
Optimal Partitioning for Efficient I/O in Spatial
Databases�

Hakan Ferhatosmanoglu, Divyakant Agrawal, and Amr El Abbadi

Computer Science Department, University of California at Santa Barbara
{hakan,agrawal,amr}@cs.ucsb.edu

Abstract. It is desirable to design partitioning techniques that mini-
mize the I/O time incurred during query execution in spatial databases.
In this paper, we explore optimal partitioning techniques for spatial data
for different types of queries, and develop multi-disk allocation tech-
niques that maximize the degree of I/O parallelism obtained during the
retrieval. We show that hexagonal partitioning has optimal I/O cost for
circular queries compared to all possible non-overlapping partitioning
techniques that use convex regions. For rectangular queries, we show
that although for the special case when queries are rectilinear, rectangu-
lar grid partitioning gives superior performance, hexagonal partitioning
has overall better I/O cost for a general class of range queries. We then
discuss parallel storage and retrieval techniques for hexagonal partition-
ing using current techniques for rectangular grid partitioning.

1 Introduction

Spatial databases and Geographical Information Systems(GIS) have gained in
importance by the recent developments in information technology. In these ap-
plications, the data objects are represented as two-dimensional feature vectors,
and the similarity between objects are defined by a distance function between
corresponding feature vectors. Several index structures have been proposed for
retrieval of spatial data [4,8]. Most of these approaches are based on data parti-
tioning with a rectangular organization. Grid based file structures have been ef-
fectively used to index spatial data, and there have been several approaches based
on the grid partitioning. Because of their simplicity in hashing and mapping to
physical storage, regular equi-sized partitioning are widely used for retrieval and
storage of spatial data. A common example of such techniques is the regular
grid partitioning. One very important application of regular grid partitioning is
multi-disk declustering of spatial data. First, the data space is partitioned into
disjoint regular rectangular partitions. Then the data partitions or buckets are
allocated to multiple I/O devices such that neighboring partitions are allocated
to different disks. Performance improvements for queries occur when the buck-
ets involved in query processing are stored on different disks, and hence can
� This work was partially supported by NSF grant EIA98-18320, IIS98-17432 and
IIS99-70700.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 889–900, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



890 Hakan Ferhatosmanoglu et al.

be retrieved in parallel. Numerous declustering methods using non-overlapping
rectangular partitioning have been proposed [1,7]. Another successful applica-
tion of rectangular partitioning is the vector approximation (VA) based indexing
for multi-dimensional data [9]. The VA-file approach divides the data space into
rectangular partitions, and each data point is represented by the bit representa-
tion of the corresponding partition. In several similar applications, it is desirable
to design partitioning techniques that tile the data space without holes and over-
laps. These techniques have simple hashing schemes, and they don’t have the
problems caused by high number of overlaps between partitions which result
severe degradation in the query performance.

Minimizing the number of I/O operations in query processing is crucial for
fast response times. This cost can be reduced by reducing the expected number
of page retrievals during the execution of queries. In a range query, the pages
that may have the query result need to be retrieved from secondary storage. As
we will establish, the expected number of page retrievals directly depends on the
underlying technique that is used to organize the data set, i.e., partitioning of the
data [2]. It is therefore very important to develop partitioning techniques which
minimize the expected number of partitions retrieved by a query and hence the
number of disk accesses. It is well known that rectangles are effective for non-
overlapping partitioning. An important question to ask is whether rectangular
grid based partitioning is the optimal approach for non-overlapping partitioning
to minimize the I/O cost?

In this paper, we explore optimal partitioning techniques for different types of
queries. In particular, we show that hexagonal partitioning has optimal I/O cost
for circular queries compared to all possible non-overlapping partitioning tech-
niques that use convex regions. For rectangular queries, we show that although
for the special case when queries are rectilinear rectangular grid partitioning
gives superior performance, hexagonal partitioning has overall better I/O cost
for a general class of range queries. We also develop simple techniques for the
storage and retrieval of hexagonal partitioning by applying the techniques devel-
oped for rectangular grid partitioning. The techniques developed in this paper
considers the objectives that are crucial for multi-disk searching: i) minimizing
the number of page accesses during the execution of the query, ii) maximizing
the I/O parallelism, iii) minimizing the disk-arm movement (seek time).

In Section 2 we discuss the importance of data organization on minimizing the
I/O cost of spatial queries and summarize alternative partitioning techniques.
In Section 3, we analyze the partitioning techniques with respect to the I/O
cost of spatial queries and show the optimal partitioning technique for each
query type. Section 4 discusses techniques for storage and retrieval of hexagonal
partitioning using current techniques for rectangular grid. Section 5 includes the
final discussion and conclusions.



Optimal Partitioning for Efficient I/O in Spatial Databases 891

y1

y2

x1 x2

(a) Rectilinear

alpha

(b) Diamond

.
r

q

(c) Circular

Fig. 1. Range queries intersecting all partitions

2 Data Organization for Efficient Spatial Queries

The two most common spatial queries are range queries and similarity queries.
In a range query, the user specifies an area of interest and all data points in this
area are retrieved. In a similarity query, the query point is specified and all points
“similar” to the query point are retrieved. A popular related query is k-nearest
neighbor query. The k-nearest neighbor, k −NN , problem is defined as finding
the k nearest points to the query point q. Traditional range queries have been
specified using rectilinear queries, i.e., rectangular with sides parallel to axes. A
rectilinear range query Qr = ([a1, b1], [a2, b2]) specifies a range of values for each
dimension. The result of the query is the set of all data objects that have values
within the specified range in each dimension. More generally, a rectangular query
can be defined as a rectilinear rectangle with a rotation angle of α with respect
to the x−axis. For example, a rectilinear square range query with a rotation of
π/4 gives us a diamond query (see Figure 1(b)). A commonly used query is the
circular range query which is also called as ε-similarity query. It specifies a query
point q and and a radius r, Qc = (q, r), which defines the acceptable region of
similarity. All data objects that fall into the circle defined by the pair (q, r) are
in the answer set. It is interesting to note that range queries of different shapes
correspond to different types of similarity queries using different metrics. For
example, the circular range query corresponds to similarity in L2 metric, the
rectilinear rectangular range query corresponds to similarity in the L∞ metric
and the diamond range query corresponds to similarity in the L1 metric.

In both range and similarity queries, the pages that have the possibility to
contain a portion of the query result are retrieved as a result of the query. As
mentioned before, the spatial data objects are grouped according to their spatial
locations and they are stored as pages in physical storage. Each page represents a
spatial location in the data space. Therefore, in range queries the pages that are
intersected by a query are retrieved as a result of the query. Similarly, k −NN
queries have to retrieve all pages that intersect the circle with the query point
as the center and the distance between the query point and the k −NN point
as the radius. Even if there is a small portion of intersection of a page with the
query region, the page needs to be retrieved since it may contain relevant data.



892 Hakan Ferhatosmanoglu et al.

Is it possible to reduce this I/O cost by changing the initial page organization of
the data space? What is the best possible page organization? �QueryResultSize

PageCapacity � is
the minimum number of page accesses that is needed to answer any query on any
data sets. Although, it is not possible to develop a technique that achieves this
minimum cost for every possible range query, a careful investigation is needed
to reduce the I/O cost as much as possible. In general, assuming a uniformly
distributed data space of area 1, the optimal cost for a range query with area A
is equal to �A.p�, where p is the total number of pages. The number of pages
accessed plays an important role in the response time incurred by range queries.
The key point to minimize the I/O cost for queries depends on how data points
are organized into pages. If a query is executed in two differently organized copies
of the same data set, different numbers of pages will be retrieved depending on
the way the data-space is initially organized. For efficient queries, the underlying
organization of the data must be designed to reduce the expected number of
pages retrieved by the queries. An organization of a database is I/O optimal if
and only if it minimizes the expected number of page accesses incurred by the
queries.

Regular equi-sized partitioning are widely used for organization of spatial
data. They provide very efficient functions for hashing and mapping the parti-
tions to pages in storage. The general approach is first to tile the data space
into disjoint regular rectangular partitions and then to map each partition to a
physical page in the storage. Are there any alternative techniques that tile the
data space with non-overlapping partitions of identical shapes? It is known that
it is not possible to tile the space with regular non-overlapping identical convex
polygons with edges of more than 6 and there are only three basic tile shapes
(triangles, rectangles, and hexagons) for regular partitioning [3]. We will consider
these three basic shapes and compare their behavior under various conditions.
Equilateral triangle, square, and regular hexagon are considered for triangle,
rectangle, and hexagon respectively. They all have simple hashing properties
that can be used to map the partitions to physical storage easily. We note that,
although we consider these possible partitionings for our analysis, the optimality
results in this paper are not restricted to these shapes.

3 I/O Cost for Various Query Types

Given a query, we explore different partitioning techniques that minimize the
expected number of pages retrieved. The partitions that have to be accessed
are the ones that intersect the range query region. Therefore, we will compute
the expected number of partitions that intersect a range query region by using
the methodology of Minkowski sum, MSum [9]. In general, the Minkowski sum
of two closed regions can be considered as expanding one region by the other.
To compute the expected number of partitions that intersect a query, first the
region of a partition, which also corresponds to a page region, is enlarged by
considering the shape of the query. Suppose the partitions, which also correspond
to the pages, are square shapes of side length c and the queries are circular.



Optimal Partitioning for Efficient I/O in Spatial Databases 893

r

t t

t

t t

r

r

r

r

r

t

(a) Triangle-Circle

c

c

c

c

r r

r

r

rr

r

r

c

c c

c

(b) Square-Circle

r r

r

r

r

r
rr

r

r

r

r

s

s

s

s

s

s

s

s

s

s

s

s

(c) Hexagon-Circle

Fig. 2. Minkowski Sums w.r.t. Circles

The Minkowski sum methodology is used to compute the expected number of
partitions that intersect the circular query region as follows. The Minkowski sum
of a square page of side length c, with respect to a circular region with a radius
of r, is the enlarged object with area MSum(squarec, circler). The enlarged
object is created by moving the center of the circular query over the surface of
the square (Figure 2(b)). Therefore, it consists of all points that are either in
the square page or have a distance to the surface of the page less than r. The
points within this enlarged object correspond to the center of all possible circular
queries that intersect this page. Assuming uniform distribution, the fraction of
the area of the enlarged object to the area of the data space is the probability that
the corresponding page is being accessed, P (page). Considering the unit data
space, i.e., [0, 1]2, or simply normalizing the areas with respect to the total area,
the area of the enlarged object gives the probability of the page to be accessed.
Note that, the regions that are created by the Minkowski sum of the partitions
in the border of the two-dimensional data space are negligible when compared
to the total amount of regions created by Minkowski sums of all partitions. The
expected number of pages which are intersected by a query q is E(q) and it is the
sum of the probabilities of the pages intersected by the query. If we have regular
equi-sized partitioning, i.e., p partitions of identical shape, then the expected
number of intersected partitions by the query is p times the probability of a
page being accessed, i.e., E(q) = p·P (page). Therefore, for a partitioning scheme
that tiles the space with pages of shape s, the expected numbers of intersected
partitions for a query q of any shape is Es(q) = p · MSum(s, q), where p is
the number of partitions. For example, for a square partitioning this equation
is simply Esquare(q) = p · MSum(squarec, q). In this section, we analyze the
I/O cost performance of the partitioning techniques for range queries. We will
investigate the optimal partitioning, assuming uniform distribution, that must
be used for different conditions to minimize the I/O cost.



894 Hakan Ferhatosmanoglu et al.

3.1 I/O Cost for Circular Range Queries

To analyze the performance for circular range queries, we first compute the
Minkowski sums of triangle, square, and hexagon shapes with respect to
a circular region of radius r. Figure 2 shows the Minkowski sum regions
for triangular, square, and hexagonal pages, i.e., MSum(trianglet, circler),
MSum(squarec, circler), and MSum(hexagons, circler), respectively. The val-
ues of each edge, t, c, and s, are assigned such that the area of each triangle,
square, and hexagon partition is equal to 1/p, i.e., t2

√
3

4 = c2 = s2 3
√

3
2 = 1/p.

As can be seen from the figures, the areas for each of Minkowski sums are:
MSum(trianglet, circler) = t2

√
3

4 + 3tr + πr2, MSum(squarec, circler) =
c2 + 4cr + πr2, and MSum(hexagons, circler) = s2 3

√
3

2 + 6sr + πr2. Af-
ter substitutions we find MSum(trianglet, circler) ≈ s2 3

√
3

2 + 7.35sr + πr2,

and MSum(squarec, circler) ≈ s2 3
√

3
2 + 6.45sr + πr2. Comparing all three

equations, we find MSum(hexagons, circler) < MSum(squarec, circler) <
MSum(trianglet, circler). This result means that for circular regions the
Minkowski sum of a hexagon is always less than the Minkowski sum of a
square and the Minkowski sum of a triangle. Substituting this result into the
equation for Es(q), we finally find Ehexagon(circler) < Esquare(circler) <
Etriangle(circler). The expected number of partitions intersected by a circu-
lar query in a hexagonal grid is always less than the one in a square grid and a
triangular grid. This result simply tells us that if the sole or dominant types of
the queries in a spatial database have circular shapes, then hexagonal partition-
ing of the data space will give better results in terms of the number of the page
accesses, i.e., I/O operations, occurred during query.

Indeed, we will now generalize the superiority of hexagonal partitioning over
other possible approaches and prove that hexagonal partitioning is optimal,
among all non-overlapping partitioning techniques of equal area convex regions,
with respect to the number partitions retrieved as a result of a circular query of
any size.

Lemma 1. For a convex polygon with a perimeter of length M , the Minkowski
Sum with respect to circular regions of radius r is:

MSum(polygon, circler) = area(polygon) +M · r + πr2 (1)

Proof. For a convex polygon of n sides, the MSum region with respect to a circle
of radius r contains the polygon itself, plus n rectangles with sides r and the
corresponding side of the polygon, plus n pies with an angle of Γi, for 1 ≤ i ≤ n.
The area of the n rectangles sum up to M · r, where M is the perimeter of the
polygon. Each Γi is equal to 180 − Θi degrees, where Θi is the corresponding
angle in the polygon. Since the summation of all these n angles of pies is 360
degrees,

∑n
1 (180−Θi) = 180n− 180(n− 2) = 360, they sum up to a full circle.



Optimal Partitioning for Efficient I/O in Spatial Databases 895

Lemma 2. Minimizing the perimeter of the shape that is used for partitioning
also minimizes the expected number of partitions intersecting the circular query.

Proof. In Equation 1, since r does not change with partitioning and
area(polygon) = 1/p, the only value that makes a difference is the perimeter M
that is used in the pages. This is true for all possible r values that a circular
query can take.

Minimizing the perimeter of each partition minimizes the total boundary
length of the partitioning. The total boundary of the partitions is defined as the
length of the boundaries that are used to divide the data-space into partitions [3].
If each non-overlapping partition uses smaller perimeters to cover larger areas,
the total lengths of boundaries of these partitions are also minimized [3]. What is
the optimal way of minimizing the perimeter and the total boundary? Recently,
it has been proved that any partitioning of the plane into regions of equal area has
perimeter at least that of the regular hexagonal honeycomb tiling [5]. This has
been known as the classical honeycomb observation and has been the motivation
for numerous interesting applications. The surprising geometry of the beehives is
the best that could be done for their major purpose. In 1743, Colin Mac Laurin
summarizes the nice property of the beehives as follows: “The geometry of the
beehive supports least wax for containing the same quantity of honey, and which
has at the same time a very remarkable regularity and beauty, connected of
necessity with its frugality” [6].

By Lemma 1 and 2 we conclude that a partitioning that minimizes the total
boundary also minimizes the expected number of partitions retrieved as a result
of a circular query. Since hexagon partitioning minimizes the total boundary
compared to all possible equal area partitioning techniques, it also minimizes the
expected number of partitions retrieved as a result of a circular query. Hence,
we have the following theorem.

Theorem 1. Hexagonal partitioning is I/O optimal for circular queries (among
all non-overlapping partitioning techniques using equal area convex regions).

3.2 I/O Cost for Square Range Queries

In this section, we analyze the I/O cost for square range queries. We start with
rectilinear square query analysis on the three basic partitioning discussed in this
paper. Then, we analyze a more general class of square range queries where the
sides of the range query do not have to be parallel to the axes. We establish that
hexagonal partitioning has better average performance than square grid for the
general class of square range queries.

Rectilinear Square Range Queries For the analysis of rectilinear square
range queries, we first compute the Minkowski sums of three shapes and a rec-
tilinear square region. Similar to the previous analysis we find the Minkowski



896 Hakan Ferhatosmanoglu et al.

Sum values for each shape as [3]:

Msum(squarec, rectilineara) =
3
√

3
2

s2 + 2

√
3
√

3
2

as+ a2,

MSum(hexagons, rectilineara) =
3
√

3
2

s2 + (2 +
√

3)as+ a2,

MSum(trianglet, rectilineara) =
3
√

3
2

s2 + (
3
√

2
2

+
√

6)as+ a2.

Comparing these three equations, we find MSum(squarec, rectilineara) <
MSum(hexagons, rectilineara) < MSum(trianglet, rectilineara), and there-
fore,
Esquare(rectilineara) < Ehexagon(rectilineara) < Etriangle(rectilineara). We
conclude that for rectilinear square queries, the expected number of intersected
partitions in a square grid is less than the one in a hexagonal grid and a trian-
gular grid. The technical report of this paper contains a detailed analysis of this
case and also a similar analysis of the rectilinear rectangular range queries [3].

General Square Range Queries In the previous section, we focused on
rectilinear square range queries, but queries can take any orientation and are
not restricted to have sides parallel to the axes, e.g., as in diamond queries.
In this section, we analyze general square queries with any orientation. We
will compare the hexagonal and square partitioning by starting to compute
the Minkowski Sums for square and hexagon tiles and general square region.
The square region has an angle α with the x − axis. The examples of spe-
cial cases include the diamond query, i.e., α = π/4, and the rectilinear square
query, i.e., α = 0. In this section, for simplicity in MSum, we assume that
the area of each partition is 1, i.e., c2 = s2 3

√
3

2 = 1. Figure 3 illustrates
the case when α = π/4. Because of the symmetric property of MSum, i.e.,
MSum(hexagons, squarea) = MSum(squarea, hexagons), for simplicity we il-
lustrate MSum(squarea, hexagons) in Figure 3.

The MSum of a square page with respect to a square query with an angle
of α with the x−axis is:

MSum(square1, squarea) = 1 + a2 + 2
√

2a · sin(π/4 + α) (2)

where 0 ≤ α ≤ π
4 . Similarly, the MSum of a hexagon with respect to a square

with a rotation angle of α, is computed as MSum(hexagon, squarea) = a2 +1+
2(S1 + S2), where S1 = as · sin(π

3 + α) and S2 = as · sin(π
2 − α). Therefore,

MSum(hexagon, squarea) = a2 + 1 + 2as(sin[
π

3
+ α] + sin[

π

2
− α]) (3)

where 0 ≤ α ≤ π
6 .

The reason that the rotation angle α varies between 0 and π/6 in the hexagon
and between 0 and π/4 in the square is that the symmetry is captured within



Optimal Partitioning for Efficient I/O in Spatial Databases 897

c

c

c

c c

a/2

a/2

c

c

a.sqrt(2)/2

c

(a) Square-Square

a aa

60+alpha

90-alpha

a

a

a

a

a

S2 S2

S1

S1

s
s

s

s
s

s s

s
s

s

s

s

s s

s
s

(b) Square-Hexagon

Fig. 3. Minkowski Sums w.r.t. Squares (with any orientation α)

these angles. There is no need to compute the other angles, because rotating an
angle of β not in this range gives the same result as rotating with an angle of α =
β mod π/6 for a hexagon and α = β mod π/4 for a square. For majority of the
angles which correspond to different query types, including the diamond query
which represents similarity in L1 metric, hexagonal partitioning achieves better
performance results by requiring fewer I/O accesses. The technical report [3] has
more discussion of the performance behavior of both partitioning under various
angles.

Since we have the general formula for the square query specified with a center
and an angle, we can compute the expected number of partitions intersected by
such queries for both square and hexagonal grid. By integrating all such possible
queries and computing the expected number by taking the uniform average,
we can compute the expected MSum, EMSum, of each technique. As shown
before, the comparison of MSums will give the comparison of techniques with
respect to the expected number of partitions intersected by a random square
query. Integrating Equations 2 and 3 for all possible values of α, we compute the
expected MSum for each partition as. For the case of square,

EMSumsquare (squarea) =
4
π

∫ π/2

π/4

(MSum(square1, squarea)

= a2 + 1 +
8
√

2a
π

∫ π/2

π/4

sinαdα,

EMSumsquare (squarea) = 1 + a2 +
8a
π
. (4)

Similarly, for hexagon,

EMSumhexagon
(squarea) = 1+a2 +

2as · 6
π

∫ π/6

0

[sin(π/3+α)+sin(π/4−α)]dα.



898 Hakan Ferhatosmanoglu et al.

EMSumhexagon
(squarea) = 1 + a2 +

12as
π

≈ 1 + a2 +
7.44a
π

(5)

where s ≈ 0.62 since we assumed the area of the hexagon as 1, i.e., s2 3
√

3
2 = 1.

Comparing Equations 4 and 5, we find EMSumhexagon
(squarea) <

EMSumsquare(squarea). Hence, we conclude that the hexagonal partitioning min-
imizes the expected number of partitions intersected by a square query with any
orientation α, compared to the square grid partitioning. The analysis can be
easily extended for rectangular queries.

4 Retrieval and Storage of Hexagonal Partitioning

We have shown that the hexagonal partitioning is effective for range queries,
and hence can be used as an effective alternative for regular grid partitioning.
Traditional retrieval methods developed for single disk and single processor en-
vironments may be ineffective for the storage and retrieval of spatial data in
multiprocessor and multiple disk environments. It is essential to develop tech-
niques that are optimized for such environments. In this section, we discuss
multi-disk organization for hexagonal partitioning, i.e., declustering of buckets
to multiple disks and clustering each bucket within each disk. For lack of space,
here we just describe how to develop a simple hash function for regular hexag-
onal partitioning, and we refer the technical report of this paper for a complete
discussion of declustering and clustering functions. In particular, it discusses how
techniques for rectangular grid partitioning can be adapted for hexagonal parti-
tioning. It also proves that the number of devices needed for optimal declustering
of hexagonal partitions is less than the rectangular grid partitions [3].

The hashing function finds the corresponding hexagonal partition of a given
data point and is needed for both declustering and clustering purposes. Hash
functions for rectangular partitioning are very simple and well-known. We will
use rectangular hashing in the development of the hexagonal hashing. We divide
the data space logically into a regular grid of rectangles with sides (s, h), where s
is the side length of the hexagonal partitions and h = s

√
3

2 (See Figure 4). A
hexagonal partition is defined by H(i, j), where i is the row number and j is the
column number of the partition. Similarly, a (logical) rectangular cell is defined
by G(i, j). Obviously, the number of rectangular cells is more than the number of
hexagonal cells. Depending on the location, some of the cells in this regular grid
fall entirely into a single hexagonal partition, and some fall into two hexagonal
partitions. For example, in Figure 4, G(0, 0) is entirely in H(0, 0). Therefore, if
a point is found to be in G(0, 0), it is also in H(0, 0). On the other hand G(1, 1)
falls mostly in H(1, 1) but also in H(0, 0). Each grid cell can be mapped to
one or two hexagonal partitions. Therefore, given a data point we can hash the
point using hashing on regular grid and find the corresponding hexagon(s). If
there are two hexagons an additional simple check (whether the point is in the
first hexagon) is needed to identify the hexagon where the point is located. The
different cases for mapping of rectangular grid cells to hexagonal partitions are



Optimal Partitioning for Efficient I/O in Spatial Databases 899

G(0,1) G(0,2)

G(2,0)

G(1,0) G(1,1)

s

h

s

G(0,0)

H(0,2)
H(0,1)

H(0,0)

H(1,0)

Fig. 4. Hexagonal hashing us-
ing grid

Fig. 5. Mapping of rectangular grid cells to
hexagonal partitions

shown in Figure 5. A grid cell G(i, j) is mapped to hexagonal partitions with a
simple analysis on the value of (i mod 2) and (j mod 3). For example, grid cell
G(2m, 3n), i.e., i mod 2 = 0 and j mod 3 = 0, is mapped to H(m, 2n). Given
a point in G(2m, 3n), e.g., m = 2 and n = 1 so G(4, 3), it is located only in
H(m, 2n) (see Figure 5), e.g., H(2, 2).

5 Discussion

In this paper, we explored optimal partitioning techniques for different types
of queries on spatial data sets. We focused on partitioning techniques that tile
the data space without holes and overlaps, and therefore have simple hashing
schemes. We discussed the possible cases and computed the expected number
of pages retrieved for circular and rectangular queries. We showed that hexago-
nal partitioning has optimal I/O cost for circular queries over all possible non-
overlapping partitioning techniques that use convex regions. We also show that
hexagonal partitioning has less I/O cost than the traditional grid for the gen-
eral class of square queries. It is, however, interesting to note that for the special
case of rectilinear queries, the traditional grid partitioning provides superior per-
formance. This could be explained due to the symmetric relationship between
the rectilinear square query and the rectilinear square page. This may also in-
dicate why for traditional relational database applications only rectangular grid
partitioning were considered [1,7]. In a relational database, a select operation
specifies a range in each dimension or attribute which corresponds to a recti-
linear rectangle. Novel spatial applications need more general query structures
with queries of any orientations. Our results indicate that for such applications,
a hexagonal partitioning of the space should be used. The hexagonal partition-
ing is shown to be effective for circular and rectangular queries. It can be used
as an effective alternative for regular grid partitioning with no major changes



900 Hakan Ferhatosmanoglu et al.

on the existing algorithms. For instance, a widely used application of regular
grid partitioning is declustering where non-overlapping partitions are created
and distributed to multiple disks for efficient I/O. We showed how to adapt
the techniques that were developed for regular grid partitioning to hexagonal
partitioning and develop techniques for storage and retrieval of hexagonal parti-
tioning in multi-disk environments. The details of these techniques can be found
in the technical report of this paper [3]. The techniques developed in this paper
consider the objectives that are crucial for multi-disk searching: i) minimizing
the number of page accesses during the execution of the query, ii) maximizing
the I/O parallelism, iii) minimizing the disk-arm movement (seek time). We plan
to extend our techniques to support efficient retrieval of clustered data sets also
in the presence of frequent updates.

References

1. H. C. Du and J. S. Sobolewski. Disk allocation for cartesian product files on
multiple-disk systems. ACM Transactions of Database Systems, 7(1):82–101,
March 1982. 890, 899

2. H. Ferhatosmanoglu, D. Agrawal, and A. El Abbadi. Concentric hyperspaces and
disk allocation for fast parallel range searching. In Proc. Int. Conf. Data Engi-
neering, pages 608–615, Sydney, Australia, March 1999. 890

3. H. Ferhatosmanoglu, D. Agrawal, and A. El Abbadi. Optimal partitioning for
spatial data. Technical report, Comp. Sci. Dept., UC, Santa Barbara, December
2000. 892, 895, 896, 897, 898, 900

4. V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing
Surveys, 30:170–231, 1998. 889

5. Thomas C. Hales. The honeycomb conjecture.
available at http://xxx.lanl.gov/abs/math.MG/9906042, June 1999. 895

6. Thomas C. Hales. Historical background on hexagonal honeycomb.
http://www.math.lsa.umich.edu/ hales/countdown/honey/hexagonHistory.html,
March 2000. 895

7. S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Cyclic allocation
of two-dimensional data. In International Conference on Data Engineering, pages
94–101, Orlando, Florida, Feb 1998. 890, 899

8. H. Samet. The Design and Analysis of Spatial Structures. Addison Wesley Pub-
lishing Company, Inc., Massachusetts, 1989. 889

9. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In Proceedings of
the Int. Conf. on Very Large Data Bases, pages 194–205, New York City, New
York, August 1998. 890, 892


	Optimal Partitioning for Efficient I/O in Spatial Databases
	Introduction
	Data Organization for Efficient Spatial Queries
	I/O Cost for Various Query Types
	I/O Cost for Circular Range Queries
	I/O Cost for Square Range Queries
	Rectilinear Square Range Queries
	General Square Range Queries


	Retrieval and Storage of Hexagonal Partitioning
	Discussion


