International J. Parallel Programming 23 (2). 1995. 732

5. Crovella, M. et al.: Multiprogramming on Multiprocessors. 3rd IEEE Symposium
on Parallel and Distributed Processing. 1994. 732, 733

6. Arpaci, R. H., Dusseau, A. C., Vahdat, A. M., Liu, L. T., Anderson, T. E. and Pat-
terson, D. A.: The Interaction of Parallel and Sequential Workloads on a Network
of Workstations. ACM SIGMETRICS’95. 1995. 732, 733

7. Arpaci, R. H., Dusseau, A. C., Culler, D. E. and Mainwaring, A. M.: Scheduling
with Implicit Information in Distributed Systems. ACM SIGMETRICS’98. 1998.
733

8. Dusseau, A. C., Arpaci, R. H. and Culler, D. E.: Effective Distributed Scheduling
of Parallel Workloads. ACM SIGMETRICS’96. 1996. 732, 733

9. Wong, F. C., Arpaci-Dusseau, A. C. and Culler, D. E.: Building MPI for Multi-
programming Systems Using Implicit Information. 6th European PVM/MPI User’s
Group Meeting. LNCS. 1999. 733

10. Sobalvarro, P. G. and Weihl, W. E..: Demand-based Coscheduling of Parallel
Jobs on Multiprogrammed Multiprocessors. IPPS’95 Workshop on Job Schedul-
ing Strategies for Parallel Processing. 1995. 733

11. Sobalvarro, P. G., Pakin, S., Weihl, W. E. and Chien, A. A.: Dynamic Coschedul-
ing on Workstation Clusters. IPPS’98 Workshop on Job Scheduling Strategies for
Parallel Processing. 1998. 733

12. Solsona, F., Giné, F., Molina, F., Herndndez, P. and Luque, E.: Implementing
and Analysing an Effective Explicit Coscheduling Algorithm on a NOW. VEC-
PAR’2000. LNCS vol. 1981. 2001. 732, 733

13. Solsona, F., Giné, F., Herndndez, P. and Luque, E.: Implementing Explicit and
Implicit Coscheduling in a PVM Environment. Europar’2000. LNCS vol. 1900.
2000. 733

14. Bailey, D. et al.: The NAS parallel benchmarks. International Journal of Super-
computer Applications 5 (3). 1991. 738

15. Parkbench Committe: Parkbench 2.0. http://www.netlib.org/parkbench. 1996.
738

742 Francesc Solsona et al.

16. Beck, M., et al.: LINUX Kernel Internals. Addison-Wesley. 1996. 734

17. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V.:
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Par-
allel Computing. MIT Press. 1994. 735

	Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster
	Introduction
	The Linux Scheduler and Design Decisions
	Implementing a Predictive Coscheduling Algorithm
	Experimentation
	Predictive Coscheduling Performance
	Local Tasks Overhead and P Tuning

	Conclusions and Future Work

