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Abstract

Wide-area systems are gaining in popularity as an infrastructure for running scientific applications. From a fault

tolerance perspective, these environments are challenging due to their scale and their inherent variability. Causal

message logging protocols have attractive properties that make them suitable for these environments. They spread

fault tolerance information around in the system providing high availability. This information can also be used to

replicate objects that are otherwise inaccessible due to network partitions.

However, current causal message logging protocols do not scale to thousands or millions of processes. We de-

scribe the Hierarchical Causal Logging Protocol (HCML) that uses a hierarchy of shared logging sites, or proxies,

to reduces the space requirements exponentially. These proxies also act as caches for fault tolerance information

and reduce the overall message overhead of causal message logging protocols by as much as 50%. In addition,

HCML leverages differences in bandwidth between communicating processes by piggybacking more fault tolerance

information over high bandwidth links. Doing so improves overall message latency by as much as 97%.
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1 Introduction

Large scale computational grids are gaining popularity as infrastructure for running large scientific applications. Ex-

amples of such grids exist in the academic world (SETI@Home [5], Globus [12], Legion [27] and Nile [18]) as well

as in the commercial sector (Entropia, Parabon among others). The primary goal of all these grids is to leverage the

increased computational horsepower of desktop personal computers and workstations that are linked by high speed

communication protocols to provide a virtual supercomputer with the aggragate computational power that is many

times that of current supercomputers. As an example, the largest current grid is the SETI@Home grid that includes

over two million desktop personal computers. The aggragate computing power of this grid exceeds that of all the top

500 supercomputers [16].

The availability of such a large set of computational resources will inevitably lead to the development and deploy-

ment of large scale scientific applications. And the increased scale of these applications will allow greater detail in

simulations, greater exploration of the degrees of freedom, and fundamentally to better scientific analysis.

However, before applications can leverage this virtual supercomputer, many problems inherent to these large-scale

systems must be solved. One of the key challenges is fault tolerance. In any system of thousands or millions of

computers, the likelihood of a machine failure is almost certain. Many of the current applications that utilize these

grids are decomposed into independent pieces where each piece is assigned to a particular host machine. For such

applications, failures can be dealt with by re-running a failed computation on a different host. Consistency is not

an issue since each piece of computation is independent of all other pieces. Such is the case for the Seti@Home

application.

However, for many other applications, the application can not be divided into independent pieces. Each piece

has dependencies on other pieces of the application, and it is not sufficient to simply restart a failed piece of the

computation on another host. The system must ensure that the restarted computation maintains consistency with

the other parts of the application. Examples of such applications include Jacobi grid[6], and other relaxation style

algorithms. Such applications are typically written using a communication library where each piece of the computation

communicates with other pieces by sending and receiving messages. The messages define the dependencies between

the sender process and the receiver process. The transitive closure of the message dependencies define the overall

application dependencies. Restarted processes must respect the application dependencies.

Simple checkpointing mechanisms will not suffice for fault tolerance in these environments. The host machines

are widely distributed geographically and in terms of network connectivity. The possibility of network partitions mean

that checkpoint files may not be available when and where needed. The checkpointed state needs to be cached at

various places on the grid such that a consistent version is always available when needed.

One class of protocols, called Causal Message Logging protocols [4, 10, 19], provide exactly this type of caching

of recovery information encapsulated in message determinants. They operate by logging the recovery information in

the volatile memory of the application processes and by dispersing the recovery information by piggybacking it on

to application messages. The dispersed recovery information can then be used to generate replicas that are causally

consistent [1] with the rest of the application. Causal message logging protocols are generally considered efficient

because they let processes keep their logs in volatile memory, they impose minimal overhead during failure-free

executions, and they send no extra messages to distribute the recovery information.

While causal message logging protocols have been used successfully in small scale, local-area-networked envi-

ronments, they are not suitable for use in large scale, wide-area environments. First, these protocols maintain data

structures that grow quadratically in n, the number of processes in the system. For a large n, the memory needed to

maintain these data structures can easily become unmanageable. Second, the higher latency and decreased bandwidth

of wide area computing can lead to a large increase in the amount of data that these protocols piggyback on the ambient

message traffic.

The contribution of this paper is to present an implementation of causal message logging that is designed for

use in large scale, wide-area grid infrastructures. Hierarchical Causal Message Logging (HCML) utilizes a network

of caches (or proxies) situated throughout the network that cache recovery information while routing application

messages. The primary advantage of these proxies is that they exponentially reduce the size of the datastructures

needed to track causality, and therefore, enable the use of causal message logging for process fault tolerance in large-

scale environments. Furthermore, we have found that the use of the proxies signifantly reduces the bandwidth overhead

of distributing the recovery information in the network.

HCML provides the same guarantees as standard causal message logging protocols: that the necessary recovery
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information to recreate a process consistently is guaranteed to be available when needed. Process crashes can be dealt

with using the standard recovery protocol for causal message logging.

This paper is organized as follows. Section 2 describes the system model and introduces our notion of locality.

Section 3 describes the HCML protocol in detail. The experimental results are described in Section 4, and by Section

6 summarizes the results and discusses their implications.

2 System Model

We assume a system with a set P of n processes, whose execution is represented by a run, which is an irreflexive

partial ordering of the send events, receive events and local events based on potential causality [14]. Processes can

communicate only by sending and receiving messages; communication is FIFO and reliable. The system is asyn-

chronous: there exists no bound on the relative speeds of processes, no bound on message transmission delays, and no

global time source. A deliver event is a local event that represents the delivery of a received message to the application

or applications running in that process. For any message m from process p to process q, q delivers m only if it has

received m, and q delivers m no more than once.

The potential causality relation ! is defined as follows: let e
p

and e

q

be events of process p and q, respectively.

The potential causality relation is the transitive closure of the following cases:

� p = q and process p executed e

p

before e
q

;

� e

p

is send
p

(m; q) (process p sends message m to process q) and e
q

is receive
q

(m; p) (process q receives message

m from process p);

Given two events such that e
p

! e

q

, we say that event e
p

happens before event e
q

. Given a message m sent from

process p to process q, we define the set Dep(m) to be the set of processes that have executed an event e such that

receive
q

(m; p) ! e. Informally, this set is the set of processes that causally depend on the delivery of message m

including q once it has delivered m.

We assume that processes are piecewise deterministic [9, 22], i.e. that it is possible to identify all the non-

deterministic events executed by each process and to log for each such event a determinant [4] that contains all the

information necessary to replay the event during recovery. In particular, we assume that the order in which messages

are delivered is non deterministic, and that the corresponding deliver events are the only non-deterministic events that

a process executes. The determinant #m for the deliver event of a message m includes a unique identifier for m as

well as m’s position in the delivery order at its destination. The contents of the message need not be saved because it

can be regenerated when needed [4].

We define the set Log(m) as the set of processes that have stored a copy of #m in their volatile memory.

Definition 1 (Causal Logging Property) The causal logging specification defined in [2] requires that:

p 2 Dep(m) ) p 2 Log(m)

when the number of possible crashes is equal to n.

We define a locality hierarchy as a rooted tree H with the processes in P as the leaves of the tree. Each interior

nodes of the tree represent a locale, such as a specific processor, local-area network, or a stub domain. Given H, we

define the predicate

A

x

(y)

�

= (y = x) _ (x is an ancestor of y)

and define the functions

C(x; y)

�

= z : z is the least common ancestor of x and y;

height(v)
�

= the distance from the root to the node v.

v̂

�

= the parent of node v.

Each locale in H has associated with it a communication bandwidth characteristic that defines the available band-

width for communication among the locale’s children. If two application processes s and t have the same parent p in
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H, then the communication cost of a message m from process s to process t depends on the bandwidth characteristics

of their parent p. If s and t do not have the same parent, then the communication cost of message m depends on

the bandwidth characteristics of the locale C(p; q). We assume that all locales at the same height i have the same

bandwidth BW
i

(measured in MB/sec).

The overhead of a message m, denoted as jmj, is the size in bytes of the fault tolerance information piggybacked

on m. The transmission overhead of m is a the time it takes to transmit jmj from its sender to its destination m:dest:

time(m)
�

=

jmj

BW
i

where i = height(C(m:sender;m:dest)):

The total message overhead of a run is the sum of the message overhead for all the messages sent in the run. The

message overhead at depth i of the hierarchy is the sum of the message overhead of messages that traverse locales at

height i. The total transmission overhead is the sum of the transmission overheads for all messages in the run.

3 Hierarchical Design

In this section we first review a simple causal message logging protocol that we call SCML. It is equivalent to the

protocol �
det

with f = n described in [3] and to Manetho [10]. We then discuss its limitations with respect to scaling,

and present a hierarchical and scalable causal message logging protocol.

3.1 Review of SCML

Like other message logging protocols, causal message logging is built using a recovery unit abstraction [22]. The

recovery unit acts like a filter between the application and the transport layer. When an application sends a message,

the recovery unit records fault tolerance information on the message and hands it off to the transport layer. Similarly,

on the receiving end, the recovery unit reads the fault tolerance information on the message and updates its in-memory

data structures before passing the contents of the message to the application layer.

The recovery unit for causal message logging maintains a determinant array H
s

at each process s. For every

process t, H
s

[t℄ contains the determinant of every message delivered by t in the causal past of s. H
s

[t℄ is ordered by

the order of message delivery at t. We denote withH
s

[t; i℄ the ith determinant inH
s

[t℄.

Protocol 1 The Simple Causal Message Logging (SCML) Protocol

send

s

(m; t) :=

m:piggybak = f8 r 2 P 8 j : j > D

s

[t; r℄ j hr;H

s

[r; j℄i g;

8 r : D

s

[t; r℄ = length(H

s

[r℄);

rev

t

(m; s) :=

8 hr;#m

0

i 2 m:piggybak f

add #m

0 toH
t

[r℄ if not already there; let j be its position;

updateD
t

[s; r℄ to be the max of j andD
t

[s; r℄;

updateD
t

[t; r℄ to be the max of j andD
t

[s; r℄;

g

generate #m and append it toH
t

[t℄;

incrementD
t

[t; t℄;

A simplistic way to maintainH
s

is as follows. When a process s sends a message m to t, it piggybacks on m all

determinants in H
s

. When process t receives m, it extracts these piggybacked determinants, incorporates them into

H

t

, generates the determinant for m, and appends #m toH
t

[t℄. By doing so, when process t delivers m it has all the

determinants for messages that were delivered causally before and including the delivery of m and therefore satisfies

the causal logging property. This method of maintainingH, however, needlessly piggybacks many determinants. To

reduce the number, each process s maintains a dependency matrixD
s

. This is a matrix clock where the valueD
s

[t; u℄
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is an index intoH
s

[u℄. IfD
s

[t; u℄ = j, then process s knows that all of the determinants inH
s

[u℄ up throughH
s

[u; j℄

have been sent to t.

One can think of D
t

as process t’s estimate of the determinants that have been stored by each process in its

determinant array. It is a conservative estimate: ifD
t

indicates that process s will eventually store a determinant #m

inH
s

, then process s will in fact do so if it does not crash first.

3.2 Scalability

The causal message logging protocol just described does not scale to a large number of processes. The dependency

matrix D is O(n

2

), and grid computation middleware is being designed for systems in which n in the thousands or

millions. Even if n were the relatively small value of 10,000, then each process would need to maintain a dependency

matrix whose size would be measured in gigabytes.

The determinant arrayH scales better than D in terms of n: its size is O(nd), where d is the maximum number

of determinants generated by any process. In addition, the size of H can be controlled by asynchronously writing

determinants to stable storage and by having the processes take a coordinated checkpoint.

The management of both D and H is complicated by the fact that the set of processes P can change frequently.

While techniques have been proposed for managing vector clocks in these environments, (for example, [20]), they

exact a cost in both space and time that depends both on n and on how often n changes.

The piggyback load on messages is affected by many factors, but in general it depends on both the size ofH and

the accuracy of D. As we discuss in Section 5, previous work has shown that without specific information about

process communication patterns, the simple protocol described here piggybacks, on average, the least amount of

information [7]. Hence, it would appear that the best way to control the size of the piggyback load is to control the

size ofH.

3.3 Proxy Hierarchy

HCML addresses the scalability problems of causal message logging through hierarchy. Each process tracks only

a small subset of the processes, thereby effectively reducing n for each process. Doing so also reduces the number

of times a process is affected by another process joining or leaving the system; a process is affected only when the

joining or leaving process is in the subset of processes it tracks. The hierarchy we use is based on the locality hierarchy

H discussed in Section 2. The leaves in the HCML hierarchy are the application processes, and the internal nodes

(corresponding to locales in H) are HCML proxy processes called simply proxies. There is no proxy corresponding to

the root of H. In the degenerate case of a single locale, the only processes are the application processes, and HCML

degenerates to SCML.

An application process can directly send messages to other application processes within its immediate locale and

to the one proxy associated with that locale which acts as a surrogate for all of the other application processes outside

of the locale. Proxies operates similarly to other processes: each proxy has a set of sibling processes with which it can

communicate directly. To communicate with any non-sibling, the proxy forwards a message to its proxy.

Figure 1 An example of a simple run with HCML.

q

p r

s t u v

m

1

q

p r

s t u v

m

2

m

2;1

m

2;2

m

2;3
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Figure 1 illustrates this hierarchy. The application processes s and t are siblings, and so s can send m

1

directly

to t. Process u, however, is not a sibling of t, and so t cannot send message m

2

directly to u. Instead, t sends the

message m
2;1

to its proxy p. Process u’s proxy r is a sibling of p, and so p can simply forward the message (as m
2;2

)

to r, which finally forwards the message (as m
2;3

) to the final destination u.

This routing of messages is done automatically by the communication layer and is invisible to the application.

Protocol 2 shows the algorithm. Consider a message m that is ultimately destined for u. When proxy x receives m,

if A
x

(u) then x forwards m to its child r for which A
r

(u). If instead A
x

(u) does not hold but x has a sibling y for

which A
y

(u) holds, then x forwards m to y. Finally, if neither A
x

(u) holds and there is no sibling y of q for which

A

y

(u) holds, then x forwards m to its parent x̂. These last two cases are analogous to the actions of an application

process sending a message to a local and a nonlocal application process respectively.

Protocol 2 Determining the next hop in the HCML Routing protocol for message m destined for application process

u.

nexthop

x

(m;u) :=

if 9 r : (r is a child of x ^ A

r

(u)) then r

else if 9 y : (y is a sibling of x ^A

y

(u)) then y

else x̂

Each proxy x implements A
u

(s) for all application processes s and proxies u that are siblings of x. This implies

that each proxy knows the identity of all application processes, which presents a scaling problem. But, if the locales

are defined in terms of the hierarchical naming structure used by the underlying transport protocol, then this predicate

can be efficiently implemented such that x need know only the identities of its siblings.

3.4 Peers and Proxies

Each proxy in the system simultaneously runs two causal message logging protocols: one with its siblings and parent

in the role of a peer, and one with its children in the role of a proxy. Since application processes are at the leaves of

the hierarchy and have no children, they only run one causal message logging protocol with their siblings and parent

in the role of a peer. Hence, for a hierarchy containing i internal nodes, there are i distinct protocols running at any

time. We call this basic causal message logging protocol CML, and we associate a CML protocol with each proxy

in the system. Thus proxy x runs both CMLx̂ with its siblings and parent and CMLx with its children. Application

process s only runs CMLŝ. See Figure 2.

Figure 2 Non leaf processes run two causal message logging protocols, one with its children and one with its siblings

and parent.

x̂

x y

s t u v

Protocol CMLx

protocol CMLx̂

CML is SCML with two differences: proxies have access to the determinants that are piggybacked on messages

and proxies do not generate determinants. The first difference is needed for coupling instances of CML; as for the

second, it is not necessary for proxies to generate determinants because their state can be safely reconstructed even if

their messages are delivered in another order during recovery.
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To satisfy the Causal Logging property, a proxy x couples CMLx and CMLx̂. Process x acts as a proxy to all of its

children for all processes outside of its locale. Therefore, all determinants stored inHx̂

x

(that is, the determinant array

of process x associated with protocol CMLx̂) and assigned to remote processes are also stored inHx

x

(the determinant

array of process x associated with protocol CMLx and assigned to process x: it is always the case that

8r; d : (d 2 H

x̂

x

[r℄ ) d 2 H

x

x

[x℄): (1)

Process x also acts as a proxy to the processes in its peer group for its child processes. Therefore, determinants

stored inHx

x

are also stored inHx̂

x

: it is always the case that

8r; d : (d 2 H

x

x

[s℄) d 2 H

x̂

x

[x℄): (2)

We call the conjunction of Equations 1 and 2 the Coupling invariant.

It is easy to see that the Coupling invariant combined with CML satisfies the Causal Logging property. Consider a

messagem sent from application process a to application process b. Let T = ht

1

; t

2

; : : : ; t

k

i be the sequence of proxies

that lead from a to b via C(a; b); thus, t
1

= â, t
k

=

^

b, and t

k=2+1

= C(a; b). From the definition of nexthop, m is

forwarded via CMLt

1

;CMLt

2

; : : :CMLt

k . For the (one or more) protocols CMLt

1

;CMLt

2

; : : :CMLt

k=2+1 Equation 2

ensures that the determinants needed to satisfy the Causal Logging property are forwarded. For the remaining (zero

or more) protocols CMLt

k=2+2

;CMLt

k=2+3

; : : :CMLk Equation 1 ensures that the determinants needed to satisfy the

Causal Logging property are forwarded.

Protocol 3 shows the protocol run by a proxy x. As an example, consider Figure 1 once again. In this scenario,

Protocol 3 The HCML proxy protocol.

rev

x

(m; y) :=

if m received via CMLx̂

f

8 hr;#m

0

i2 m:piggybak f

add #m

0 toHx̂

x

[r℄ if not already there;

updateDx̂

x

[y; r℄;

updateDx̂

x

[x; r℄;

g

send

x

(m;nexthop

x

(m;m:dest)) via CMLx

g

else m received via CMLx

f

8 hr;#m

0

i2 m:piggybak f

add #m

0 toHx

x

[r℄ if not already there;

updateDx

x

[y; r℄;

updateDx

x

[x; r℄;

g

send

x

(m;nexthop

y

(m;m:dest)) via CMLx̂

g

processes s, t, u, and v are application processes. Process s sends m
1

to process t. Since s is an application process, it

uses CMLŝ to send m

1

, and since t is a peer of s, the message is sent directly to t. For both processes, CMLŝ updates

the determinant arrays and dependency matrices following the SCML protocol. In particular, t creates determinant

#m

1

, adds it toH
p

t

, and setsD
p

t

[t; t℄ to 1. Message m is then delivered to the application layer.

Next, process t sends m
2

to process u. Since u is not a peer of t, this message is redirected first to ^

t, which is the

proxy p. Since D
p

t

[p; t℄ = 0, ht;#m

1

i is piggybacked on m

2;1

. Proxy p receives the message via CMLp which adds

#m

1

toHp

p

[t℄ and toHq

p

[p℄. Dp

p

is updated soDp

p

[t; t℄ = 1 andDq

p

[p; p℄ = 1. The proxy then forwards m
2

to proxy r

via CMLp̂. This time, it carries the piggyback hp;#m

1

i.
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Proxy r receives the message m

2;2

. It adds the determinant #m

1

to both Hq

r

[p℄ and to Hr

r

[r℄, and Dq

r

[p; p℄ and

D

r

r

[r; r℄ are updated. It then forwards m
2

to u via CMLr. This time, the message piggybacks hr;#m

1

i.

Process u receivesm
2

. It extracts the determinants, adds#m

1

toHr

u

[r℄, and setsDr

u

[r; r℄ to 1. Then, a determinant

is created for m
2;3

, is added to Hr

u

[u℄, and Dr

u

[u; u℄ is incremented. Finally, m
2

is delivered to the application layer

with the causal logging property satisfied.

3.5 Recovery

When a process crashes, a new process must be created as a replacement for the failed process. In order to maintain

consistency, causal message logging protocols gather the relavent recovery information from the set of processes (or

proxies) and use it to ensure that the recovered process is consistent. Existing recovery protocols (see [3]) can be easily

adapted for HCML.

HCML, however, has additional processes to maintain over those of standard causal message logging protocols,

namely the proxy processes. Fortunately, a crashed proxy can simply be restarted and its neighbors in the heirarchy

need to be informed. The proxies state includes only the cached recovery information, and subsequent messages will

simply refill the cache after recovery.

4 Performance

Using the proxy hierarchy ensures that no process needs to track the causality of a large number of processes. This

technique provides an exponential space reduction as compared to tracking the full causality. For example, assume

that the locality hierarchy has depth of five and the fanout is 10 at each node. Such an architecture can accommodate

100; 000 application processes, yet each process only tracks either six or twelve processes (depending on whether it

is an application process or a proxy respectively). With SCML, on the other hand, each application process would

maintain a dependency matrix with 10

5

� 10

5

= 10

10 entries.

However, the tradeoff is that HCML will over-estimate the causality as compared to SCML and and more often

needlessly piggyback determinants to processes that are not dependent on them. In addition, HCML will send more

messages than SCML because all non-local messages are relayed through the proxy hierarchy. This, however, is

offset by the fact that the proxies act as local caches for determinants. This caching of determinants reduces the

overall message overhead by over 50% percent. More importantly, HCML reduces the message overhead over slower

communication channels and reduces the effective message communication latency.

In this section, we first describe our application, the proxy hierarchy, and the scheduling of processes within the

hierarchy. We then discuss the performance results.

4.1 Effect of the Hierarchy

In order to gauge the effect of the hierarchy on both the message overhead and the message cost for HCML and SCML,

we analyzed the performance of an application of 256 processes where, on average, each process communicates with

four other processes selected randomly. The application proceeds in rounds. At each round, each process sends a

message to its neighbors and delivers the messages sent in the previous round. The run ends after approximately 5,000

messages have been delivered.

An execution completely defines a run, but the performance of the run using HCML depends on the structure of the

hierarchy and on how the processes are scheduled in the hierarchy. We then considered proxy hierarchies of different

depths:

1. A depth-one hierarchy consisting of one locale containing all 256 application processes and no proxies. As

stated earlier, this is identical to SCML.

2. A depth-two hierarchy with four locales (hence four proxies), each containing 64 application processes.

3. A depth-three hierarchy with sixteen application processes per lowest level locale. Their proxies have three

siblings each, and so there are 20 proxies total.

4. A depth-four hierarchy that divides each of the application process locales of the previous hierarchy by four.

Thus, there are four application processes per lowest level locale, and there are 84 proxies total.
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The application processes are placed into locales independently of the communication patterns that they exhibit.

We used the Network Weather Service [26] to measure the available bandwidth for processes communicating in

different locales. The values we measured ranged from over 200 MB/s for communication within the locale of a simple

workstation to less than 0.4 MB/s for the wide area locale containing San Diego and western Europe. Thus, we set

BW
1

= 1MB=s (intercontinental communications), BW
2

= 10MB=s (intra-stub domain communications), BW
3

=

100MB=s (local area network communications), and BW
4

= 1; 000MB=s (intra-high performance multiprocessor

communications). 1 Figure 3 shows the total message size for the run using both HCML and SCML as a function of

depth. Because SCML does not take advantage of the locale hierarchy, its performance is constant with respect to the

depth. HCML, on the other hand, relays non-local messages through the hierarchy and therefore sends more messages

overall. Hence, one might expect that HCML would have a higher total message overhead. As the figure shows, the

caching of the determinants actually improves the message overhead of HCML over SCML by as much as 50%. As

the hierarchy gets deeper, the net effect of the caches is reduced. For a depth of four, for example, the locales at depth

3 have only four processes in them each and so the opportunity to benefit from caching is low.

To see how the caches reduce the communication costs, consider the example from the last section once again.

After m
2

is finally delivered to process u, the determinant for message m
1

is stored at the intermediate nodes p and r

as well as the application process u. Consider what happens if a third message m

3

is sent from process t to process

v. In SCML t simply piggybacks #m

1

on m

3

which gets sent from the locale of p to the locale of r. Using HCML,

however, m
3

is redirected to node p which knows that r already has a copy of #m

1

. Therefore p does not need to

piggybacked #m

1

again. Process r does not know whether v has stored #m

1

, and hence piggybacks the determinant

to v.

A secondary effect of the proxies is that more of the communication occurs lower in the hierarchy, where there is

more bandwidth available. Figure 3 also shows the total transit overhead for SCML and HCML. In the case of depth

3 hierarchy, HCML reduces the total transit overhead by 97%. It should be noted that this metric does not include any

added latency arising from the processing time of proxies.

We have found similar results for different application with different communication properties. In most cases,

HCML is able to leverage the locality and produce a net reduction in both the total message overhead and the total

message transit time. In addition, HCML performs better when the communication pattern the application processes

use biases communication to be mostly within the higher bandwidth locales. Hence, we believe that HCML can only

benefit from the the careful scheduling of grid-based applications.

Figure 3 The performance of HCML compared with SCML in terms of both total message overhead and total trans-

mission overhead.
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1For hierarchies of depth less than three, we assigned bandwidths starting with BW
1

. While doing so is unrealistic—for example, one would

not expect a program to consist of 256 processes, each running in its own stub domain—it is at least well defined and no less arbitrary than any

other choice. Furthermore, doing so does not affect the relative total transmission overheads for a fixed depth.
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5 Related Work

Causal message logging protocols face the challenge of limiting both the number of determinants piggybacked on

application messages, and the size of the data structures that each process must maintain to do so effectively. This

is a problem because a process running causal message logging does not have the global knowledge necessary to

determine which processes have received and logged a given determinant: therefore, it is hard to avoid that processes

receive the same determinant multiple times. Causal protocols try to prevent this redundancy by tracking causal

dependencies. In particular, for all messages m, causal message logging tracks the processes whose state causally

depends on the delivery of m. To reduce the cost of causal message logging, previous research has therefore focused

on building protocols that better estimate causal dependencies, and on devising space-efficient schemes for encoding

these dependencies without sacrificing accuracy too much.

Numerous causal protocols have been proposed to help a process estimate causal dependencies more precisely [3].

These protocols require senders to piggyback on messages not just the determinants, but additional data that can help

receivers improve their estimates. Unfortunately, the extra cost involved in piggybacking this additional information

often outweighs any reduction in the number of determinants being piggybacked [7].

The standard mechanisms for tracking causality are based on vector clocks [11, 15]. Any representation of a vector

clock, though, is O(n) where n is the number of processes whose events are being tracked [8]. It is this property that

leads to the O(n

2

) space requirements of causal message logging.

There has been considerable research in reducing the overhead of maintaining vector clocks. Singhal and Kshemkalyani [21]

proposed an improved implementation for vector clocks that saves communication bandwidth at the cost of increased

storage requirements. They proposed to append only those entries of the local clock that have changed since last

sending a message to that process. Prakash and Singhal [17] noted the scalability problem associated with vector

clock implementations, and in particular the problems when the number of elements in the system fluctuates. They

proposed alternative implementations of vector clocks targeted specifically for their mobile computing environments.

Torres-Rojas and Ahamad [25] proposed the use of fixed-sized plausible clocks instead of vector clocks that approxi-

mate causality. The improvement in overhead is offset by the false causality introduced in the system. They showed

that for some applications the rate of false causality is low.

A different approach to reduce the cost of causality tracking is to modify the protocols so that the number of

elements that need to be tracked by vector clocks is reduced. This can be accomplished by using shared logging

sites [4]. By grouping processes together by their shared logging site and tracking causality only at the level of

granularity of these groupings, this method reduces n from the number of processes to the number of shared logging

sites. As the number of shared logging sites increases, however, scalability again becomes a problem.

6 Conclusions

We have developed a scalable version of causal message logging. Our preliminary measurements indicate that it

can easily scale to the largest grid-based computing environments that are being envisioned. Not only are the data

structures that are maintained by each application process reduced by an exponential amount, but a caching effect

reduces the message overhead as well when compared to traditional causal message logging. To attain these benefits,

one sets up a hierarchy of proxies, each serving both as a router of causal message logging communication and as a

cache of recovery information. Indeed, an interesting open question is if the routing of fault-tolerant information could

be implemented as part of the underlying network routing function.

The protocol as described here is very simple, and appears to be amenable to refinement. For example, each proxy

p manages an instance CMLp̂ of a causal message logging protocol. It seems straightforward to allow CMLp̂ to be

replaced with a pessimistic message logging protocol. One would do so to limit the spread of recovery information

to be below p in the locale hierarchy. Another refinement we are developing would allow one to give specific failure

model information about locales, thereby allowing one to replicate recovery information more prudently.

One spreads recovery information for the purpose of recovery, which is not discussed in any detail in this paper. In

fact, we have designed HCML to allow us to experiment with recovery in the face of partitions. HCML does not appear

to be hard to extend to support dynamic replication of a process (or an object) when a partition makes it inaccessible

to a set of clients that require its service. The approach we are developing has some similarities with other dynamic

replication services [13, 24] and with wide-area group programming techniques [23].
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