
Exploiting Unused Time Slots in List Scheduling

Considering Communication Contention

Oliver Sinnen and Leonel Sousa

Universidade Técnica de Lisboa, IST / INESC-ID
Rua Alves Redol 9, 1000 Lisboa, Portugal

{oliver.sinnen,las}@inesc.pt

Abstract. Static scheduling is the temporal and spatial mapping of a
program to the resources of a parallel system. Scheduling algorithms use
the Directed Acyclic Graph (DAG) to represent the sub-tasks and the
precedence-constraints of the program to be parallelised. This article pro-
poses an extention to the classical list scheduling heuristic that allows
to schedule DAGs to arbitrary processor architectures considering link
contention. In this extension, communication links are treated as shared
resources likewise the processors and we improve the extended algorithm
by exploiting unused time slots on the resources. The algorithm is ex-
perimentally compared to the existing heuristics BSA and DLS.

1 Introduction

The scheduling of a DAG (or task graph) is in its general form an NP-hard
problem [1], i.e. an optimal solution cannot be calculated in polynomial time
(unless NP = P ). Many scheduling heuristics for near optimal solutions have
been proposed in the past, e.g. surveys [2,3], following different approaches. Early
scheduling algorithms did not take communication into account, but due to the
increasing importance of communication for parallel performance, the consider-
ation of the communication was included in the scheduling algorithms recently
proposed. Most of these algorithms assume the target system as a homogenous
system with fully connected processors and contention free communication re-
sources. Very few algorithms model the target system as an arbitrary processor
network and incorporate contention in the scheduling heuristic [4,5]. In [6], how-
ever, Macey and Zomaya showed that the consideration of link contention is
significant to produce an accurate and efficient schedule.

This article presents an extension to the classical list scheduling heuristic [1]
for scheduling on arbitrary processor networks with the consideration of link
contention. The enhancement of the heuristic is achieved by treating communi-
cation links as shared resources likewise the processors. The new algorithm is
further improved by exploiting unused time slots.

2 Models and Definitions

The DAG, as a graph theoretic representation of a program, is a directed and
acyclic graph, where the nodes represent computation and the edges communi-

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 166–170, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Exploiting Unused Time Slots 167

cation. A weight w(ni) assigned to a node ni represents its computation cost
and a weight cij assigned to an edge eij represents its communication cost.

The topology of an arbitrary target system is represented as an undirected
graph, where a vertex Pi represents a processor and an undirected edge Lij

represents a communication link between the incident processors Pi and Pj .
Most scheduling algorithms, like the ones discussed here, assume a dedicated
communication system.

We denote the start time of node ni scheduled to processor Pk as ST (ni, Pk)
and its finish time as FT (ni, Pk). The finish time of processor Pk is defined as
FT (Pk) = maxi{FT (ni, Pk)}. After all nodes and edges of the DAG have been
scheduled to the target system the schedule length is defined as maxk{FT (Pk)}.

3 Extended List Scheduling

The first phase of list scheduling is the attribution of priorities to the nodes of
the DAG and their ordering according to these priorities. Our Extended List
Scheduling (ELS) heuristic uses the node’s bottom-level bl(ni) as the measure
for its priority . The bottom-level of a node is the longest path beginning with
the node, where the length of a path is defined as the sum of the weights of its
nodes and edges. The bottom-level has several properties beneficial for commu-
nication and contention aware list scheduling [7], and ordering the nodes by its
bottom-levels in descending order automatically establishes an order according
to the precedence-constraints of the graph [7]. Furthermore, in [8], eight priority
schemes for contention aware list scheduling were experimentally compared and
the bottom-level scheme performed best.

The main part of ELS iterates over the ordered node list and determines
for every node the processor that allows its earliest finish time. Using the finish
time instead of the starting time, takes the processor speed into account and
allows the algorithm to be easily applied to heterogeneous target systems [8].
The node is scheduled on the chosen processor and the incoming edges of the
node are scheduled on the corresponding communication links. By scheduling
not only the nodes to the processors, but also scheduling the edges to the links,
the algorithm achieves awareness of contention. Communication conflicts are
detected as occupied links and the conflicting edge is delayed until the link
is free. The route for the communication is determined by the static routing
algorithm of the target architecture. Analogous to the processor, the start time
and finish time of an edge on a link are denoted ST (eij, Llk) and FT (eij, Llk),
respectively. Now, the data ready time DRT (ni, Pk) of a node ni on processor
Pk is defined as the time when the last communication from its parent nodes
arrives, DRT (ni, Pk) = maxj{FT (eji, Llk)}. For a valid schedule, ST (ni, Pk) ≥
DRT (ni, Pk) must be true for all nodes.

The basic ELS algorithm determines the start and the finish time of a node
on a processor at the end of the nodes already scheduled to that processor. The
earliest start time of a node at the end is equal or greater to the finish time of



168 Oliver Sinnen and Leonel Sousa

processor P . The node’s finish time is then its start time plus its computation
time.

ST (ni, P ) = max{FT (P ), DRT (ni, P )}
FT (ni, P ) = ST (ni, P ) + w(ni)

For the improvement of the basic ELS algorithm (called ELS-slot), we utilise
unused time slots between nodes. To schedule a node ni between two already
scheduled nodes, a time slot large enough to accommodate ni must be found.
Assume the l nodes np1 , np2 , . . . npl

are scheduled in this order on the processor
P . Let k0 be the smallest k (1 ≤ k ≤ l − 1) that fulfils w(ni) ≤ ST (npk+1 , P )−
max{FT (npk

, P ), DRT (ni, P )}. The start and finish time of ni are then

ST (ni, P ) = max{FT (npk0
, P ), DRT (ni, P )}

FT (ni, P ) = ST (ni, P ) + w(ni).

If there is no such k0, then the start and finish time are determined as in ELS,
i.e. the node is scheduled at the end. k0 corresponds to the node’s earliest start
and finish time.

The start and the finish time of an edge on a link are determined correspond-
ingly. ELS’s complexity is O(V lg(V )+P (V +E ·O(Routing)) and ELS-slot has
a complexity of O(V 2 + P · E · O(Routing) + P 2E2), where O(Routing) is the
routing complexity of the target machine.

4 Experiments and Conclusions

ELS and ELS-slot were implemented and used to schedule random graphs to
different architectures. The obtained schedule lengths are compared to the ones
of BSA [4] and DLS [5] (streamlined version for homogeneous processors), which
are also contention aware scheduling algorithms for arbitrary processor networks.
DLS’s complexity is similar to ELS’s and BSA’s complexity is similar to that of
ELS-slot. The random graphs generated had the following characteristics: graph
size 50-500 nodes; average number of edges per node 1.5, 2 or 5; node weight was
uniformly distributed in [0.1, 1.9], i.e. average 1; edge weight was determined in
a way that the global Communication-to-Computation Ratio (CCR) was 0.1,
1 or 10. The target machine architectures are (cyclic) meshes, rings and fully
connected machines with 4, 8 and 16 processors. The results shown in Fig. 1 -
every point corresponds to the average of 10 graphs - are for 16 processors and
graphs with 2 average edges per node. The other results are similar in nature.

For low (CCR 0.1, Fig. 1a) and medium communication (CCR 1, Fig. 1b),
BSA performs worse than the other algorithms (> 300% for CCR 0.1 and > 60%
for CCR 1). The difference between ELS and DLS is negligible and ELS-slot
performs best for CCR 1, with an improvement of about 30 % over ELS.

For high communication (CCR 10, Fig. 1c-1e), the relevance of the target sys-
tem’s topology increases and BSA yields the best results for the ring topology,
where links are sparse (Fig. 1e), even though with a minimal speedup (< 25%).



Exploiting Unused Time Slots 169

0
10
20
30
40
50
60
70
80
90

100
110

50 100 150 200 250 300 350 400 450 500

S
ch

ed
ul

e 
le

ng
th

Number of Nodes

ELS
ELS-slot

DLS
BSA

(a) cyclic mesh 4x4

0

20

40

60

80

100

120

140

160

180

50 100 150 200 250 300 350 400 450 500

S
ch

ed
ul

e 
le

ng
th

Number of Nodes

ELS
ELS-slot

DLS
BSA

(b) ring

0

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500

S
ch

ed
ul

e 
le

ng
th

Number of Nodes

ELS
ELS-slot

DLS
BSA

(c) fully connected

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500

S
ch

ed
ul

e 
le

ng
th

Number of Nodes

ELS
ELS-slot

DLS
BSA

(d) cyclic mesh 4x4

0
100
200
300
400
500
600
700
800
900

1000
1100

50 100 150 200 250 300 350 400 450 500

S
ch

ed
ul

e 
le

ng
th

Number of Nodes

ELS
ELS-slot

DLS
BSA

(e) ring

Fig. 1. Schedule results with CCR 0.1 (a), CCR 1 (b), CCR 10 (c-e)

While the other algorithms yield here schedule lengths higher than the sequen-
tial execution time, they perform better than BSA on the other architectures
(Fig. 1c, 1d). ELS performs always better than DLS (about 5%-20%), due to a
better priority choice and ELS-slot can improve ELS by about 20%-30%.

References

1. M. Cosnard and D. Trystram. Parallel Algorithms and Architectures. Int. Thomson
Computer Press, London, UK, 1995. 166

2. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for schedul-
ing DAGs on muliprocessors. Journal of Parallel and Distributed Computing,
16(4):276–291, December 1992. 166

3. Y. Kwok and I. Ahmad. Benchmarking the task graph scheduling algorithms.
In Proc. of Int. Par. Processing Symposium/Symposium on Par. and Distributed
Processing (IPPS/SPDP-98), pages 531–537, Orlando, Florida, USA, April 1998.
166

4. Y. Kwok and I. Ahmad. Bubble Scheduling: A quasi dynamic algorithm for static
allocation of tasks to parallel architectures. In Proc. of Symposium on Parallel and
Distributed Processing(SPDP), pages 36–43, Dallas, Texas, USA, October 1995.
166, 168

5. G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel
and Distributed Systems, 4(2):175–186, February 1993. 166, 168



170 Oliver Sinnen and Leonel Sousa

6. B. S. Macey and A. Y. Zomaya. A performance evaluation of CP list scheduling
heuristics for communication intensive task graphs. In Parallel Processing Sympo-
sium, 1998. Proc. of IPPS/SPDP 1998, pages 538 –541, 1998. 166

7. O. Sinnen and L. Sousa. Scheduling task graphs on arbitrary processor archi-
tectures considering contention. In Int. Conf. on High Perf. Computing and Net-
working, Lecture Notes in Computer Science, Amsterdam, Netherlands, June 2001.
167

8. O. Sinnen and L. Sousa. Comparison of contention aware list scheduling heuristics
for cluster computing. In Workshop on Scheduling and Resource Management for
Cluster Computing (ICPP 2001), Valencia, Spain, September 2001. IEEE Com-
puter Society Press. (to be published). 167


	Exploiting Unused Time Slots in List Scheduling Considering Communication Contention
	Introduction
	Models and Definitions
	Extended List Scheduling
	Experiments and Conclusions


