
A Distributed Object Infrastructure for

Interaction and Steering�

Rajeev Muralidhar and Manish Parashar

The Applied Software Systems Laboratory, Department of Electrical and Computer
Engineering, Rutgers, The State University of New Jersey

94 Brett Road, Piscataway, NJ 08854
{rajeevdm,parashar}@caip.rutgers.edu

Abstract. This paper presents the design, implementation and exper-
imental evaluation of DIOS, an infrastructure for enabling the runtime
monitoring and computational steering of parallel and distributed appli-
cations. DIOS enables existing application objects (data structures) to
be enhanced with sensors and actuators so that they can be interrogated
and controlled at runtime. Application objects can be distributed (span-
ning many processors) and dynamic (be created, deleted, changed or mi-
grated). Furthermore, DIOS provides a control network that manages the
distributed sensors and actuators and enables external discovery, interro-
gation, monitoring and manipulation of these objects at runtime. DIOS
is currently being used to enable interactive monitoring and steering of a
wide range of scientific applications, including oil reservoir, compressible
turbulence and numerical relativity simulations.

1 Introduction

Simulations are playing an increasingly critical role in all areas of science and
engineering. As the complexity and computational costs of these simulations
grows, it has become important for the scientists and engineers to be able to
monitor the progress of these simulations, and to control and steer them at
runtime. Enabling seamless monitoring and interactive steering of parallel and
distributed applications however, presents many challenges. A significant chal-
lenge is the definition and deployment of sensors and actuators to monitor and
control application objects (algorithms and data structures). Defining these in-
teraction interfaces and mechanisms in a generic manner, and co-locating them
with the application’s computational objects can be non-trivial. This is because
the structure of application computational objects varies significantly, and the
objects can span multiple processors and address spaces. The problem is further
compounded in the case of adaptive applications (e.g. simulations on adaptive
meshes) where the computational objects can be created, deleted, modified, mi-
grated and redistributed on the fly. Another issue is the construction of a control
� Research supported by the National Science Foundation via grants number ACI

9984357 (CAREERS) awarded to Manish Parashar.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 67–75, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



68 Rajeev Muralidhar and Manish Parashar

network that interconnects these sensors and actuators so that commands and
requests can be routed to the appropriate set(s) of computational objects (de-
pending on current distribution of the object), and the returned information
can be collated and coherently presented. Finally, the interaction and steering
interfaces presented by the application need to be exported so that they can be
accessed remotely, to enable application monitoring and control.

This paper presents the design and evaluations of DIOS (Distributed In-
teractive Object Substrate), an interactive object infrastructure that supports
application interaction and steering. DIOS addresses three key challenges - (1)
Definition and deployment of interaction objects that encapsulate sensors and
actuators for interrogation and control. Interaction objects can be distributed
and dynamic, and can be derived from existing computational data-structures.
Traditional (C, Fortran, etc.) data-structures can also be transformed into inter-
action objects using C++ wrappers. (2) Definition of a scalable control network
interconnecting the interaction objects that enables discovery, interaction and
control of distributed computational objects, and manages dynamic object cre-
ation, deletion, migration, and redistribution. The control network is hierarchical
and is designed to support applications executing on large parallel/distributed
systems. An experimental evaluation of the control network is presented. (3)
Definition of an Interaction Gateway that uses JNI (Java Native Interface) to
provide a Java enabled proxy to the application for interaction and steering. The
interaction gateway enables remote clients to connect to, and access an applica-
tion’s computational objects (and thus its interaction interfaces) using standard
distributed object protocols such as CORBA and Java RMI.

DIOS has been implemented as a C++ library and is currently being used
to enable interactive monitoring, steering and control of a wide range of scien-
tific applications, including oil reservoir, compressible turbulence and numerical
relativity simulations. DIOS is a part of DISCOVER [3]1, an ongoing project
aimed at developing an interactive computational collaboratory that enables ge-
ographically distributed clients to collaboratively connect to, monitor and steer
applications using web-based portals.

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 presents the design and operation of DIOS. Section 4 presents an
experimental evaluation of DIOS. Section 5 presents concluding remarks.

2 Related Work

This section briefly describes related work in computational interaction and
steering. A detailed classification of existing interactive and collaborative PSEs
(Problem Solving Environments) is presented in [5]. Other surveys have been
presented by Vetter et. al in [2] and van Liere et. al in [4]. Run-time interactive
steering and control systems can be divided into two classes based on the type
and level of the interaction support provided. (1) Event based steering systems:
1 Information about the DISCOVER project can be found at

http://www.caip.rutgers.edu/TASSL/Projects/DISCOVER/.



A Distributed Object Infrastructure for Interaction and Steering 69

In these systems, monitoring and steering actions are based on low-level system
“events” that occur during program execution. Application code is instrumented
and interaction takes place when pre-defined events occur. The Progress [6] and
Magellan [7] systems use this approach. (2) High-level abstractions for steer-
ing and control: The Mirror Object Steering System (MOSS) ([1]) provides a
high-level model for steering applications. Mirror objects are analogues of appli-
cation objects (data structures) and export application methods for interaction.
We believe that high-level abstractions for interaction and steering provide the
most general approach for enabling interactive applications. DIOS extends this
approach.

3 DIOS: Distributed Interactive Object Substrate

DIOS is composed of 2 key components: 1) interaction objects that extend com-
putational objects with sensors and actuators, and 2) a hierarchical control net-
work composed of Discover Agents, Base Stations, and an Interaction Gateway,
that interconnects the interaction objects and provides access to them.

3.1 Sensors, Actuators and Interaction Objects

Computational objects are the objects (data-structures, algorithms) used by
the application for its computations. In order to enable application interaction
and steering, these objects must export interaction interfaces that enable their
state to be externally monitored and changed. Sensors provide an interface for
viewing the current state of the object, while actuators provide an interface
to process commands to modify the state. Note that the sensors and actuators
need to be co-located in memory with the computational objects and have access
their internal state. If the computational objects are distributed across multiple
processors and can be dynamically created, deleted, migrated and redistributed
on-the-fly, multiple sensors and actuators now have to coordinate and collectively
process interaction requests.

DIOS provides an API to enable applications to define sensors and actuators.
This is achieved by simply deriving the computational objects from a virtual in-
teraction base class provided by DIOS. The derived objects can then selectively
overload the base class methods to define their interaction interface as a set of
views (sensors) that they can provide and a set of commands (actuators) that
they can accept. For example, a Grid object might export views for its structure
and distribution. Commands for the Grid object may include refine, coarsen,
and redistribute. This process requires minimal modification to original com-
putational objects. Interaction interfaces are exported to the interaction server
using a simple Interaction IDL (Interface Definition Language). The Interac-
tion IDL contains metadata for interface discovery and access and is compatible
with standard distributed object interfaces like CORBA and RMI. In the case
of applications written in non-object-oriented languages such as Fortran, appli-
cation data structures are first converted into computation objects using a C++
wrapper object. These objects are then transformed into interaction objects.



70 Rajeev Muralidhar and Manish Parashar

Interaction objects can be local, global or distributed depending on the ad-
dress space(s) they span during the course of the computation. Local objects
belong to a single address space and there could be multiple instances of a local
object on different processors. They can also migrate to another processor at
run time. Global objects are similar, but have exactly one instance (that could
be replicated on all processors). A distributed interaction object spans multiple
processors’ address spaces. An example is a distributed array partitioned across
available computational nodes. These objects contain an additional distribution
attribute that maintains its current distribution type (blocked, staggered, in-
verse space filling curve-based, or custom) and layout. This attribute can change
during the lifetime of the object, e.g. when the object is redistributed. Each
distribution type is associated with gather and scatter operations. Gather aggre-
gates information from the distributed components of the object, while scatter
performs the reverse operation. For example, in the case of a distributed ar-
ray object, the gather operation would collate views generated from sub-blocks
of the array while the scatter operator would scatter a query to the relevant
sub-blocks. An application can select from a library of gather/scatter methods
for popular distribution types provided by DIOS, or can register gather/scatter
methods for customized distribution types.

3.2 DIOS Control Network and Interaction Agents

The control network has a hierarchical structure composed of three kinds of
interaction agents, Discover Agents, Base Stations, and Interaction Gateway, as
shown in Figure 1. Computational nodes are partitioned into interaction cells,
each cell consisting of a set of Discover Agents and a Base Station. The number of
nodes per interaction cell is programmable. The control network is automatically
configured at run-time using the underlying messaging environment (e.g. MPI)
and the available number of processors.

Each compute node in the control network houses a Discover Agent that
maintains a local interaction object registry containing references to all inter-
action objects currently active and registered by that node. At the next level
of hierarchy, Base Stations maintain registries containing the Interaction IDL
for all the interaction objects in an interaction cell. The Interaction Gateway
represents an interaction proxy for the entire application and manages a registry
of the interaction interfaces for all the interaction objects in the application,
and is responsible for interfacing with external interaction servers or brokers.
During initialization, the application uses the DIOS API to create and register
its interaction objects with local Discover Agents. The Discover Agents export
the interaction IDL’s for all these objects to their respective Base Stations. Base
Stations populate their registries and then forward the interaction IDL’s to the
Interaction Gateway. The Interaction Gateway, after updating its registry com-
municates with the DISCOVER server, registering the application and exporting
all registered objects. The application now begins its computations. The inter-
action between the Interaction Gateway and the DISCOVER server is managed
by initializing a Java Virtual Machine and using the Java Native Interface to



A Distributed Object Infrastructure for Interaction and Steering 71

create Java mirrors of all registered interaction objects. These mirrors are regis-
tered with a RMI (Remote Method Invocation) registry service executing at the
Interaction Gateway. This enables the Server to gain access to and control the
interaction objects using the Java RMI API.

for Interaction 
Cell

Base Station

for Interaction 
Cell

Base Station

for Interaction 
Cell

Base Station

for Interaction 
Cell

Base Station

Interaction
Gateway for
Application

Interaction

(Java enhanced
Web Server)

Broker 

Interaction
Messages

Interaction
Messages

Interaction
Messages

Interaction
Messages

Compute Node

Discover Agent 
and 

In
te

ra
ct

io
n

M
es

sa
ge

s

Interaction Cell

Interaction Cell

Interaction Cell

Interaction Cell

Internal Interactivity System 

Fig. 1. The DIOS Control Network

During interaction phases, the Interaction Gateway delegates incoming in-
teraction requests to the appropriate Base Stations and Discover Agents, and
combines and collates responses (for distributed objects). Object migrations and
re-distributions are handled by the respective Discover Agents (and Base Sta-
tions if the migration/re-distribution is across interaction cells) by updating
corresponding registries. A more detailed description of the DIOS framework
including examples for converting existing applications into interactive ones,
registering them with the DISCOVER interaction server, and the operation of
the control network can be found in [5].

4 Experimental Evaluation

DIOS has been implemented as a C++ library and has been ported to a number
of operating systems including Linux, Windows NT, Solaris, IRIX, and AIX.
This section summarizes an experimental evaluation of the DIOS library using
the IPARS reservoir simulator framework on the Sun Starfire E10000 cluster.
The E10000 configuration used consists of 64, 400 MHz SPARC processors, a
12.8 GBytes/sec interconnect. IPARS is a Fortran-based framework for devel-
oping parallel/distributed reservoir simulators. Using DIOS/DISCOVER, engi-
neers can interactively feed in parameters such as water/gas injection rates and



72 Rajeev Muralidhar and Manish Parashar

well bottom hole pressure, and observe the water/oil ratio or the oil produc-
tion rate. The transformation of IPARS using DIOS consisted of creating C++
wrappers around the IPARS well data structures and defining the appropriate
interaction interfaces in terms of views and commands. The DIOS evaluation
consists of 5 experiments:

�

��
��

�

��
��

��
��

��
��

�	
��

��
	

��



��
�

��
��

��
��

��
��

��
��

�

��

��



��
��

�
��

��
�

��
��

�

��
�




�


�



��


�



��


� � � � �� �� 	� �� ��
�������������������

��
�

��
��

��
�

�������� !"
������ !"

Fig. 2. Overhead due to DIOS runtime
monitoring in the minimal steering mode

Fig. 3. Comparison of computation and
interaction times at each Discover Agent,
Base Station and Interaction Gateway
for successive application iterations

Interaction Object Registration: Object registration (generating the Inter-
action IDL at the Discover Agents and exporting it to Base Station/Gateway)
took 500 µsec per object at each Discover Agent, 10 ms per Discover Agent
in the interaction cell at the Base Station, and 10 ms per Base Station in the
control network at the Gateway. Note that this is a one-time cost.
Overhead of Minimal Steering: This experiment measured the runtime over-
heads introduced due to DIOS monitoring during application execution. In this
experiment, the application automatically updated the DISCOVER server and
connected clients with the current state of its interactive objects. Explicit com-
mand/view requests were disabled during the experiment. The application con-
tained 5 interaction objects, 2 local objects and 3 global objects. The applica-
tion’s run times with and without DIOS are plotted in Figure 2. It can be seen
that the overheads due to the DIOS runtime are very small and typically within
the error of measurement. In some cases, due to system load dynamics, the per-
formance with DIOS was slightly better. Our observations have shown that for
most applications, the DIOS overheads are less that 0.2% of the application
computation time.
View/Command Processing Time: The query processing time depends on
- (a) the nature of interaction/steering requested, (b) the processing required at
the application to satisfy the request and generate a response, and (c) type and
size of the response. In this experiment we measured time required for generating



A Distributed Object Infrastructure for Interaction and Steering 73

and exporting different views and commands. A sampling of the measured times
for different scenarios is presented in Table 1.

Table 1. View and command processing times

View Type Data Size (Bytes) Time Taken Command Time Taken

Text 65 1.4 ms Stop, Pause or Resume 250 µsec
Text 120 0.7 ms Refine GridHierarchy 32 ms
Text 760 0.7 ms Checkpoint 1.2 sec
XSlice Generation 1024 1.7 ms Rollback 43 ms

DIOS Control Network Overheads: This experiment consisted of measur-
ing the overheads due to communication between the Discover Agents, Base
Stations and the Interaction Gateway while processing interaction requests for
local, global and distributed objects. As expected, the measurements indicated
that the interaction request processing time is minimum when the interaction
objects are co-located with the Gateway, and is the maximum for distributed ob-
jects. This is due to the additional communication between the different Discover
Agents and the Gateway, and the gather operation performed at the Gateway to
collate the responses. Note that for the IPARS application, the average interac-
tion time was within 0.1 to 0.3% of the average time spent in computation during
each iteration. Figure 3 compares computation time with interaction times at the
Discover Agent, Base Station and Interaction Gateway for successive application
iterations. Note that the interaction times include the request processing times
in addition to control network overheads. Finally, Figure 4 shows the breakdown
of the interaction time in the case of an object distributed across 3 nodes. The
interaction times are measured at the Interaction Gateway in this case.

Fig. 4. Breakdown of request-
processing overheads for an object
distributed across 3 compute nodes. The
interaction times is measured at the
Interaction Gateway

Fig. 5. Comparison of end-to-end steer-
ing latencies for DISCOVER, MOSS and
Autopilot systems



74 Rajeev Muralidhar and Manish Parashar

End-to-end steering latency: This measured the time to complete a round-
trip steering operation starting with a request from a remote client and ending
with the response delivered to that client. These measurements of course depend
on the state of the client, the server and the network interconnecting them. The
DISCOVER system exhibits end-to-end latencies (shown in Figure 5) compa-
rable to steering systems like the MOSS and Autopilot systems, as reported
in [1].

5 Concluding Remarks

This paper presented the design, implementation and experimental evaluation of
DIOS, an interactive object infrastructure for enabling the runtime monitoring
and computational steering of parallel and distributed applications. The DIOS
interactive object framework enables high-level definition and deployment of
sensors and actuators into existing application objects. Furthermore, the DIOS
control network and runtime system supports distributed and dynamic objects
and can manage dynamic object creation, deletion, migration and redistribution.
The Interaction Gateway provides an interaction proxy to the application and
enables remote access using distributed object protocols and web browsers. An
experimental evaluation of the DIOS framework was presented. DIOS is currently
operational and is being used to provide interaction and steering capabilities to
a number of application specific PSEs.

References

1. Eisenhauer, G.: An Object Infrastructure for High-Performance Interactive Appli-
cations. PhD thesis, Department of Computer Science, Georgia Institute of Tech-
nology, May 1998. 69, 74

2. Gu, W., Vetter, J., Schwan, K.: Computational steering annotated bibliography.
Sigplan notices, 32 (6): 40-4 (June 1997). 68

3. Mann, V., Matossian, V., Muralidhar, R., Parashar, M.: DISCOVER: An Envi-
ronment for Web-based Interaction and Steering of High-Performance Scientific
Applications. To appear in Concurrency and Computation: Practice and Experi-
ence, John Wiley Publishers, 2001. 68

4. Mulder, J., van Wijk, J., van Liere, R.: A Survey of Computational Steering Envi-
ronments. Future Generation Computer Systems, Vol. 15, nr. 2, 1999. 68

5. Muralidhar, R.: A Distributed Object Framework for the Interactive Steering of
High-Performance Applications. MS thesis, Department of Electrical and Com-
puter Engineering, Rutgers, The State University of New Jersey, October 2000.
68, 71

6. Vetter, J., Schwan, K.: Progress: A Toolkit for Interactive Program Steering. Pro-
ceedings of the 1995 International Conference on Parallel Processing, pp. 139-149.
1995. 69

7. Vetter, J., Schwan, K.: Models for Computational Steering. Third International
Conference on Configurable Distributed Systems, IEEE, May 1996. 69



A Distributed Object Infrastructure for Interaction and Steering 75

8. Wheeler, J., et al: IPARS: Integrated Parallel Reservoir Simulator. Center for Sub-
surface Modeling, University of Texas at Austin.
http://www.ticam.utexas.edu/CSM.


	A Distributed Object Infrastructure for Interaction and Steering
	Introduction
	Related Work
	DIOS: Distributed Interactive Object Substrate
	Sensors, Actuators and Interaction Objects
	DIOS Control Network and Interaction Agents

	Experimental Evaluation
	Concluding Remarks


