
CORBA Lightweight Components:
A Model for Distributed Component-Based

Heterogeneous Computation�

Diego Sevilla1, José M. Garćıa1, and Antonio Gómez2

1 Department of Computer Engineering
{dsevilla,jmgarcia}@ditec.um.es

2 Department of Information and Communications Engineering
University of Murcia, Spain

skarmeta@dif.um.es

Abstract. In this article we present CORBA Lightweight Components,
CORBA–LC, a new network-centered reflective component model which
allows building distributed applications assembling binary independent
components spread on the network. It provides a peer network view in
which the component dependencies are managed automatically to per-
form an intelligent application run-time deployment, leading to better
utilization of resources. We show the validity of the CORBA–LC ap-
proach in dealing with CSCW and Grid Computing applications.

1 Introduction

Component-Based Development[21] has emerged as the natural successor of the
Object-Oriented paradigm. Components allow (1) to develop independent bi-
nary units that can be packaged and distributed independently, and (2) to build
modular applications based on the assembly of those binary units. Binary inter-
changeability leads to the maximum reuse as components can be added to (and
removed from) a system even without the need of recompiling, provided that the
components state what they require and what they offer to the system.

When component technology is applied to distributed applications, program-
mers can develop independent components that can interact transparently with
other components residing in remote machines. However, while programmers
would expect the component infrastructure to utilize all the computing power
and resources available for running their components, traditional component
models force programmers deciding the hosts in which their components are
going to be run and build a “static” description of the application (assembly).

This article describes CORBA Lightweight Components (CORBA–LC), a new
component model based on CORBA[13]. CORBA–LC offers the traditional com-
ponent models advantages (modular applications development connecting binary
interchangeable units) allowing automatic placement of components in network

� Partially supported by Spanish SENECA Foundation, Grant PB/13/FS/99.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 845–854, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

846 Diego Sevilla et al.

nodes, intelligent component migration and load balancing, leading to maximum
network resource utilization. Thus, it introduces a more peer network-centered
model in which all node resources, computing power and components can be
used at run-time to automatically satisfy applications dependencies.

This paper is organized as follows. Section 2 describes the CORBA–LC Com-
ponent Model. Section 3 outlines other distributed component models and how
CORBA–LC is related to them. Section 4 describes the principal application do-
mains we are targeting in this research: Computer-Supported Cooperative Work
(CSCW) and Grid Computing. Finally, Section 5 presents the conclusions, cur-
rent development status and future work.

2 CORBA Lightweight Components

CORBA–LC is a lightweight component model based on CORBA, sharing many
features with the CORBA Component Model (CCM)[12].

2.1 Components

Components are the most important abstraction in CORBA–LC. They can be
seen, at least, under two different dimensions:

1. Binary package: Components are independent binary units that can be
used to compose applications. Thus, components include information which
allow them (a) to be installed, (b) to be managed as a binary package, (c) to
be dynamically (un)loaded as a Dynamic Link Library (DLL), and (d) to be
instantiated. This information includes static hardware and software (such as
Operating System, Object Request Broker) dependencies (Static dimension).

2. Component Type: Component instances are run-time incarnations of the
behavior stored in a component. Thus, components are also a description of
run-time properties and requirements of their instances (dynamic dimen-
sion). These properties and requirements can be either internal or external.

Internal properties describe requirements and properties that instances ex-
pose to the framework in which they are immerse. This framework is described
in the following subsections.

External properties are those that component instances expose to their clients
(other components or applications). These external communication points are
collectively called “ports”. Ports allow components to be connected together to
accomplish the required task. A set of IDL and XML files is used to establish the
minimal set of ports a component needs from and offers to other components.
Those files are included within the component binary package (§2.3).

CORBA–LC does not limit the different port kinds that a component can
expose. However, there are two basic kinds of ports: interfaces and events.

CORBA Lightweight Components 847

A component can indicate that its instances (provide) or use some inter-
faces1 for their internal work. Interfaces represent agreed synchronous commu-
nication points between components.

Events can be used as asynchronous communication means for components.
They can also specify that they produce or consume some kind of event in
a publish/subscribe fashion. For each event kind produced by a component,
the framework opens a push event channel. Components can subscribe to this
channel to express its interest in the event kind produced by the component.

The set of external properties of a component is not fixed and may change at
run-time. This is supported by the Reflection Architecture described in §2.4.

Finally, factory interfaces[5] are needed in CORBA–LC to manage the set
of instances of a component. Clients can search for a factory of the required
component and ask it for the creation of a component instance. Factory code
can be automatically generated depending on component requirements.

2.2 Containers and Component Framework

Component instances are run within a run-time environment called container.
Containers become the instances view of the world. Instances ask the container
for the required services and it in turn informs the instance of its environment
(its context). As in CCM and Enterprise Java Beans (EJB)[20], the compo-
nent/container dialog is based on agreed local interfaces, thus conforming a
component framework. Containers leverage the component implementation of
dealing with the non-functional aspects of the component[3], such as instance
activation/de-activation, resource discovery and allocation, component migra-
tion and replication, load balancing[14] and fault tolerance among others. Con-
tainers also act as component instance representatives into the network, perform-
ing distributed resource queries in behalf of their managed component instances.

2.3 Packaging Model

The packaging allows to build self-contained binary units which can be installed
and used independently. Components are packaged in “.ZIP” files containing
the component itself and its description as IDL and XML files. This is similar
to the CCM Packaging Model[12]. This information can be used by each node
in the system to know how to install and instantiate the component. The pack-
aging allows storing different binaries of the same component to match different
Hardware/Operating System/ORB.

2.4 Deployment and Network Model

The deployment model describes the rules a set of components must follow to
be installed and run in a set of network-interconnected machines in order to
cooperate to perform a task. CORBA–LC deployment model is supported by
1 We use “interface” here in the same sense that it is used in CORBA.

848 Diego Sevilla et al.

a set of main concepts: nodes, the reflection architecture, the network
model, the distributed registry and applications.

Nodes The CORBA–LC network model can be effectively represented as a set
of nodes that collaborate in computations. Nodes are the entities maintaining
the logical network behavior. Each host participating must have running a server
implementing the Node service. Nodes maintain the logical network connection,
encapsulate physical host information and constitute the external view of the
internal properties of the host they are running on. Concretely, they offer (Fig. 1):

– A way of obtaining both node static characteristics (such as CPU and Op-
erating System Type, ORB) and dynamic system information (such as CPU
and memory load, available resources, etc.): Resource Manager interface.

– A way of obtaining the external view of the local services: the Component
Registry interface reflects the internalComponent Repository and allows
performing distributed queries.

– Hooks for accepting new components at run-time for local installation, in-
stantiation and running[10] (Component Acceptor interface).

– Operations supporting the protocol for logical Network Cohesion.

Component
Registry

Component
Acceptor

Network
Cohesion

Resource
Manager

Container

Component
Instance

Component
Instance ...

Component
Repository

Component
Binary

Component
Binary

...

...hardware

External
View Node

populates

reflects

reflects reflects

reflects

reflects/interacts

Fig.1. Logical Node Structure

Client
Workstation

(Node)
Client

Workstation
(Node)

Computational
Server (Node)

Computational
Server (Node)

Client
Workstation

(Node)

Network

Computational
Server (Node)

Fig.2. Network-centered architec-
ture

The Reflection Architecture The Reflection Architecture is composed of
the meta-data given by the different node services and is used at various stages
in CORBA–LC (Fig. 1):

– The Component Registry provides information about (a) the set of in-
stalled components, (b) the set of component instances running in the node
and the properties of each, and (c) how those instances are connected via
ports (assemblies)[15]. This information is used when components, applica-
tions or visual builder tools need to obtain information about components.

CORBA Lightweight Components 849

– The Resource Manager in the node collaborates with the Container
implementing initial placement of instances, migration/load balancing at
run-time. Resource Manager also reflects the hardware static characteristics
and dynamic resource usage and availability.

With the help of the reflection architecture, new components (or new version
of existing components) can be aggregated to the system at any time, and become
instantly available to be used by other components.

In contrast to CCM, the set of external properties of a component is not
fixed and may change at run-time. Thus, component instances can adapt to the
changing environment requesting new services or offering new ones. CORBA–LC
offers operations which allow modifying the set of ports a component exposes[17].

Network Model and The Distributed Registry The CORBA–LC deploy-
ment model is a network-centered model (Fig. 2): The complete network is con-
sidered as a repository for resolving component requirements.

Each host (node) in the system maintain a set of installed components in
its Component Repository, which become available to the whole network.
When component instances require other components, the network issues the
corresponding distributed queries to each node’s ComponentRegistry in order
to find the component which match better with the stated QoS requirements.
Once selected, the network can decide either to fetch the component to be locally
installed, instantiated and run or to use it remotely (a component decoding a
MPEG video stream would work much faster if installed locally).

This network behavior is implemented by the Distributed Registry. It
stores information covering the resources available in the network as a whole, and
is responsible of managing these. Component Registries, Resource Managers and
the Network Cohesion interface of each node support the Distributed Registry
behavior. Component Registries collaborate to resolve distributed component
queries and reflect the internal Component Repository of each node.

Applications and Assembly In CORBA–LC, applications are just special
components. They are special because (1) they encapsulate the explicit rules
to connect together certain components and their instances, and (2) they are
created by users with the help of visual building tools.

With the given definition, applications can be considered as bootstrap com-
ponents: when applications start running, they expose their explicit dependen-
cies, requiring instances of other components and connecting them following the
user stated pattern for that particular application. This is similar to what in
CCM is called an assembly. Conversely, in CORBA–LC the matching between
component required instances and network-running instances is performed at
run-time: the exact node in which every instance is going to be run is decided
when the application requests it, and this decision may change to reflect changes
in the load of either the nodes or the network. The deployment of the applica-
tion, instead of being fixed at deployment-design time, is intelligently performed

850 Diego Sevilla et al.

at run-time, which allows intelligent run-time scheduling, migration and load
balancing schemes. Fixed versus run-time deployment can be compared with
static versus dynamic linking of Operating Systems libraries, but augmented to
the distributed heterogeneous case.

3 Related Work

To date, several component models have been developed. Although CORBA–LC
shares some features with them, it also has some key differences.

Java Beans[19] is a framework for implementing Java-based desktop appli-
cations. It is limited to both Java and the client side of the application. In
contrast, CORBA–LC is not limited to Java and allows components to be dis-
tributed among different hosts, still allowing seamless integration of local GUI
components.

Microsoft’s Component Object Model (COM)[11] offers a component model
in which all desktop applications are integrated. Its main disadvantages are that,
(1) it does not fit well the distributed case (DCOM), and (2) its support is rather
limited to Windows. Moreover, COM components do not expose their require-
ments (other required components)[15,8]. CORBA–LC inherits from CORBA its
Operating System, programming language and location transparency, thus ef-
fectively adapting to heterogeneous environments. Moreover, it is designed from
the beginning to automatically exploit the computing power and components
installed in the network using its Reflection Architecture.

In the server side, SUN’s Enterprise Java Beans[20] and the new Object
Management Group’s CORBA Component Model (CCM)[12,18] offer a server
programming framework in which server components can be installed, instanti-
ated and run. These models are fairly similar, but EJB is a Java-only system,
and CCM continues the CORBA heterogeneous philosophy. Both models are de-
signed towards supporting enterprise applications, thus offering a container ar-
chitecture with convenient support for transactions, persistence, security, etc.[17]
They also offer the notion of components as binary units which can be installed
and executed (following a fixed assembly) in Application Servers.

Although CORBA–LC shares many features with them, it presents a more
dynamic model in which the deployment is performed at run-time using the dy-
namic system data offered by the Reflection Architecture. It also allows adding
new components and modifying component instances properties and connec-
tions at run-time and reflecting those changes to visual building tools. It is a
lightweight model: the main goal is the optimal network resource utilization in-
stead of supporting the overhead of enterprise-oriented services. This complexity
is one of the main reasons why the CCM specification is still not finished.

In general, component models have been designed to be either client-side
or server-side. This forces programmers to follow different models for different
layers of applications. CORBA–LC offers a more peer approach in which appli-
cations can utilize all the computing power available, including the more and
more powerful user workstations and high-end servers. Application components

CORBA Lightweight Components 851

can be developed using a single component model and spread into the network.
They will be intelligently migrated into the required hosts. Thus, a homogeneous
component model can be used to develop all the tiers (GUI, application logic)
of distributed multi-tiered applications.

In[8], a dynamic configuration management system is described. This work
provides us with valuable ideas for our research. However, it is centered in the
process of automatic component configuration and does not offer a complete
component model.

4 Application Domains

The CORBA–LC model represents a very convenient infrastructure for develop-
ing applications in a wide range of domains. It can be seen as a general purpose
infrastructure. However, we are specially interested in dealing with Computer-
Supported Cooperative Work (CSCW) and Grid Computing.

4.1 Computer Supported Cooperative Work (CSCW) Domain

Collaborative work applications allow a group of users to share and manipu-
late a set of data (usually multi-media) in a synchronous or asynchronous way
regardless of user location[22]. We are interested in the development and deploy-
ment of synchronous CSCW applications, including video-conferencing, shared
whiteboard and workspaces, workflow and co-authoring systems. CORBA–LC
represents an optimal environment for various reasons:

– It offers a peer distributed model, which matches the inherently peer dis-
tributed nature of these applications.

– GUI components can be considered within the whole application design,
allowing the presentation layer to evolve smoothly.

– It allows bandwidth-limited, multimedia components (such as video stream
decoding) to be migrated and installed locally to minimize network load.

– It allows Personal Digital Assistants (PDAs) to be used as normal nodes
with limited capabilities: they can use all components remotely.

Figure 3 depicts the relationships between a CSCW application and other
components, including GUI ones. The latter can be either local or remote, paint-
ing in their portion of the window using the local Display component which
provides painting functions. Applications can change how the data is shown by
replacing the GUI components at run-time. Can be all remote, enabling thin
clients such as PDA.

4.2 Grid Computing Domain

Our view of Grid Computation targets scalable and intelligent resource and
CPU usage within a distributed system, using techniques such as IDLE

852 Diego Sevilla et al.

draws

graphics

GUI part 1

GUI part 2

graphics

Display

uses

uses

manages

GUI part 2Application

Node Network

Other Application
External Dependencies

graphics

Application Window

manages

Ports:
Provided
Used

Fig.3. CSCW application model

computation[6] and volunteer computing[16]. These techniques fit seamlessly
within the CORBA–LC model to suit Grid Computation needs.

Other component-based alternatives such as the Common Component Ar-
chitecture (CCA)[1] have appeared in the High-Performance Computing (HPC)
community. These models introduce components kinds which reflect the special
characteristics of the field (for example, components whose instances must be
split to perform a highly-parallel task). While we find this approach very in-
teresting, those models usually become only a minimum wrapper[9] for reusing
legacy scientific code and do not offer a complete component model. A similar
approach was presented also by Walker et al .[23]. Their interest is in Problem-
Solving Environments (PSEs) using an XML-based component model to wrap
legacy scientific components.

FOCALE[2] offers a component model for grid computation. It uses CORBA
and Java (although it supports legacy applications). It provides a system view
at different levels: federation, server, factories, instances and connections.

Developments in the Grid Computing field include Globus[4] and Legion[7].
They are systems which offer services for applications to access to the computa-
tional grid. However, they are huge systems, difficult to manage and configure,
somewhat failing in its primary intentions. Moreover, they do not address very
well the interoperability and code reuse through component technology.

5 Conclusions and Future Work

In this article we have described the CORBA–LC Component Model. Also, we
have stated the validity of the design to target the CSCW and Grid Comput-
ing domains. Current CORBA–LC implementation allows building components
with the stated external characteristics and packaging. However, the implemen-
tation is still incomplete, so we have some future work to do: Explore strategies
to maintain the described Reflection Architecture and the network-awareness
of both nodes and the Distributed Registry[8], also introducing fault-tolerance
techniques; Implement visual building tools allowing users to build applications
based on all available network components; Further identify CSCW and Grid-

CORBA Lightweight Components 853

based application needs enhancing CORBA–LC to better support them; And
study the integration of this model with future CCM implementations.

Finally, we plan to continue enhancing CORBA–LC as a general computing
platform, to offer programmers both the advantages of the Component-Based
Development and Distributed Computing.

References

1. R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko,
and M. Yechuri. A Component Based Services Architecture for Building Dis-
tributed Applications. In Proceedings of the High Performance Distributed Com-
puting Conference, 2000. 852

2. G. S. di Apollonia, C. Gransart, and J-M. Geib. FOCALE: Towards a Grid View
of Large-Scale Computation Components. In Grid’2000 Workshop, 7th Int. Conf.
on High Performance Computing, Bangalore, India, Dec. 2000. 852

3. J. Fabry. Distribution as a set of Cooperating Aspects. In ECOOP’2000 Workshop
on Distributed Objects Programming Paradigms, June 2000. 847

4. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishing, 1999. 852

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995. 847

6. D. Gelernter and D. Kaminsky. Supercomputing out of Recycled Garbage: Pre-
liminary Experience with Piranha. In Sixth ACM International Conference on
Supercomputing, pages 417–427, July 1992. 852

7. A. S. Grimshaw and Wm. A. Wulf. The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, 40(1), January 1997. 852

8. F. Kon, T. Yamane, C. Hess, R. Campbell, and M.D. Mickunas. Dynamic Resource
Management and Automatic Configuration of Distributed Component Systems. In
Proceedings of the 6th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS’2001), San Antonio, Texas, February 2001. 850, 851, 852

9. M. Li, O. F. Rana, M. S. Shields, and D. W. Walker. A Wrapper Generator
for Wrapping High Performance Legacy Codes as Java/CORBA Components. In
Supercomputing’2000 Conference, Dallas, TX, November 2000. 852

10. R. Marvie, P. Merle, and J-M. Geib. A Dynamic Platform for CORBA Compo-
nent Based Applications. In First Intl. Conf. on Software Engineering Applied to
Networking and Parallel/Distributed Computing (SNPD’00), France, May 2000.
848

11. Microsoft. Component Object Model (COM), 1995. http://www.microsoft.com/com.
850

12. Object Management Group. CORBA Component Model, 1999. OMG Document
ptc/99-10-04. 846, 847, 850

13. Object Management Group. CORBA: Common Object Request Broker Architec-
ture Specification, revision 2.4.1, 2000. OMG Document formal/00-11-03. 845

14. O. Othman, C. O’Ryan, and D. Schmidt. The Design and Performance of an
Adaptative CORBA Load Balancing Service. Distributed Systems Engineering
Journal, 2001. 847

15. N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. Towards a Reflective
Component-based Middleware Architecture. In ECOOP’2000 Workshop on Re-
flection and Metalevel Architectures, 2000. 848, 850

854 Diego Sevilla et al.

16. L. F. G. Sarmenta. Bayanihan: Web-Based Volunteer Computing Using Java.
In 2nd International Conference on World-Wide Computing and its Applications
(WWCA‘98), March 1998. 852

17. D. Sevilla. CORBA & Components. Technical Report TR-12/2000, University of
Extremadura, Spain, 2000. 849, 850

18. D. Sevilla. The CORBA & CORBA Component Model (CCM) Page, 2001.
http://www.ditec.um.es/˜dsevilla/ccm/, visited April, 2001. 850

19. SUN Microsystems. Java Beans specification, 1.0.1 edition, July 1997.
http://java.sun.com/beans. 850

20. SUN Microsystems. Enterprise Java Beans specification, 1.1 edition, December
1999. http://java.sun.com/products/ejb/index.html. 847, 850

21. C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM
Press, 1998. 845

22. G. Henri ter Hofte. Working Apart Toguether. Foundation for Component Group-
ware. PhD thesis, Telematica Institut, The Netherlands, 1998. 851

23. D. Walker, O. F. Rana, M. Li, M. S. Shields, and Y. Huang. The Software Archi-
tecture of a Distributed Problem-Solving Environment. Concurrency: Practice &
Experience, 12(15):1455–1480, December 2000. 852

	CORBA Lightweight Components:A Model for Distributed Component-BasedHeterogeneous Computation
	Introduction
	CORBA Lightweight Components
	Components
	Containers and Component Framework
	Packaging Model
	Deployment and Network Model
	Nodes
	The Reflection Architecture
	Network Model and The Distributed Registry
	Applications and Assembly

	Related Work
	Application Domains
	Computer Supported Cooperative Work (CSCW) Domain
	Grid Computing Domain

	Conclusions and Future Work

