
R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 874-881, 2001.
 Springer-Verlag Berlin Heidelberg 2001

From Cluster Monitoring to Grid Monitoring
Based on GRM*

Zoltán Balaton, Péter Kacsuk, Norbert Podhorszki, and Ferenc Vajda

MTA SZTAKI
H-1518 Budapest, P.O.Box 63. Hungary

{balaton,kacsuk,pnorbert,vajda}@sztaki.hu

Abstract. GRM was originally designed and implemented as part of the
P-GRADE graphical parallel program development environment
running on supercomputers and clusters. In the framework of the
biggest European Grid project, the DataGrid we investigated the
possibility of transforming GRM to a grid application monitoring
infrastructure. This paper presents the architectural redesign of GRM to
become a standalone grid monitoring tool.

Keywords: grid monitoring, message passing, grid monitoring
architecture.

1 Introduction

With the emergence of computational grids it became very important to support grid-
based applications with dynamic performance monitoring infrastructure. GRM 1 and
PROVE were and still are available as parts of the P-GRADE graphical parallel
program development environment 2. GRM is a "semi-on-line monitor" that collects
information about an application running in a distributed heterogeneous system and
delivers the collected information to the PROVE visualisation tool. The information
can be either event trace data or statistical information of the application behaviour.
"Semi-on-line" monitoring means, that any time during execution all available trace
data can be requested by the user, and the monitor is able to gather them in a
reasonable amount of time. PROVE has been developed for performance visualisation
of Tape/PVM 3 trace files. It supports the presentation of detailed event traces as well
as statistical information of applications. It can work both off-line and semi-on-line,
and it can be used for observation of long-running distributed applications.

P-GRADE is a graphical programming environment integrating several tools to
support the whole life cycle of building parallel applications. It provides an easy-to-
use, integrated set of programming tools for development of general message passing
applications to be run in heterogeneous computing environments. Its main benefits are
the visual interface to define all parallel activities in the application, the syntax
independent graphical definition of message passing instructions, full support of
compilation and execution in a heterogeneous environment and the integrated use of
the debugger and the performance visualisation tool. For detailed overview of the

* This work was supported by a grant of the Hungarian Scientific Research Fund (OTKA) no.

T032226

From Cluster Monitoring to Grid Monitoring Based on GRM 875

tools in P-GRADE, see 4 while further information, tutorial and papers about
P-GRADE can be found at 2.

In this paper we present four possible architectural designs and related issues of the
GRM monitor for semi-on-line general application monitoring in a grid environment.
In the next Section, the original design goals and the structure of GRM are shortly
presented. In Section 3 the problems with GRM in a grid environment is discussed
and four architectures designed for grid monitoring are presented.

2 Original Design Goals and Structure of GRM

The monitoring in GRM is event-driven, both trace collection and counting are
supported. The measurement method is software tracing and the instrumentation
method is direct source code instrumentation. For a classification of monitoring
techniques, see 5. Direct source code instrumentation is the easiest way of
instrumentation. Since P-GRADE controls the whole cycle of application building,
and source code instrumentation is supported by graphics, the chosen one was a
natural option. The precompiler inserts instrumentation function calls into the source
code and the application process generates the trace events.

The main goals in the original design of GRM have been strongly related to the
P-GRADE environment. The monitor and the visualisation tool are parts of an
integrated development environment and they support monitoring and visualisation of
P-GRADE applications at source level. The monitor is portable among different
UNIX operating systems (Irix, Solaris, Linux, Tru64 UNIX, etc.) which is achieved
by using only standard UNIX programming solutions in the implementation. GRM is
a semi-on-line monitor, that is, the user can let GRM to collect the actual trace data or
statistical information about the application any time during the execution. Semi-on-
line monitoring is very useful for the evaluation of long-running programs and for
supporting debugging with execution visualisation. Both trace collection and statistics
are supported by the same monitor and by the same instrumentation of the
application. Trace collection is needed to pass data to PROVE for execution
visualisation. Statistics mode has less intrusion to the execution by generating fixed
amount of data and it supports initial evaluation of long-running applications.

For trace storage shared-memory segments have been used on each host, since
semi-on-line monitoring requires direct access to all trace data any time during the
execution. The monitor can read the shared buffer independently from the application
process, when the user asks to collect trace data. Moreover, if a process aborts its
trace data can be saved and analysed to the point of failure.

GRM consists of the following three main components (see its structure in Fig. 1):

Client Library
The application is instrumented with functions of the client. Both trace events
and statistics can be generated by the same instrumentation. The trace event
types support the monitoring and visualisation of P-GRADE programs. An
instrumented application process does not communicate outside of the host it is
running on. It places trace event records or increments counters in a shared
memory buffer provided by the Local Monitor.

Local Monitor

876 Zoltán Balaton et al.

A Local Monitor (LM) is running on each host where application processes are
executed. It is responsible for handling trace events from processes on the
same host. It creates a shared memory buffer where processes place event
records directly. Thus even if the process terminates abnormally, all trace
events are available for the user up to the point of failure. In statistics
collection mode, the shared memory buffer is used to store the counters and
LM is responsible for generating the final statistics data in an appropriate form.

Main Monitor

The Main Monitor (MM t
collects trace data from l
host becomes full. The t e
3), which is a record b .
The Main Monitor also

PROVE collects trace data for h
MM and asks for trace collect n
Monitor process. With the abil y
portion of data from its
memory, PROVE can
observe applications for
arbitrary long time.

The integration of
GRM into a development
environment made it
possible to put several
functionalities of a stand-
alone monitoring tool into
other components of
P-GRADE.
Instrumentation is done in
the GRED 4 graphical
editor of P-GRADE. Trace
events of different
processes are not sorted
into time order since the pre-p
sorted trace file. The monitor
bookkeeping of processes. Lo
environment.

3 Required Modificati

Monitoring of applications in
monitoring tool. The monitor s
events. The start-up of the mon
complex and difficult than in
cross-site timestamps. Moreove
) is co-ordinating the work of the Local Monitors. I
 them when the user asks or a trace buffer on a loca
race is written into a text file in Tape/PVM format (se
ased format for trace events in ASCII representation
performs clock synchronisation among the hosts.

 execution visualisation. PROVE communicates wit
ion periodically. It can work remotely from the Mai
ity of reading new volumes of data and removing an

Main Monitor
MM

Host 2

Host 1

Local Monitor
LM

Local Monitor
LM

Trace file
rocessing phase in PROVE does not need a globally
is started and stopped by GRED and GRM does no

cal Monitors are started on the hosts defined by the

ons of GRM in a Grid Environment

 a grid environment brings new requirements for a
hould be scalable to a large number of resources and
itor and collection of data from remote sites are more

 a single cluster. Measurements must have accurate
r, original design goals of GRM must be reviewed. In

Application
Process

Application
Process

Application
Process

Host 3

Fig. 1. Structure of GRM

From Cluster Monitoring to Grid Monitoring Based on GRM 877

particular, two goals must be changed. First, general application monitoring should be
supported, not only P-GRADE-based. This also requires user defined event data
types. Second, GRM and PROVE should be standalone monitoring and visualisation
tools, that is, not part of an integrated development environment. Other design goals
(see Section 2) are unchanged. Portability remains very important, since a grid
consists of heterogeneous resources. Semi-on-line monitoring must be supported,
because a grid is a changing environment, where off-line monitoring does not help.
Both statistics and event trace collection is needed to monitor large and long running
applications that are typical in a grid. Getting trace data to the point of failure is very
important, since errors are more frequent in a grid.

The start-up of the monitoring system becomes difficult because Local Monitors
cannot be started on a host explicitly, since it is the competence of the local job-
manager on a grid resource to decide where jobs will run. This local policy cannot be
influenced. Because of this, the Main Monitor cannot start the Local Monitors as in
GRM. Instead, it should be prepared to accept connections from them.

The clock synchronisation in GRM is done through the sockets connecting Local
Monitors with the Main Monitor, see details in 1. MM performs the synchronisation
with each LM. This technique works well on clusters of workstations connected by a
LAN. In a grid environment the resources (e.g. clusters) are usually connected by
WAN links that have higher latency than the LAN used inside the resource. GRM
determines the clock offsets of each LM (running on a host at the remote grid
resource) relative to the host of the MM but the accuracy of this measurement is
limited by the latency of the WAN link. Because of this, the error of the clock-offset
measurement can be comparable to or bigger than the time intervals between events
generated at the remote resource (e.g. the start and end of a communication on the
LAN). Since there are several tools (e.g. NTP) that can be used to synchronise clocks,
this problem can be solved independently from monitoring. For this reason, GRM
does not support clock synchronisation in grid environments, instead it assumes that
the clocks are already synchronised.

There are a number of performance measurement and resource control systems
used in grid (e.g. Network Weather Service, Autopilot, NetLogger, etc.). For their
comparison see 6.

In the following subsections four different architectures of GRM are examined that
can be used in a grid environment for application monitoring.

3.1 Simple Architecture

In the simplest monitoring architecture (see Fig. 2) Local Monitors are omitted and
application processes send trace events immediately to the Main Monitor which is
waiting for trace data in a remote site. The application process can store trace records
temporarily in its local memory. However, with this architecture we loose the
following advantages of GRM.

Local buffering of trace data in GRM is done independently from the monitored
application, so the Main Monitor can collect it any time. In the simple architecture
data should be sent immediately to the remote collector process or can be buffered
locally by the application process but in this case the visualisation tool must wait until
the block of trace data have arrived. In GRM the visualisation tool can request for
trace data any time and the monitor collects data from the Local Monitor processes.

878 Zoltán Balaton et al.

With local buffering in a shared memory segment, application processes and
sensors can give trace events to t
intrusiveness. Thus, the applic
instrumentation. In the simple ar
sends trace events to the collectin

The simple architecture is
Moreover, with trace buffering
events when a process aborts. Th
the point of failure.

The start-up of the
monitor is simple.
Application processes should
be started with the Main
Monitor address as
parameter and should
connect to the Main Monitor.
Since Local Monitors are
excluded, both the Main
Monitor code and the
instrumentation library
should be modified for the
new functionality. However,
one problem remains. The
use of firewalls in the
different computing sites can
prohibit the direct connection
of the application processes
to the Main Monitor. Either firew
expected from the administrators
for indirect connections.

3.2 Local Monitors as Site M

If we want to use Local Monitors
used in two different ways. Th
computing site. This option is di
Local Monitors in each machine
This solution is discussed in the n

In this architecture (see Fig
computing site (cluster or superc
Data is sent over the wide-area n
With this solution, the remote co
A process should send trace even
the process. This architecture i
architecture. However, the start-u
Local Monitor should be started
be started. The Main Monitor an
about where the application wil
he monitoring tool quickly so they can have very low
ation can run almost as efficiently as without

chitecture, the application process is blocked while it
g process over wide-area network.
not as scalable as GRM using Local Monitors.
in the local memory of the process we loose trace
us, the visualisation tool cannot show all events until

Main Monitor
MM

Site 1

Local Host

Site 2
alls should enable this connections (which cannot be
) or some proxy-like solutions should be introduced

onitors

 to keep the benefits of GRM, Local Monitors can be
e first one is to use one Local Monitor for each
scussed in this subsection. The second one is to use
, using them the same way as in the original GRM.
ext subsection.

. 3) a Local Monitor collects all trace data in a
omputer) and sends data to the remote Main Monitor.
etwork only when the Main Monitor requests for it.

nnection of the application processes can be avoided.
ts to the Local Monitor, which is on the same site as

s more scalable and less intrusive than the simple
p of the monitor becomes much more complex. The
remotely in a site where an application process is to
d the user have no exact information at launch time
l be executed. Moreover, the Main Monitor cannot

Application
Process

Application
Process

Application
Process

Host 1

Application
Process

Host 2 Host 1

Fig. 2. Simple monitoring architecture

From Clu

start a process in a remote
site freely. The grid manage-
ment software itself should
be prepared to launch a Local
Monitor on a site where an
application process is started.

The problem of the
firewalls can be solved if the
Local Monitor is started on
the server machine of the
site, which has connections
to the external world.
Administrators should enable
only one connection between
the Main Monitor and the serve
machines in their domain.

The code of the Local Monito
because shared memory canno
between the Local Monitor and
through sockets instead of shared

3.3 Local Monitors with The

The Local Monitor, Main Mon
used without modification if Loc
processes of the application are
solution (see Fig 4) is the same
that a Local Monitor and the Ma
not in a LAN. Thus, we can
use shared memory buffering
of trace data, less intrusive
monitoring of the processes
and more efficient transfer of
data.

The problem of this
architecture is the start-up of
the Local Monitor. The
executable of the Local
Monitor should be transferred
to the grid resource where the
application is run. The easiest
way to do this is to link the
LM executable to the process
as a library. This way we have
a single executable which conta
can be started the same way as
specific grid implementation b
ster Monitoring to Grid Monitoring Based on GRM 879
Main Monitor

MM

Site 1

Local Host

Local Monitor
LM

Local Monitor
LM
r machine instead of enabling connections from any

r and the instrumentation library should be modified
t be used between two machines. Data exchange
 the application processes should be performed now
 memory.

ir

ito
al
 s
 as
in

ins
 th
u

Application
Process

Application
Process

Application
Process

Host 1

Application
Process

Host 2 Host 1
Site 2

Fig. 3. Local Monitors at each site
 Original Functionality

r and the instrumentation library of GRM can be
 Monitors are started on all single machines where
tarted. The structure and the logical work of this
 the original GRM (Fig 1). The only difference is
 Monitor should communicate through a WAN and

Main Monitor
MM

Site 1

Local Host
 the code both of the application and the LM, and
e application. This solution is independent of any

t requires that the application can be relinked.

Application
Process

Application
Process

Application
Process

Host 1 Host 2 Host 1

Local Monitor
LM

Local Monitor
LM

Site 2

Local Monitor
LM

Fig. 4. Local Monitors on each machine

880 Zoltán Balaton et al.

However, the application has to be instrumented for monitoring with GRM, so this
can be assumed.

The start-up of this architecture in a grid environment goes in the following way.
The user launches the MM which gives back its port number. The hostname and port
number pair identifies this MM. The user starts the application that also contains the
LM linked in, giving it the MM identifier as a parameter. An application process calls
an instrumentation function at start that tries to connect to the Local Monitor through
a FIFO that contains the MM identifier in its name. If the process detects that there is
no LM listening on this FIFO yet, it forks, and becomes the Local Monitor. Its child
continues as the application process. The LM creates the shared buffer and the FIFO
through which processes can now connect to it. When an LM is created, the
application process connects to it and the LM connects to the MM. After successfully
connecting to the Main Monitor, the LM notifies the process. From this point, the
process can start generating trace events. The problem of firewalls is the same as at
the simple architecture. Here Local Monitors in the machines should be able to
connect to the remote Main Monitor.

This architecture is examined in detail in 7.

3.4 Local Monitors and Site Monitors

A fourth possible architecture (
ones. Local Monitors are used
introduced as intermediate moni
Local Monitors. Site Monitors a
Main Monitor avoiding the pr
Monitors are exactly the sam
communicating with a higher-lev

This architecture is the most s
of the site. Application
processes, Local Monitors
and executing machines are
freed from the overhead of
trace storage and long wide-
area network communications
while the load of the Main
Monitor can be controlled
more easily. The firewall
problem is also reduced to the
level of the second
architecture. Only the remote
connection between the Site
Monitor and the Main
Monitor should be enabled.
However, the start-up
problem is raised to the level
of the second architecture. The st
grid management software.
see Fig. 5) is the combination of the previous two
 as in the original GRM and Site Monitors are
toring processes between the Main Monitor and the
re used to forward data from Local Monitors to the
oblems of the firewall. With this solution, Local
e as the Local Monitors of the original GRM,
el monitoring process in the local area network.
calable for a grid. Site Monitors can store trace data

Main Monitor
MM

Site 1

Local Host

Site Monitor
SM

Site Monitor
SM
art-up of the Site Monitor should be supported by the

Application
Process

Application
Process

Application
Process

Host 1 Host 2 Host 1

Local Monitor
LM

Local Monitor
LM

Site 2

Local Monitor
LM

Fig. 5. Combination of Local and Site Monitors

From Cluster Monitoring to Grid Monitoring Based on GRM 881

4 Conclusions

A grid environment brings new requirements for monitoring. The GRM monitoring
tool of the P-GRADE graphical parallel programming environment is a good
candidate to be a standalone grid-application monitoring tool. We examined its
features and monitoring mechanisms and compared them to the requirements of a
grid. With architectural redesign and code modifications GRM can collect traces from
large distributed applications in a grid that can be analysed. In the architectural design
of GRM, scalability and problematic start-up issues in grid were considered. Since the
third structure keeps the original structure of GRM and the functionality of the
elements we have chosen this architecture to implement the first version of the grid
application monitor.

References

1. N. Podhorszki, P. Kacsuk: "Design and Implementation of a Distributed Monitor
for Semi-on-line Monitoring of VisualMP Applications", Proceedings.
DAPSYS'2000 Distributed and Parallel Systems, From Instruction Parallelism to
Cluster Computing, Balatonfüred, Hungary, pp. 23-32, 2000.

2. P-GRADE Graphical Parallel Program Development Environment:
http://www.lpds.sztaki.hu/projects/p-grade

3. É. Maillet: "Tape/PVM: An Efficient Performance Monitor for PVM
Applications. User's guide", LMC-IMAG, Grenoble, France, 1995. Available at
http://www-apache.imag.fr/software/tape/manual-tape.ps.gz

4. P. Kacsuk, G. Dózsa, T. Fadgyas, and R. Lovas: "The GRED graphical editor for
the GRADE parallel programming environment", FGCS journal, Special Issue on
High-Performance Computing and Networking, Vol. 15 (1999), No. 3, April
1999, pp. 443-452.

5. J. Chassin de Kergommeaux, É. Maillet and J-M. Vincent: "Monitoring Parallel
Programs for Performance Tuning in Cluster Environments", In "Parallel
Program Development for Cluster Computing: Methodology, Tools and
Integrated Environments" book, P.Kacsuk and J.C.Cunha eds, Chapter 6., Nova
Science, 2000.

6. Z. Balaton, P. Kacsuk, N. Podhorszki and F. Vajda: "Comparison of
Representative Grid Monitoring Tools", Reports of the Laboratory of Parallel and
Distributed Systems (SZTAKI), LPDS-2/2000, 2000. Available at:
ftp://ftp.lpds.sztaki.hu/pub/lpds/publications/reports/lpds-2-2000.pdf

7. Z. Balaton, P. Kacsuk, N. Podhorszki: "Application Monitoring in the Grid
with GRM and PROVE ", Proceedings of the ICCS'2001 (Intl. Conf. on
Computational Science), San Francisco, CA, May 28-31, 2001.

	Introduction
	Original Design Goals and Structure of GRM
	Required Modifications of GRM in a Grid Environment
	Simple Architecture
	Local Monitors as Site Monitors
	Local Monitors with Their Original Functionality
	Local Monitors and Site Monitors

	Conclusions
	References

