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Abstract. We present the design and initial implementation of a
problem-solving environment that values industrial investment projects.
We use the contingent claim, or real option, valuation method, which
views a project as a claim to future cash flows which are dependent on
underlying stochastic factors, such as the market price of a produced
commodity. The problem-solving environment enables the user to use
domain and mathematical level constructs to specify the nature of the
project and the stochastic behaviour of underlying factors. Meaning pre-
serving symbolic rewrite rules transform these specifications into problem
representations that are suitable for numerical solution. The transformed
problem representations are then combined with components implement-
ing parallel algorithms in order to compute solutions.
The aim of this approach is to benefit strategic industrial decision-making
by enabling high-level and flexible problem formulation and by using high
performance computational resources.

1 Introduction

Contingent claim modelling, or the Real Option method, is the use of methods
from stochastic mathematics to value contracts or investments whose value is
contingent on the uncertain future state of the world. It is regarded as one of
the most general and sophisticated investment valuation methods applicable to
a broad class of industrial investment projects. These methods were pioneered in
the financial field, for the valuation and risk management of financial derivatives,
but are now becoming popular in a wide range of other industrial contexts [1,10].
Prime examples are investment decision making for oil and gas wells and for the
development and testing of new medicines in the pharmaceutical industry [10].

The basic method is to model the system on which the claim is contingent
as a stochastic process and then find a functional relationship between the value
of the claim and the state of the underlying system throughout a given period
of time. This involves the use of stochastic and partial differential equations,
dynamic programming and optimal stopping theory. Suitable numerical meth-
ods to solve these problems are finite differences, lattice methods and Monte
Carlo simulation [11]. There exists a vast literature on these techniques, both
mathematical and numerical, yet generating an efficient method for a particular
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problem, on a particular architecture, remains a serious challenge, due to the
computational and software complexity.

There are significant technical and practical challenges to the computer im-
plementation of this methodology. The algorithms required for contingent mod-
elling are computationally intensive, involving the solution of high dimensional
partial differential equations and/or stochastic simulations. Efficient algorithms
must be selected and implemented, on a problem by problem basis. The cost of
employing expert mathematicians with first class programming skills for model
implementation is very high and increases software development costs. Audit-
ing and validation of contingent claims systems are mandatory, but notoriously
difficult when programs are hand-coded and dynamically updated.

Therefore the overall objective is to facilitate rapid development of transpar-
ent and theoretically sound investment project valuation programs delivering
real time results using advanced hardware, algorithms and software techniques.
This is achieved by allowing users to specify models naturally and easily at the
mathematical level and by using symbolic rewrite rules and component technol-
ogy to automatically construct solution code.

2 Overview of Environment

In order to simplify and structure the generation of solution code from specifi-
cations we generate components representing views of the problem at different
levels of abstraction: the domain level, the mathematical level and the numerical
level. Such views are often used in PSEs: for example see Gallopoulos [2]. At the
domain level the user specifies the project in terms of its contingent cash flows.
These define the profit rate function Π(t, d, X) which is a function of t, time, d,
the decision variables of the project management, and X the random underlying
factors. Components of d may be the capacity of machinery employed, whether
or not to suspend production and so on. Components of X may be the mar-
ket price of output or input factors, or macroeconomic variables that influence
market prices.

We assume the project has a finite horizon, T. The objective of the man-
agement is then to maximise the expected profit, discounted over time, of the
project over its lifetime:

max
d∈D

E[
∫ T

0

e−rsΠ(s, d, X)ds] (1)

where D is the space of allowable decisions, r is an appropriate continuously com-
pounded interest rate and expectation is taken using a risk-neutral probability
measure. Alternative utility based formulations are possible when the cash flows
of the project cannot be replicated by trading in market instruments, i.e. when
the market is incomplete (see Henderson and Hobson [3]). This is a stochas-
tic control problem, and its relation to the non-linear Hamilton-Jacobi-Bellman
PDE is discussed in Oksendal [9]. The mathematical treatment of various for-
mulations of contingent claim problems are discussed in Lund and Oksendal [8].
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We construct a C++ component to represent the project, which has as its
data members the specified decision variables d, the random underlying factors X
and as a member function the profit function Π . Note that at this point we have
not yet defined the stochastic behaviour of X . This is because often the user may
wish to try out various different stochastic models, and over time may change
his or her view of which model is most appropriate. The domain level C++
component is independent of model, and thus need not change when the model
or its numerical implementation changes.

A stochastic model for X is specified using stochastic differential equations
(SDEs). For this we have defined notation in Mathematica. Once the SDE is rep-
resented in this way we can apply symbolic transformations that we have written
in Mathematica. The symbolic transformations encode results from stochastic
analysis, such as the Ito formula and Girsanov’s theorem [9], and results from
contingent claim modelling theory. Thus we automatically formulate the stochas-
tic control problem defined in equation (1) with the project defined profit func-
tion and model defined SDEs substituted appropriately. A second set of symbolic
rewrite rules are used to approximate the problem for numerical solution. For
example the continuous time SDEs may be discretised in order to be used in a
Monte Carlo simulation.

The symbolic transformations applied to the SDE model result in a C++
model component. This is combined with the C++ project component and with
predefined parallel algorithm components to form a computational component
solving the specific problem. The algorithm components are designed to ab-
stract common patterns of parallel behaviour in stochastic modelling, such as
time stepping over a distributed spatial grid, updating discretely sampled vari-
ables across processors, combining results from independent paths of a stochastic
variable calculated on separate processors. As such they support a wide class of
algorithms when combined with sequential algorithms, such as linear system
solvers and random number generators. This facilitates the rapid construction
of new algorithms, such as the Pseudospectral method, by re-using existing com-
ponents. The code formed by composing algorithm components and solvers is
re-usable in other applications. Note that the re-use of financial algorithmic code
is widespread in practise: perhaps the best example is the use of sophisticated
methods for constructing discount factor curves from liquid traded instruments,
which are used in almost every derivative valuation.

3 Conclusion

Contingent claim valuation is an important commercial area that presents com-
putationally intensive and mathematically interesting problems. It is an area
that is eminently suitable for a problem-solving environment which generates
software that utilises high performance computers and allows end-users to com-
pute solutions from high level specifications. Related work by Kant et al. [6,7] and
Pantazopoulos and Houstis [5] has concentrated on financial contingent claims
and finite difference methods. We build on such research, focussing on the more
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general and more complicated area of industrial project valuation, and utilis-
ing a wider range of solution techniques. This paper presents an overview of our
design and initial implementation and indicates the direction of further research.

We have implemented a set of symbolic transformations and using these
have constructed several stochastic model components. Components for par-
allel simulation and sequential finite difference and pseudospectral algorithms
have also been built. We have demonstrated the effectiveness of the design
through the construction of computational components for exotic financial con-
tingent claims and are presently working on extension to more complex indus-
trial project valuation problems. For more material on this research please see
http://www.doc.ic.ac.uk/~fob1/project.html .
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