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Abstract. A parallel single level store (PSLS) system integrates a shared
virtual memory and a parallel file system representing an attractive sup-
port for long running parallel applications in a cluster. In this paper
we present the smooth integration of a backward error recovery high-
availability support into a PSLs system. Our highly-available PSLS sys-
tem relies on a high degree of integration and re-usability between high-
availability and standard supports. We focus on the parallel file system
management at checkpointing and recovery time. A prototype has been
implemented and we show some performance results.

1 Introduction

Clusters of sMPs represent an attractive support for the execution of long-
running parallel scientific applications. Targeted applications for clusters such
as large-scale numerical simulations usually rely on the simple shared memory
programming model and need to perform large input/output operations as well.
To cope with this twofold requirement, namely the shared memory abstraction
and a large and efficient file system, parallel single level store systems (PSLS) [5],
which integrate a shared virtual memory (svMm) [1] and a parallel file system
(PFs) [12] are very well-suited for the execution of high performance applica-
tions in a cluster.

To provide both disk capacity of a PFS and the natural way of programming
of an sVM, our system relies on a single level of addressing: a global shared virtual
address space manages both memory and file data. A mapping interface enables
disk data to be mapped in the SVM system such as all operations, including PFS
ones, are made using standard memory reads and writes. Concurrent accesses to
the same file data are automatically handled by the SvM coherence protocol.

Tolerating failures in a PSLS system becomes more and more important as
the size and execution time of applications increase. In this paper we present
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a highly-available PSLS which smoothly integrates the high-availability support
into the standard functioning of a PSLS without requiring any specific hardware.
This integration enables to combine fault-tolerance and efficiency in failure-free
executions which are two statements often considered as contradictory. First the
high-availability support takes benefit of the standard features thus decreasing
the additional cost and complexity traditionally inherent to any high-availability
mechanism. Second, high-availability features are exploited to improve the stan-
dard functioning during failure-free executions. The remainder of the paper is
organized as follows: we present the design guidelines of our highly available PSLS
in Section 2 and the system itself in failure-free executions (Section 3) and at
rollback (Section 4). Section 5 concludes. Results are depicted along the paper.

2  Smooth Integration of Standard
and High-Availability Features

2.1 Fault-Tolerance Assumptions

Our system is able to tolerate (i) multiple transient failures, which do not in-
volve the loss of memory contents, (i) a single permanent node failure involving
the loss of both the memory contents and the disk contents including the PFS
part managed by the faulty node and (i) power failures that might affect the
whole cluster. We consider a system of failure-independent fail-silent nodes con-
nected by a reliable interconnection network. Our system relies on backward
error recovery (BER) [0]: a consistent system state, a checkpoint, is periodically
snapshot and stored on stable storage and restored upon detection of a failure.
The coherence of the checkpoint is ensured by an incremental global coordi-
nated checkpointing policy where all nodes save simultaneously a checkpoint.
A two-phase commit protocol guarantees the atomic update of a checkpoint.

2.2 Design Guidelines

In our highly available PSLS, no specific hardware is required to ensure the persis-
tence of recovery data and this keeps the fault-tolerance mechanism to a reason-
able cost. We exploit the fact that nodes are failure-independent to implement
a stable storage in standard support storage both at memory and disk levels by
replicating every checkpointed page in two distinct nodes.

Despite the fact that efficiency and high-availability are somewhat contradic-
tory, they rely on the same mechanism namely replication: replication is used in
SVM systems to exploit data locality and distribute the load between nodes and is
intrinsic to any high-availability mechanism. We widely exploit this commonality
in our system. At the memory level, already existing replication, implemented by
the svM is exploited at checkpointing time to avoid replication of recovery data
and data transfers across the network and conversely, created recovery data can
be used afterwards to anticipate page faults in failure-free executions. Likewise,
at the Prs level, page mirroring, required to tolerate the lost of a disk, is used
during failure free executions to increase the probability of local accesses. Each
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page stored in the PFS exists in two copies in two distinct nodes: the primary
and the mirror copies. Both copies can be used to serve files accesses.

To ensure as much efficiency as possible, the SVM part of the PSLS implements
a software injection mechanism to delay as long as possible expensive disk write
operations. Instead, data selected to be evicted from a local memory is prefer-
ably injected in the memory of a remote node rather than being written back
onto disk. Likewise this injection mechanism implemented for efficiency in our
standard PSLS is also used to handle replacement of readable recovery data.

Our svM in based on a statically distributed directory [7]. For each page, an
SVM manager is statically defined by using a simple modulo function. The svMm
manager of a page is always able to locate a copy. The primary PFS manager of a
page is also the node storing the primary copy of a page. The same modulo func-
tion is used to distribute the primary copies of the PFs on different nodes. We
have proposed another function, used in coordination with the modulo function
(i) to reconfigure the SVM management upon detection of a permanent failure,
(ii) to choose the location of the mirror PFS pages and to access them after-
wards, and (i) to reconfigure the PFS storage and management in the event of
a permanent failure.

3 Failure-Free Execution

3.1 Data Management in a PSLS

Our PSLS system defines a single global address space which includes both the
memory and PFS pages. Volatile pages are allocated in the svM memory only,
their life time is the duration of the computation. Such pages do not have any
counterpart in the PFS disks. They may be swapped on disk when evicted from
memory. Mapped pages are mapped in the SVM from a parallel file. Such pages
have corresponding disk copies in the PFs disks. A page is clean if its copies in
memory are identical to the disk copy and dirty if the disk copy of a page is not
up-to-date, Data replication in an SVM leads to the presence of several copies of
a page in different memories. A sequential consistency model [2] implemented
with a write-invalidate protocol managing both mapped and volatile pages is
implemented in order to ensure the consistency of multiple copies.

Each node is equipped with two disks: (1) The pfs disk is used to store user
files and is managed by the PFS part of the PSLs system; (2) The system disk is
viewed as an extension of the local memory and is composed of two distinct areas:
(i) The checkpoint area consists itself of two zones: the memory area is used
to store pure recovery copies of (volatile or mapped) pages that belong to the
current checkpoint; the permanent area is used to store permanent recovery
copies of volatile pages (see Section 3.2). The checkpoint area is never checked
on a page reference during failure-free execution; (i) The swap area is used to
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swap active! or readable recovery? copies of volatile pages. Pages belonging to
a mapped file are not swapped in the system disk when they are evicted from
memory but copied to their disk counterpart in the PrS disks. The swap area is
checked upon a page reference.

The interface between the svM and the PFS is file mapping which makes disk
accesses transparent to the programmer. Files are not accessed using standard
and complex input/output operations but by direct read and write operations in
virtual memory. A memory area, called mapping area, is allocated to store file
data. The PFs primary manager of a page stores the primary copy in its PFS disk
and is in charge to serve requests regarding this page. When a processor first
references a data in the mapping area, a page fault occurs and the corresponding
data is automatically loaded from disk. Disks writes only occur in the event of
a modified page replacement or at the end of the application. A memory page
granularity is used by the PFS to access disks. In the svMm, the nodes memories
are used as large caches. Pages in an SVM are transparently replicated in the
node memory of the processor which references them. The owner of a page owns
a page copy in its memory. Figure 1 represents the architecture of a 2-nodes
PSLS.

Node 0 Node 1

Pages A B : volatiles pages ; Pages 1,2...: mapped pages

Fig. 1. Example of a PSLS system

The considered mechanisms are illustrated along this paper with performance
results obtained from an implementation of our PSLS. Our prototype has been
implemented on a 4-nodes cluster of dual-processors running Linux based on
the Scalable Coherent Interface (ScI) [3] interconnection technology. Nodes are
based on Intel Pentium II (450 MHz) and have a 256 M-byte local memory. The
scI network has a latency of about 5 microseconds and a throughput of about
60 M-bytes per second.

The coherence management unit size in the SvM and the PFS striping unit
size is equal to the size of the memory page (4KB). Performance results have

1 Active data is data used for computation and does not belong to a checkpoint

2 Readable recovery data represents recovery data not modified since the last check-
point, it remains readable and can be used for standard execution as long as it is
not modified.
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been obtained from the execution of two applications: Modified Gram Schmidt
(MGS) and matrix multiplication algorithms. The MGS algorithm produces from
a set of vectors an orthonormal basis of the space generated by these vectors.
We consider a base of 1024 vectors of 1024 double floats elements. The matrices
used in the matrix multiplication algorithm contains 1024 x1024 double float
elements. The SVM size for all the experiments is 64 M-bytes.

3.2 Checkpointing

Two types of checkpoints are considered in the system. A memory check-
point consists in establishing a checkpoint in memories only. Saving as long as
possible checkpoints in memory without any disk access, we keep the cost of a
checkpoint reasonable. Nevertheless, this efficient implementation of a checkpoint
is not sufficient to handle power failures. To this end, we define a permanent
checkpoint where pages are checkpointed on disk.

For efficiency reasons, permanent checkpoints are much less frequent than
memory ones. Several memory checkpoints may occur between two permanent
checkpoints. Upon detection of a failure, the last checkpoint is restored, whether
it is a permanent or a memory one. Note that a permanent checkpoint invalidates
the previous memory checkpoint. A memory and a permanent checkpoints may
cohabit as long as the permanent one is older.

Memory Checkpoint Algorithm The memory checkpoint algorithm consists
in ensuring that two copies of each page modified since the last checkpoint exist
in two distinct node memories. The algorithm works as follows:

— The single memory copy of each dirty page unique in the SVM is transformed
into a readable recovery copy and a second copy is created in a distinct node.
These copies remain readable and can be used afterwards during failure-free
executions. Upon the first write access to a readable recovery copy, the two
recovery copies are transformed into pure recovery copies no longer usable
during failure-free execution. These copies are restored in the event of a
failure.

— Two already existing copies of each dirty shared and already replicated page
are transformed into readable recovery copies, thus avoiding page creation
and transfer at checkpointing.

On one hand, this algorithm takes benefit of the replication inherent to the
SVM by using data already replicated to avoid the need to create additional
page copies to store recovery data. On the other hand, recovery data remains
readable between two checkpoints as long as the corresponding page has not been
modified since the last checkpoint. They can be used for anticipating page faults
during failure-free executions. A complete description of the memory checkpoint
algorithm can be found in [9]. In our experiments of the MGs algorithm, between
55% and 83% of recovery pages comes from existing page copies.
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Since it is not worthwhile keeping pure recovery copies in memory since they
are useless for failure-free executions, they can be moved into the checkpoint
memory area. A memory checkpoint is thus composed of (1) Volatile and mapped
recovery page copies in memory, (2) Volatile readable recovery page copies in
the swap area of the system disks, (3) Volatile and mapped pure recovery copies
in the checkpoint memory area of the system disks and, (4) Mapped pages on
the PFs which do not have corresponding recovery data of previous type (1) and
(3) in memory.

Permanent Checkpoint Algorithm A permanent checkpoint algorithm con-
sists in ensuring that two copies of every page are present on two disks. The
checkpointing algorithm follows a two-phase commit algorithm, thus ensuring
the atomic update of the primary and the mirror copies of a page. The algorithm
is presented in Algorithm 1 and works as follows: (i) recovery data associated
to volatile pages are created in the checkpoint permanent area of two system
disks since they do not have counterpart on the PFs disks, and (ii) recovery data
corresponding to mapped pages are mirrored on the PFS disks.

Volatile pages are replicated onto different system disks using the injection
mechanism (request to inject onto disk rather than onto memory). Each mapped
page has to be replicated in two different PFs disks. A permanent checkpoint is
composed of the volatile page recovery copies stored in the permanent zone of
the checkpoint area, and of all pages stored on the PFs. This is actually in order
to stick to this checkpoint composition that dirty mapped pages are injected
rather than being written back onto disk.

1 Permanent checkpoint (two-phase commit algorithm) performed on each node

for each volatile active page p in memory or in swap area do
write_back(p, local permanent_checkpoint_area); injection_disk(p, remote perma-
nent_checkpoint_area);
{The remote system disk is on the same node as the one which would have been chosen for
memory checkpoint (neighbor node in the implementation)}
end for
for each page copy p in checkpoint memory area do
invalidation(p);
end for
for each readable recovery copy of volatile page p in memory or in swap area do
write_back(p, local permanent_checkpoint_area);
end for
for each dirty mapped page p in memory and each mapped page p having readable recovery copies
in memory do
write_back(p, PFS_Primary_Manager(p)); write_back(p, PFS_Mirror_-Manager(p));
end for
{The memory contents is mot modified at all. This enables the application to carry on in the
same configuration, no access pattern is lost due to the checkpoint}

The memory checkpoint algorithm is much more efficient than the permanent
checkpoint algorithm (approximatively 6 times less overhead). This difference is
due to the remote disk accesses performed during a permanent checkpoint.
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Mirror Function Our goal while defining a PFS mirror manager is twofold:
(i) being able to easily locate from a page number the mirror node of a page in
order to send the request either to the primary manager or to the mirror manager
and (i) not attributing the same mirror manager for all the pages having the
same primary manager in order to distribute the load if this initial manager fails
permanently.

We use a function, called PFS_Mirror_Manager, to distribute uniformly the
replication of pages previously managed by a faulty node. When a page p is
referenced and needs to be loaded in memory, the node originating the re-
quest can easily find the primary manager of the page by using a simple mod-
ulo function considering a system with N nodes, numbered from 0 to N — 1:
PFS_Primary_-Manager(p) = p mod N as well as its mirror manager using the
following function:

PFS_Mirror_Manager(p) =
[k mod (N — 1)+ PFS_Primary_Manager(p) + 1] mod N

where p = M (p)+kN, is the address of the considered page, M (p) € {0, ..., N—1}
is the primary manager of p, and k = % is the ordering number of the con-
sidered page in the page list initially managed by PFS_Primary-Manager(p).
This function ensures a uniform mirroring of pages managed by a node between
the remaining nodes. The proof can be found in [4]. Figure 2 depicts the example

of a 4-nodes system and 15 pages.

Node 0 /N;1\ l:l Mirror Copies
N N
(o] (] [ o] [ Prmary Copies
3 5
Primary copies of all pages are
(o] represented. We focus on Node 1
management: Node 1 is the
~— ~— primary manager of pages 1, 5, 9,
13. Mirroring is uniformly
/Ncﬁ /Nm distributed: Page 1 is mirrored on
v M~ Node 2, Page 5 on Node 3, Page
9 on Node 0 and Page 13 on
Node 2.
13 7
@ (2] Besides, Node 1 hosts mirror
copies of Pages 0, 12, 10 and 7.
-~ e Other mirror copies are not

depicted.

Fig. 2. Example of Node 1 mirroring management

3.3 Using Mirrored Copies for PFS Efficiency

When a node initiates a request on a page p, it computes simultaneously the
primary and the mirror managers of the page and sends the request to either
one. If the node is itself one of the two nodes, the request is served locally.
Enabling mirrored copies to be used to serve requests as well as primary copies
increases by two the probability that a request is served locally. The impact of
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Nocde 1 Node2 Node3 Noded Node 1 Nodez Node3 Noded

Fig. 3. Utilization of local primary and mirror disk page copies in MGS and
matrix multiplication

this optimization clearly depends on the access patterns of the application as
regards to the PFS pages distribution among nodes.

Figure 3 depicts the proportion of local accesses to the PFs, distinguishing
between primary and mirror copies versus the number of remote accesses. These
plots show that the use of mirroring, implemented for high-availability purpose
increases significantly the number of local disk accesses. 50 % in average of disk
accesses are performed locally both for MGS and matrix multiplication.

4 Rollback Recovery

Handling Transient Failures When a transient failure occurs, the last checkpoint
must be restored. If it is a memory checkpoint, pure recovery copies are restored
in readable recovery pages. All active copies are discarded, except clean copies
of mapped pages that are still valid.

If a permanent checkpoint is restored, memories are emptied except for clean
active mapped pages, checkpoint memory and swap areas are emptied, volatile
page copies in the permanent area are copied back to memory where they are
transformed into readable recovery copies.

Reconfiguration after a Permanent Failure Once a permanent failure has been
detected, the previous checkpoint must be restored the same way as in the case of
a transient failure. However, the contents of the memory and disks of the faulty
node have been lost. Thus the PSLS must be reconfigured as in order to be able to
tolerate right away another failure. We assume a crash-stop model where a node
permanently crashed and never recovers. At the end of the rollback, each page
should have two readable recovery copies. The aim of the reconfiguration is to
duplicate lost data which was located on the faulty node so that the persistence
property is satisfied again. Algorithms 2 and 3 present the whole reconfiguration
process.
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SVM Reconfiguration In the SVM, each node is the manager of a statically de-
fined set of pages and manages for each page a directory entry containing the
identity of its owner and the replicas location. A new recovery copy must be cre-
ated for each page which had one of its two recovery copies located in the faulty
node. Moreover, a spare SVM manager has to be defined for pages previously
managed by the faulty node. The same function as the PFS_Mirror_Manager is
used to define a spare manager.

PFS Reconfiguration From the PFs point of view, the faulty node acted as
a primary manager and a mirror manager for two different sets of pages. A
new function has to be applied to define a PFS_mirror?. At reconfiguration
time, each node checks if it stores on its PFS disk a page for which either the
PFS_Primary_Manager or the PES_Mirror_Manager is the faulty node. To define
a PES_mirror® we iterate on the PFS_Mirror_Manager function.

PES_mirror*_Manager The PES_mirror* function must have the ability for a
given page to avoid both the faulty node and the node holding the other disk
copy of the page.

Consider the following situation where z becomes faulty, all the pages present
on the Prs disk of each node y must be considered, namely:

— the pages p for which the PFS_Primary_Manager is z and y is the
PFS_Mirror_Manager: p = kN + z and PFS_Mirror_Manager(p) =y

— the pages p for which z is the
PES_Mirror_Manager and y is the PFS_Primary_-Manager : p = kN +vy and
PFS_Mirror_Manager(p) = z

The same PFS_Mirror_Manager function is applied to find a spare (primary or
mirror) manager but since two nodes must be ignored (the node itself y and the
faulty node z), the applied modulo is (N — 2).

The function to define PFS_Mirror? is the following:

PFS_Mirror®y, z(p) = PFS_Mirror*z(p) + 1, (-—o)[PFS_Mirror®z(p)]

where PFS_Mirror?z = [k mod (N—2)+z+1] and 1, (,_o)[PFS_Mirror?z(k) =
1if PES_Mirror?z(k) € {y...(z — 2)} else 0.

Power Failure Recovery after a power failure is performed from last permanent
checkpoint. The memory is emptied and filled from the permanent checkpoint
area of the system disk for volatile pages and from the PFs regarding mapped
pages. It is assumed that the private state of each process of the application has
been checkpointed atomically with PSLS checkpoint.

5 Conclusion and Related Work

Very few other work has been done on file mapping in SvM with a PFs. [8] is one
such system but it is not designed to tolerate node failures. Several recoverable
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2 Memory and disk reconfiguration after a permanent failure applied locally on
node n

{Memory reconfiguration}
if (last_checkpoint == memory_checkpoint) then
for each page p in memory do
if (p== pure_recovery_page) then
p = readable_recovery
else
if ((p != recovery_page) && (p != clean mapped page)) then
invalidation(p)
end if
end if
end for
for each volatile page p in swap area do
if (p== readable_recovery_page) then
Copy back p to memory
invalidation(p);
end if
end for
for each page p in the checkpoint memory area do
p = readable_recovery_page;
copy back p to memory
end for
end if

shared virtual memory systems have been proposed [11]. However, to our knowl-
edge, all these memory management systems do not consider issues related to
the interactions between the memory management system and a file system.

XFS [13] is a highly available parallel file system which implements coopera-
tive caching. In contrast to our system, memory and disk management is not fully
integrated resulting in a worse usage of the cluster memory resource. Moreover,
XFs provides a standard read/write interface and implements RAID-5 rather
than mirroring to ensure the high availability of files. To efficiently implement a
distributed RAID-5 mechanism, complex mechanisms are needed.

Our highly-available PSLS tolerates multiple transient, unique permanent and
power cut failures without requiring any specific hardware. Every single feature
in this system is based on re-usability and integration. We implement a two-level
checkpointing algorithm: a memory checkpoint is established very efficiently and
a permanent checkpoint is established on a much lower frequency basis but en-
ables to tolerate permanent cut failures. Moreover a permanent checkpoint can
also be used when memories are saturated to clean the memories [10]. Another
contribution is the use of a function, used in conjunction with the modulo func-
tion which ensures a well-balanced PFS mirroring mechanism. It is also possible
to iterate this function to reconfigure the PFs in the event of a permanent failure.
We have implemented a prototype of our highly-available PSLS and results show
that the integration of standard and high availability supports results in a very
efficient system.
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3 Memory and disk reconfiguration in case of permanent failure (continued)

if (last_checkpoint == permanent_checkpoint) then
for each page p in memory do
if (p!= clean mapped page) then
invalidation(p);
end if
end for
for each volatile page p in swap area do
invalidation(p);
end for
for each page p in the checkpoint memory area do
invalidation(p);
end for
for each page p in the checkpoint permanent area do
copy-back-into_memory(p);
end for
end if
{SVM reconfiguration (replication of lost pages and spare manager )}
for each page p (mapped or volatile) do
if (recovery-replica belongs to f) then
replication(p, remote memory);

end if

if ((manager(p) == f) && (n == p.owner)) then
new_manager = spare_manager(p);

end if

update_Manager(p.owner, new_manager);
{ Update the new manager of the page with owner information}
end for
{PFS reconfiguration}
for each page p on the PFS disk do
if ((PFS_Primary_Manager(p)== f) or (PFS_Mirror_.Manager(p)==f)) then
PFS_Mirror?_Manager == PFS_Mirror _Manager(p);
Mirror (p, PFS_Mirror?_Manager);
end if

end for
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