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Abstract. GRM was originally designed and implemented as part of the
P-GRADE graphical parallel program development environment
running on supercomputers and clusters. In the framework of the
biggest European Grid project, the DataGrid we investigated the
possibility of transforming GRM to a grid application monitoring
infrastructure. This paper presents the architectural redesign of GRM to
become a standalone grid monitoring tool.
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1 Introduction

With the emergence of computational grids it became very important to support grid-
based applications with dynamic performance monitoring infrastructure. GRM 1 and
PROVE were and still are available as parts of the P-GRADE graphical parallel
program development environment 2. GRM is a "semi-on-line monitor" that collects
information about an application running in a distributed heterogeneous system and
delivers the collected information to the PROVE visualisation tool. The information
can be either event trace data or statistical information of the application behaviour.
"Semi-on-line" monitoring means, that any time during execution all available trace
data can be requested by the user, and the monitor is able to gather them in a
reasonable amount of time. PROVE has been developed for performance visualisation
of Tape/PVM 3 trace files. It supports the presentation of detailed event traces as well
as statistical information of applications. It can work both off-line and semi-on-line,
and it can be used for observation of long-running distributed applications.

P-GRADE is a graphical programming environment integrating several tools to
support the whole life cycle of building parallel applications. It provides an easy-to-
use, integrated set of programming tools for development of general message passing
applications to be run in heterogeneous computing environments. Its main benefits are
the visual interface to define all parallel activities in the application, the syntax
independent graphical definition of message passing instructions, full support of
compilation and execution in a heterogeneous environment and the integrated use of
the debugger and the performance visualisation tool. For detailed overview of the
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tools in P-GRADE, see 4 while further information, tutorial and papers about
P-GRADE can be found at 2.

In this paper we present four possible architectural designs and related issues of the
GRM monitor for semi-on-line general application monitoring in a grid environment.
In the next Section, the original design goals and the structure of GRM are shortly
presented. In Section 3 the problems with GRM in a grid environment is discussed
and four architectures designed for grid monitoring are presented.

2 Original Design Goals and Structure of GRM

The monitoring in GRM is event-driven, both trace collection and counting are
supported. The measurement method is software tracing and the instrumentation
method is direct source code instrumentation. For a classification of monitoring
techniques, see 5. Direct source code instrumentation is the easiest way of
instrumentation. Since P-GRADE controls the whole cycle of application building,
and source code instrumentation is supported by graphics, the chosen one was a
natural option. The precompiler inserts instrumentation function calls into the source
code and the application process generates the trace events.

The main goals in the original design of GRM have been strongly related to the
P-GRADE environment. The monitor and the visualisation tool are parts of an
integrated development environment and they support monitoring and visualisation of
P-GRADE applications at source level. The monitor is portable among different
UNIX operating systems (Irix, Solaris, Linux, Tru64 UNIX, etc.) which is achieved
by using only standard UNIX programming solutions in the implementation. GRM is
a semi-on-line monitor, that is, the user can let GRM to collect the actual trace data or
statistical information about the application any time during the execution. Semi-on-
line monitoring is very useful for the evaluation of long-running programs and for
supporting debugging with execution visualisation. Both trace collection and statistics
are supported by the same monitor and by the same instrumentation of the
application. Trace collection is needed to pass data to PROVE for execution
visualisation. Statistics mode has less intrusion to the execution by generating fixed
amount of data and it supports initial evaluation of long-running applications.

For trace storage shared-memory segments have been used on each host, since
semi-on-line monitoring requires direct access to all trace data any time during the
execution. The monitor can read the shared buffer independently from the application
process, when the user asks to collect trace data. Moreover, if a process aborts its
trace data can be saved and analysed to the point of failure.

GRM consists of the following three main components (see its structure in Fig. 1):

Client Library
The application is instrumented with functions of the client. Both trace events
and statistics can be generated by the same instrumentation. The trace event
types support the monitoring and visualisation of P-GRADE programs. An
instrumented application process does not communicate outside of the host it is
running on. It places trace event records or increments counters in a shared
memory buffer provided by the Local Monitor.

Local Monitor
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A Local Monitor (LM) is running on each host where application processes are
executed. It is responsible for handling trace events from processes on the
same host. It creates a shared memory buffer where processes place event
records directly. Thus even if the process terminates abnormally, all trace
events are available for the user up to the point of failure. In statistics
collection mode, the shared memory buffer is used to store the counters and
LM is responsible for generating the final statistics data in an appropriate form.
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particular, two goals must be changed. First, general application monitoring should be
supported, not only P-GRADE-based. This also requires user defined event data
types. Second, GRM and PROVE should be standalone monitoring and visualisation
tools, that is, not part of an integrated development environment. Other design goals
(see Section 2) are unchanged. Portability remains very important, since a grid
consists of heterogeneous resources. Semi-on-line monitoring must be supported,
because a grid is a changing environment, where off-line monitoring does not help.
Both statistics and event trace collection is needed to monitor large and long running
applications that are typical in a grid. Getting trace data to the point of failure is very
important, since errors are more frequent in a grid.

The start-up of the monitoring system becomes difficult because Local Monitors
cannot be started on a host explicitly, since it is the competence of the local job-
manager on a grid resource to decide where jobs will run. This local policy cannot be
influenced. Because of this, the Main Monitor cannot start the Local Monitors as in
GRM. Instead, it should be prepared to accept connections from them.

The clock synchronisation in GRM is done through the sockets connecting Local
Monitors with the Main Monitor, see details in 1. MM performs the synchronisation
with each LM. This technique works well on clusters of workstations connected by a
LAN. In a grid environment the resources (e.g. clusters) are usually connected by
WAN links that have higher latency than the LAN used inside the resource. GRM
determines the clock offsets of each LM (running on a host at the remote grid
resource) relative to the host of the MM but the accuracy of this measurement is
limited by the latency of the WAN link. Because of this, the error of the clock-offset
measurement can be comparable to or bigger than the time intervals between events
generated at the remote resource (e.g. the start and end of a communication on the
LAN). Since there are several tools (e.g. NTP) that can be used to synchronise clocks,
this problem can be solved independently from monitoring. For this reason, GRM
does not support clock synchronisation in grid environments, instead it assumes that
the clocks are already synchronised.

There are a number of performance measurement and resource control systems
used in grid (e.g. Network Weather Service, Autopilot, NetLogger, etc.). For their
comparison see 6.

In the following subsections four different architectures of GRM are examined that
can be used in a grid environment for application monitoring.

3.1 Simple Architecture

In the simplest monitoring architecture (see Fig. 2) Local Monitors are omitted and
application processes send trace events immediately to the Main Monitor which is
waiting for trace data in a remote site. The application process can store trace records
temporarily in its local memory. However, with this architecture we loose the
following advantages of GRM.

Local buffering of trace data in GRM is done independently from the monitored
application, so the Main Monitor can collect it any time. In the simple architecture
data should be sent immediately to the remote collector process or can be buffered
locally by the application process but in this case the visualisation tool must wait until
the block of trace data have arrived. In GRM the visualisation tool can request for
trace data any time and the monitor collects data from the Local Monitor processes.
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However, the application has to be instrumented for monitoring with GRM, so this
can be assumed.

The start-up of this architecture in a grid environment goes in the following way.
The user launches the MM which gives back its port number. The hostname and port
number pair identifies this MM. The user starts the application that also contains the
LM linked in, giving it the MM identifier as a parameter. An application process calls
an instrumentation function at start that tries to connect to the Local Monitor through
a FIFO that contains the MM identifier in its name. If the process detects that there is
no LM listening on this FIFO yet, it forks, and becomes the Local Monitor. Its child
continues as the application process. The LM creates the shared buffer and the FIFO
through which processes can now connect to it. When an LM is created, the
application process connects to it and the LM connects to the MM. After successfully
connecting to the Main Monitor, the LM notifies the process. From this point, the
process can start generating trace events. The problem of firewalls is the same as at
the simple architecture. Here Local Monitors in the machines should be able to
connect to the remote Main Monitor.

This architecture is examined in detail in 7.
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4 Conclusions

A grid environment brings new requirements for monitoring. The GRM monitoring
tool of the P-GRADE graphical parallel programming environment is a good
candidate to be a standalone grid-application monitoring tool. We examined its
features and monitoring mechanisms and compared them to the requirements of a
grid. With architectural redesign and code modifications GRM can collect traces from
large distributed applications in a grid that can be analysed. In the architectural design
of GRM, scalability and problematic start-up issues in grid were considered. Since the
third structure keeps the original structure of GRM and the functionality of the
elements we have chosen this architecture to implement the first version of the grid
application monitor.
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