
The Tuning Problem on Pipelines1

Luz Marina Moreno, Francisco Almeida, Daniel González, Casiano Rodríguez

Dpto. Estadística, I. O. y Computacion, Universidad de La Laguna,
La Laguna, Spain

Abstract.. Performance analysis and prediction is an important factor
determining the efficiency of parallel programs. Considerable efforts have been
made both in pure theoretical analysis and in practical automatic profiling.
Unfortunately, contributions in one area seem to ignore the results of the other.
We introduce a general performance prediction methodology based on the
integration of analytical models and profiling tools. According to this approach
we have developed a tool that automatically solves the prediction of the
parameters for optimal executions of parallel pipeline algorithms. The accuracy
of the proposal has been tested on a CRAY T3E for pipeline algorithms solving
combinatorial optimization problems. The results obtained suggest that the
technique could be successfully ported to other paradigms.

1 Introduction

One disappointing contrast in parallel systems is between the peak performance of the
parallel systems and the actual performance of parallel applications. Performance
prediction is important in achieving efficient execution of parallel programs, since it
allows to avoid the coding and debugging cost of inefficient strategies. Most of the
approaches to performance analysis fall into two categories: Analytical Modeling and
Performance Profiling.

Analytical methods use models of the architecture and the algorithm to predict the
program runtime and the analysis can be independent from the target architecture.
Parallel performance analysis typically studies the sensitivity of application
performance as a function of the system size and problem size. Profiling may be
conducted on an existing parallel system to recognize current performance
bottlenecks, correct them, and identify and prevent potential future performance
problems.

Currently, the majority of performance metrics and tools devised for performance
evaluation and tuning rarely provide predictions of performance for executions that
have not been measured. Many projects have been developed to create trace files of

1 The work described in this paper has been partially supported by the Spanish Ministry of

Science and Technology (CICYT) TIC1999-0754-C03.

{falmeida,dgonmor,casiano}@ull.es

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 117-121, 2001.
c Springer-Verlag Berlin Heidelberg 2001

events with associated time stamps and then examine them in post-mortem fashion by
interpreting them graphically. The ability to generate trace files automatically is an
important component of many tools like PICL [2], Dimemas [3], Kpi [1].

Although much work has been developed in Analytical Modeling and in Parallel
Profiling. We claim that to obtain automatic and effective practical tools with
predictive ability, both fields should be integrated. When executing an algorithm, the
user should know the analytical model and provide the complexity analytical formula
of the algorithm implemented. According to this formula, the profiler could compute
the parameters needed by this formula for the performance prediction and use them
on the optimal execution of the algorithm.

In section 2 we formalize the General Tuning Problem and propose a generic
methodology to approach it. In section 3 we apply this technique to the Pipeline
Paradigm. We have extended the La Laguna Pipeline tool, llp [4], with automatic
profiling facilities. The new system measures the relevant code sections, finds the
constants involved, minimizes the complexity function and finds the optimal
parameters for the execution on the current input and architecture. The feasibility of
the technique and its accuracy has been contrasted over pipeline algorithms for
combinatorial optimization problems.

2 The Problem and the Methodology

As is common in Computability Theory, any algorithm A determines a function FA

from an input domain D to an output domain. Usually the input domain D is a
cartesian product D = D1x...xDn , where Di is the domain for the i-th parameter

FA : D = D1x...xDn ⊂ ∑*
�

 ∑*
such that FA(z) is the output value for the entry z belonging to D. This algorithm A,
when executed with entry z on a machine M, spends a given execution time, denoted
TimeM(A(z)). In most cases this TimeM(A(z)) function can be approximated by an
analytical Complexity Time formula CTimeM(A(z)). We assume that CTimeM(A(z))
represents with enough accuracy the actual function time TimeM(A(z)).

We will classify the parameters D1x...xDn of FA into two categories � (� comes for
tuning parameters) and I (for true Input parameters).

We define that x ∈Di is a “tuning parameter”, x ∈ � if and only if, occurs that x
has only impact in the performance of the algorithm but not in its output. We can
always reorder the tuning parameters of A, to be the first ones in the algorithm:�

 = D1x...xDk and I = Dk+1x...xDn

With this convention is true that FA(x, z) = FA(y, z) for any x and y∈ � , but, in
general, TimeM(A(x, z)) ≠ TimeM(A(y, z)).

The “Tuning Problem” is to find x0 ∈ � such that,
CTimeM(A(x0, z)) = min { CTimeM(A(x, z)) /x∈ � } (1).

118 Luz Marina Moreno et al.

void f() {
 Compute(body0);
 i = 0;
 While(i < M) {
 Receive();
 Compute(body1);
 Send();
 Compute(body2, i);
 i++
 }
}

Fig. 1. Standard loop on a pipeline
algorithm.

The general approach that we propose to solve the tuning problem is:

1. Profiling the execution to compute the parameters needed for the Complexity
Time function CTimeM(A(x, z)).

2. Compute x0∈ � such that minimizes the Complexity Time function
CTimeM(A(x, z)).

3. At this point, the predictive ability of the Complexity Time function can be
used to predict the execution time TimeM(A(z)) of an optimal execution or to
execute the algorithm according to the tuning parameter 	 .

3 The Pipeline Tuning Problem

 We will restrict our study to the case where the
code executed by every processor of the pipeline
is the M iteration loop of figure 1. In the loop
that we consider, body0 and body1 take constant
time, while body2 depends on the iteration of the
loop. This loop represents a wide range of
situations, as is the case of many parallel
Dynamic Programming algorithms [4].

The virtual processes running this code
must be assigned among the p available
processors following a mixed block-cyclic
mapping on a one way ring topology. The grain
G of processes assigned to each processor is the
second tuning parameter to ponder. Buffering
data reduces the overhead in communications but can introduce delays between
processors increasing the startup of the pipeline. The size B of the buffer is our third
tuning parameter.

The Analytical Model and the Pipeline Tuning Solver

The optimal tuning parameters (p0, G0, B0)∈
 = { (p, G, B) / p ∈ � , 1 ≤ G ≤ N/p, 1
≤ B ≤ M} must be calculated assumed that the constants characterizing the
architecture and the constants associated to the algorithm have been provided. As the
Analytical Model we will follow the general model presented in [4].

In this model, the time to transfer B words between two processors is given by
β + τ B, where β is the message startup time and τ represents the per-word transfer
time. An external reception is represented by (βE) and an internal reception by (βI),
including the time spent in context switching. The variables t0, t1, t2i respectively
denote the times to compute body0, body1 and body2 at iteration i.

119The Tuning Problem on Pipelines

The startup time between two processors Ts includes the time needed to produce
and communicate a packet of size B
Ts = t0*(G - 1) + t1 * G * B + G*Σi = 1, (B-1) t2i + 2*βI * (G - 1)* B + βE * B + β + τ *B

Tc denotes the whole evaluation of G processes, including the time to send M/B
packets of size B:
Tc = t0*(G - 1) + t1*G*M + G*Σi = 1, M t2i + 2*βI *(G - 1)*M + βE*M + (β + τ*B)* M/B

For a problem with N stages on the pipeline (N virtual processors) and a loop of
size M (M iterations on the loop), the execution time is determined by:�
 � � � � � � � � � �

 Ts * (p - 1) + Tc * N/(G*p), Ts * (N/G – 1) + Tc}
with 1 ≤ G ≤ N/p and 1 ≤ B ≤ M. Ts * (p-1) holds the time to startup processor p and
Tc * N/(G*p) is the time invested in computations after the startup. The tuning
parameter is " = (p, G, B) and the input parameter is I = (N, M, t0, t1, t2).

The La Laguna Pipeline tool, llp, enrolls a virtual pipeline into a simulation loop
according to the mapping policy specified by the user. This policy is determined by
the grain parameter, G. llp also provides a directive to pack the data produced on the
external communications. The directive establishes the number of elements B to be
buffered. We have instrumented llp to solve automatically the Pipeline Tuning
Problem. The profiling step runs sequentially just one stage of the pipeline so that the
whole set of input parameters is known in advance. The minimization function for the
analytical model supplying the parameters for an optimal execution is then applied.

To solve the tuning problem the input parameters I = (N, M, t0, t1, t2) must be
known before the minimization function be called. Given that N and M are provided
by the user, (t0, t1, t2) must be computed for each instance. Since the computations on
the pipeline code (fig 1) are embedded into two llp-communications calls, during the
profiling phase, these llp routines are empty and just introduce timers.

Computational Results

To contrast the accuracy of the model we have applied it to estimate (p0, G0, B0) for
the pipeline approach on the dynamic programming formulation of the knapsack
problem (KP) and the resource allocation problem (RAP). The machine used is a
CRAY T3E providing 16 processors. For the problems considered, we have
developed a broad computational experience using llp. The computational experience
has been focused to finding experimentally the values (p0, G0, B0) on each problem.
The tables denote the optimal experimental parameters as G-Real, B-Real. These
were found by an exhaustive exploration of the GxB search space. Best Real Time
denotes the corresponding optimal running time. The running time of the parallel
algorithm for parameters (G0, B0) automatically calculated solving equation (1) is
presented in column Real Time. The tables also show the error made ((Best Real Time
- Real Time) / Best Real Time) by considering the parameters automatically provided
by the tool. The very low error made with the prediction makes the technique suitable
to be considered for other parallel paradigms.

120 Luz Marina Moreno et al.

4 Conclusions

We have presented a formal definition of the General Tuning Problem and
proposed a generic methodology to approach it. A special case for Pipelines has been
approached. We have extended the La Laguna Pipeline tool with automatic profiling
facilities to solve the Tuning Problem for Pipelines. The feasibility of the technique
and its accuracy has been contrasted on combinatorial optimization Problems on a
CRAY T3E.

References

1. Espinosa A., Margalef T., Luque E.. Automatic Performance Evaluation of Parallel
Programs. Proc. Of the 6th EUROMICRO Workshop on Parallel and Distributed Processing.
IEEE CS. 1998. 43-49.

2 Geist A., Heath M., Peyton B., Worley P.. PICL: Aportable Instrumented Communications
Lybrary, C Reference Manual. Technical Report TM-11130. Oak Ridge National
Laboratory. 1990.

3. Labarta J., Girona S., Pillet V., Cortes T., Gregoris L.. Dip: A Parallel Program Development
Environment. Europar 96. Lyon. August 1996.

4. Morales D., Almeida F., Moreno L. M., Rodríguez C.. Optimal Mapping of Pipeline
Algorithms. EuroPar 2000. Munich. Sept. 2000. 320-324

Table 1. (G
0
, B

0
) prediction.

P G0 B0 Real Time G-Real B-Real Best Real Time Error
Knapsack Problem (KP12800)

2 10 3072 138.61 20 5120 138.24 0.0026
4 10 1536 70.69 20 1792 69.47 0.017
8 10 768 35.69 20 768 35.08 0.017
16 10 256 18.14 10 768 17.69 0.025

Resource Allocation Problem (RAP1000)
2 2 10 74.62 5 480 70.87 0.053
4 2 10 37.74 5 160 36.01 0.048
8 2 10 19.26 5 40 18.45 0.044
16 2 10 10.06 5 40 9.76 0.031

121The Tuning Problem on Pipelines

	Introduction
	The Problem and the Methodology
	The Pipeline Tuning Problem
	The Analytical Model and the Pipeline Tuning Solver
	Computational Results

	Conclusions
	References

