
Building Computational Communities from

Federated Resources�

Nathalie Furmento, Steven Newhouse, and John Darlington

Parallel Software Group, Department of Computing, Imperial College of Science,
Technology and Medicine

180 Queen’s Gate, London SW7 2BZ, UK
icpc-sw@doc.ic.ac.uk

http://www-icpc.doc.ic.ac.uk/components/

Abstract. We describe the design and the implementation in Java and
Jini of a Computational Community , which supports the federation of
resources from different organisations. Resources from the local Admin-
istrative Domain are published in a Jini space to form a Computational
Community . Different access control policies can be applied to the same
resource in different Computational Communities. We show how this ar-
chitecture can be extended through the addition of an Application Map-
per and Resource Broker to build a computational economy.

Keywords: Computational Community, Computational Economy, Grid
Computing, Distributed Systems.

1 Introduction

The accelerating proliferation of computing resources together with the rapid
expansion of high speed connection networks has increased the interest of users
in computational grids. A computational grid is defined as a combination of
geographically distributed heterogeneous hardware and software resources that
provide a ubiquitous computation environment [1]. The motivation behind com-
putational grids is to deliver computational power to a user’s application in a
similar way the electrical power is delivered to an electrical appliance. This can
only be achieved through integration between the resources and the application.

As no single organisation is able to provide all the resources in such an infras-
tructure, it is inevitable that the grid will be composed of federated resources.
However, organisations will only be willing to contribute their resources to the
grid if they retain ultimate control of how and when they are used. Therefore, any
grid middleware must not only provide strong authentication mechanisms suit-
able for a distributed computing environment, but must also support sophisti-
cated access control policies capable of differing between individuals, groups and
� Research supported by the EPSRC grant GR/N13371/01 on equipment provided by

the HEFCE/JREI grants GR/L26100 and GR/M92455

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 855–863, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



856 Nathalie Furmento et al.

organisations. Resource federation is more likely to take place between organi-
sations if there is mutual self interest or a natural inter-organisational grouping,
e.g. to build a Computational Community of particle physics users.

Ensuring effective utilisation of these distributed federated resources is a
challenge to both users and resource providers. It is essential that any Computa-
tional Community is able to balance the computational demand and supply of its
users and resource providers. We will show how our Computational Community,
built from federated resources, can be extended through market mechanisms
to a computational economy where resources are traded between providers and
consumers to ensure effective resource utilisation.

Roadmap. This paper will present our vision of a Computational Community
and how it can be extended to form a computational economy. Section 2 gives a
global overview of the Computational Community middleware as well as related
work. Sections 3 and 4 give further details of the abstractions in the middleware.
Before concluding, we describe in Section 5 how the Computational Community
can be extended through higher level services.

2 Building a Computational Community

2.1 Concepts

Our middleware (see Fig. 1) consists of: (1) a private Administrative Domain
that allows the local administrator to manage the resources of their organisation
(see §3), (2) a Domain Manager that acts as a conduit between the private and
public areas of the infrastructure. It annotates publishable resources in the pri-
vate Administrative Domain with access control information, and authenticates
and authorises incoming requests to use these local resources (see §4), and (3) a
public Computational Community where the information about the resources
and how they can be used are made available to the users (see §5).

The Computational Community is built from potentially diverse computa-
tional, storage and software resources that have both static and dynamic at-
tributes. These resources are managed through the local Administrative Do-
main. The Domain Manager is used by the local administrator to publish the
resources from the Administrative Domain in any number of public Computa-
tional Communities. The Identity Manager is trusted by the Domain Manager
to authenticate the identity of the users wishing to access the local resources
and is administered by the local administrator.

Three management tools – the Resource Manager , the Policy Manager and
the Resource Browser – allow both users and administrators to interact with the
framework through a graphical interface.

2.2 Prototype

A prototype of this architecture has been completed using a Java and Jini en-
vironment. We exploit the cross-platform portability of Java [2] with its diverse



Building Computational Communities from Federated Resources 857

class libraries to simplify many of the development tasks. Jini [3] is used as the
primary service infrastructure of the architecture as it has several desirable fea-
tures for a wide-area grid environment. It supports dynamic registration, lookup
and connection between the Java objects which represent our grid resources. We
use a Jini lookup server to implement the public Computational Communities
and the private Administrative Domains defined in our architecture.

Our middleware could be implemented using technologies other than Java
and Jini. For example, the private domain could use a LDAP server to maintain
a register of the available resources [4].

2.3 Related Work

Our approach is a combination and a logical extension of two major grid infras-
tructure projects: (1) Globus which provides a toolkit of services (information
management, security, communication etc.) to integrate heterogeneous compu-
tational resources into a single infrastructure [5], and (2) Legion which uses a
uniform object model for both applications and resources allowing users and
administrators to subclass generic interfaces to their specific local needs [6].

Our initial implementation indicates that the Java/Jini combination is capa-
ble of providing an extensible fault tolerant distributed infrastructure for grid
computing. Other projects have also demonstrated the effectiveness of Jini in
providing a grid middleware [7] and the use of Java to provide a homogeneous
distributed computing environment across heterogeneous resources [8].

3 Local Resources

3.1 Overview

Resources within an organisation are managed by a local administrator. Once
started, the Administrative Domain (a Jini space) maintains a list of the cur-

CR

SR

Domain
Admistrative
PrivateComputational

Resource

Software
Resource

Resource Manager

Identity Manager

SR

CR

Domain Manager

CR

SR

Policy Manager

Resource Browser

SR

SR

CR

Gateway between private
and public regions

Public Computational Community

Public Computational Community

Private Public

Fig. 1. Building a Computational Community through Federated Resources



858 Nathalie Furmento et al.

Fig. 2. The Resource Manager

rently available resources. These resources are monitored by the Resource Man-
ager (see Fig. 2), which is notified when a resource enters or leaves the Jini
space. The Resource Manager allows the administrator to alter the resources’
configuration by adding, modifying or removing attributes. An XML scheme
and configuration file (maintained on disc to ensure persistence) describes the
resources (see §3.2).

We are currently concentrating on three different resources types:

– Computational Resources. We access our own local computational hard-
ware through a batch scheduler abstraction with implementations for NQS,
PBS [9] and Condor [10]. Each computational resource executes its own seg-
ment of an XML defined execution plan passed to it by the Domain Manager .

– Storage Resources. The user must be able to access their storage space
from any resource. This allows input and output files to be transfered to
the execution location. Read and write access policies are defined to allow
authenticated individuals, groups or organisations to use their file space.

– Software Resources. Our current implementation only represents unlimi-
ted-use software libraries but the execution of a licensed library or applica-
tion has to be scheduled in the same manner as a computational resource to
ensure that a licence is available.

3.2 Implementation

A resource is defined by its name, a Jini space into which it publishes its avail-
ability (the Administrative Domain) and a Java class (its type) that extends the
appropriate Resource class. The execute method in the Resource class accepts
an XML file describing the task that is to be performed on the resource.

The resource can have any number of static and dynamic attributes which
are encapsulated in the published service class. An attribute can be static (i.e.
initialised once at the beginning of the execution) or dynamic (i.e. periodically
updated during the execution). A static attribute is defined by its name, a value,
and the location of the defining Java class. A dynamic attribute is defined by its



Building Computational Communities from Federated Resources 859

name, the URL of the service used to update the attribute (e.g. Remote Method
Invocation), and the location of the defining Java class. A public attribute is
visible to the whole Computational Community, while a non-public (i.e. private)
attribute is only visible to the Administrative Domain and the Domain Manager .

Example. The XML configuration file defining a computational resource (the
AP3000) is shown below and in Fig. 2. It has two static attributes (only one of
which is public) and a dynamic attribute updated through a RMI service.

<resource name="ap3000" publish="jini://jini.doc/"
type="http://jini.doc/icpc.grid. ... .ComputationalResource">

<staticAttribute name="OS" value="Solaris" public="TRUE" classURL="http://jini.doc..."/>
<staticAttribute name="CPU" value="100" public="FALSE" classURL="http://jini.doc..."/>
<dynamicAttribute name="queueStatus" public="TRUE" classURL="http://jini.doc..."

serviceURL="rmi://cnet0076.doc/getAP3000NQSStatus"/>
</resource>

4 Resource Federation

4.1 Overview

The Domain Manager is the sole route between the private Administrative Do-
main containing the local resources of an organisation and the Computational
Community in which the resource is published. Its role is to enforce the access
control policies defined by the administrator for users in each of the Computa-
tional Communities. It is also able to restrict the published information in order
to hide a specific resource, an attribute of a specific resource (the resource it-
self can decide which attributes are publicly visible), or the details of the access
policy from a particular Computational Community.

When a new resource becomes available in the Administrative Domain, it
is automatically published in the appropriate Computational Community if the
Domain Manager already has an entry for it in its configuration file (see below).
If there is no record in the configuration file of the resource for a specific Com-
putational Community, then the administrator can use the Policy Manager to
define where the resource should be published.

<domainManager manage="jini://jini.doc/" name="icpc">
<promote domain="jini://trident.doc">
<!-- the list of resources -->
<resource name="condor"/>
<!-- this resource ap3000 got some specific access permission -->
<resource name="ap3000">
<deny stopDay="monday"> <entity type="person" name="nfurSigned"/> </deny>

</resource>
<!-- default access control policies for the domain -->
<deny startDay="saturday" stopDay="sunday"> <entity type="group" name="ra"/> </deny>
<allow startDay="tuesday"> <entity type="organization" name="ICPC"/> </allow>

</promote>
<promote domain="jini://ariane.doc"> ... </promote>

</domainManager>



860 Nathalie Furmento et al.

4.2 Access Control

Access to individual resources is controlled through conventional access control
lists based on the following entities: individuals, groups and organisations. An
organisation is composed of any number of groups, each containing any number
of individuals. The Domain Manager is able to implement fine-grained access
control policies relating to the resources in the local Administrative Domain.

The access control policy is qualified through a time interval, defined by a
start time (by default, Monday at 00:00) and a stop time (by default, Sunday at
23:59). The access policies of an organisation are also applied to all the groups
inside the organisation. Similarly, the access policies of a group are applied to
all the individuals inside the group.

The Domain Manager configuration file allows an administrator to define
the default access control policies for a Computational Community, which will
be used for all the resources published within this community. Additional access
policies can also be defined for specific resources as they are required.

4.3 The Management Tools

The Policy Manager allows an organisation’s administrator to define the be-
haviour of the Domain Manager and therefore how the organisation’s resources
are contributed into the Computational Communities (see Fig. 3). It shows the
available resources and the communities in which they are published. For each
resource promoted in a specific community, it is possible to modify the access
control policies, every modification will be propagated from the Domain Man-
ager to the corresponding Computational Community.

Example. In Fig. 3, the AP3000 is published in the Computational Community
hosted by jini://trident.doc. The default access policies of the community

Fig. 3. The Policy Manager



Building Computational Communities from Federated Resources 861

are extended by a resource specific access policy. Note, that the non-public re-
source attribute, the CPU, is no longer visible. The Domain Manager retains
knowledge of this attribute but it is not available outside the private domain.

The Identity Manager contains the X.509 certificates [11] (used by our public
key authentication infrastructure) of the trusted organisations and their associ-
ated groups. An organisation acts as a certification authority for the individuals
that are members of that organisation. All individuals using a resource within
a domain have to belong to one of the trusted organisations. Global access con-
trol policies can also be defined within the Identity Manager . For instance, a
particular user or group of users could be barred from all of the resources in an
Administrative Domain.

5 The Computational Community

The Resource Browser (see Fig. 4) allows the users to examine the usage poli-
cies and the attributes of the accessible resources in a particular Computational
Community. Dynamic attributes are updated periodically or on request.

Example. The Computational Community shown in Fig. 4 is hosted by
jini://trident.doc and currently contains a computational resource, the AP-
3000. The access control policies and attributes match those defined by the Pol-
icy Manager and Resource Manager respectively. Fig. 4 also shows the current
status of the batch queuing system on the AP3000.

The Computational Community can be used to provide information to high
level services, e.g. to improve job turnaround and increase resource utilisation.
We will enhance the usability of the Computational Community to provide auto-
matic or semi-automatic resource selection by using meta-data relating to both
the performance of the application on different resources and the user’s require-
ments.

A related project within our group is to define an application as a compo-
sition of software components annotated with implementation and performance
information [12,13]. This meta-data, together with the user’s requirement, will

Fig. 4. The Resource Browser



862 Nathalie Furmento et al.

be used by: (1) an Application Mapper to select the most effective implemen-
tations by utilising the application’s knowledge, and (2) a Resource Broker to
optimise the global job mix through computational economics [14,15].

6 Conclusion

Computational communities will eventually, like the Internet, change the way
we work. However, to effectively exploit the computational potential of the grid,
we need to balance the needs of the users, their applications and the resource
providers, in order to deploy an application to a resource that will satisfy the
stated requirements of both the user and the resource provider.

As we have shown, our Computational Community can make an efficient
use of this information to enable us to build application mappers to effectively
match applications to resources and brokers to make the best economic use of
the available resources. We are therefore able to address some of the weaknesses
in current grid infrastructures.

Acknowledgements

We would like to thank Keith Sephton, the Imperial College Parallel Computing
Centre’s Systems Manager, for his help with this work.

References

1. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1998. 855

2. K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-
Wesley, 3rd edition, 2000. 856

3. Sun Microsystems. Jini(tm) Network Technology. http://www.sun.com/jini/.
857

4. S. Fitzgerald and I. Foster et al. A Directory Service for Configuring High-
Performance Distributed Computations. In 6th IEEE Symp. on High-Performance
Distributed Computing, pages 365–375, 1997. 857

5. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, 1997. 857

6. A. S. Grimshaw and W. A. Wulf et al. The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, 40(1):39–45, 1997. 857

7. Z. Juhasz and L. Kesmarki. A Jini-Based Prototype Metacomputing Framework.
In Euro-Par 2000, volume 1900 of LNCS, pages 1171–1174, 2000. 857

8. M. O. Neary, B. O. Christiansen, P. Cappello, and K. E. Schauser. Javelin: Parallel
Computing on the Internet. In Future Generation Computer Systems, volume 15,
pages 659–674. Elsevier Science, 1999. 857

9. Veridian Systems. Portable Batch Systems. http://www.openpbs.org. 858
10. Condor Team. Condor Project Homepage. http://www.cs.wisc.edu/condor. 858

http://www.openpbs.org
http://www.cs.wisc.edu/condor


Building Computational Communities from Federated Resources 863

11. Sun Microsystems. X.509 certificates.
http://java.sun.com/products/jdk/1.2/docs/guide/security/cert3.html,
1998. 861

12. S. Newhouse, A. Mayer, and J. Darlington. A Software Architecture for HPC Grid
Applications. In Euro-Par 2000, volume 1900 of LNCS, pages 686–689, 2000. 861

13. N. Furmento, A. Mayer, S. McGough, S. Newhouse, and J. Darlington. A Compo-
nent Framework for HPC Applications. Accepted for Euro-Par 2001. 861

14. C. A. Walspurger and T. Hogg et al. Spawn: A Distributed Computational Econ-
omy. IEEE Transactions on Software Engineering, 18(2):103–117, 1992. 862

15. R. Buyya and S. Chapin. Architectural Models for Resource Management in the
Grid. In Grid 2000, volume 1971 of LNCS, 2000. 862

http://java.sun.com/products/jdk/1.2/docs/guide/security/cert3.html

	Building Computational Communities from Federated Resources
	Introduction
	Building a Computational Community
	Concepts
	Prototype
	Related Work

	Local Resources
	Overview
	Implementation

	Resource Federation
	Overview
	Access Control
	The Management Tools

	The Computational Community
	Conclusion


