
A Fuzzy Load Balancing Service for Network Computing
Based on Jini†

Lap-Sun Cheung and Yu-Kwong Kwok

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

Email: {lscheung, ykwok}@eee.hku.hk

Abstract. Distributed object computing systems are widely envisioned to be the desired
distributed software development paradigm due to the higher modularity and the capability
of handling machine and operating system heterogeneity. As the system scales up (e.g.,
with larger number of server and client objects, and more machines), a judicious load
balancing system is required to efficiently distributed the workload (e.g., the queries,
messages/objects passing) among the different servers in the system. However, in existing
distributed object middleware systems, such a load balancing facility is lacking. In this
paper, we describe the design and implementation of a dynamic fuzzy-decision based load
balancing system incorporated in a distributed object computing environment. The
proposed approach works by using a fuzzy logic controller which informs a client object to
use the most appropriate service such that load balancing among servers is achieved. We
have chosen Jini to build our experimental middleware platform, on which our proposed
approach as well as other approaches are implemented and compared. Extensive
experiments are conducted to investigate the effectiveness of our fuzzy-decision based
approach, which is found to be consistently better than other approaches.
Keywords: distributed object computing, load balancing, fuzzy decision, Java, Jini,
remote method invocation, middleware.

1 Introduction
With the great advancement of hardware technologies, powerful distributed computing

systems are becoming ubiquitous. Indeed, with commodity hardware components, a high
performance network of PCs can be set up to execute applications developed using new software
structuring paradigms, such as object based systems and object brokerage protocols, which have
also advanced tremendously parallel to the development of hardware technologies. Such new
distributed software development paradigms, while have the advantages of modularity and
capable of handling platform heterogeneity, were conceived as impractical in mere five to ten
years ago because many complex operations such as object serialization and data marshalling,
were too time consuming to be efficiently run on the hardware platforms. Currently, many
commercial software projects are using distributed object based approaches such as CORBA
(common object request broker architecture), DCOM, and Java RMI (remote method
invocation). Using a distributed object based approach, an application is constructed as a group
of interacting objects. These objects are distributed over multiple machines which interact with
each other through well predefined protocols (e.g., RMI in Java). Usually, the interactions are
queries or remote services invocation.

It is common that in such a distributed object computing system, there are multiple objects
(possibly on heterogeneous platforms) that provide the same service. This is done to achieve a
higher availability and scalability. Even the lookup service object may have several instances in
the network. Under light load conditions (i.e., few number of remote service invocations or

†. This research was jointly supported by the Hong Kong Research Grants Council under
contract numbers HKU 7124/99E and HKU 7024/00E), and by a HKU URC research grant
under contract number 10203413.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 183-190, 2001.
c Springer-Verlag Berlin Heidelberg 2001

object passing), the system can perform reasonably well. However, as the system scale up to a
moderate size (e.g., 10 machines), the number of requests generated in the system can be of a
very large volume and be very bursty. As a result, some machines might be overloaded while
other machines are idle or lightly loaded. In order to improve the performance, specifically the
client request response time of a distributed application, load balancing techniques can be
introduced to distribute workload in a judicious manner among various machines [14].

We focus on the middleware based approach to perform load balancing in a distributed
object network. The major requirements of a middleware based load balancing service in a
object computing system are:

• Client transparency: Client programs need not be modified in order to use load
balancing service. Client should not be aware of the changes due to incorporating of a
new load balancing algorithm in the load balancing service.

• Avoid changing middleware layer: Middleware layer should not be modified. Once the
middleware layer has been modified, it will become proprietary and incompatible with
other existing applications developed using the original middleware.

• Server transparency: Like client transparency, server applications need not be changed
so as to take the advantage of load balancing service.

• Scalability and fault-tolerance: To avoid a single point of failure, several load balancers
can coexist in a federation. Load balancers can be configured to work cooperatively to
form a single logical load balancing service.

• Integrating new load balancing algorithms: The load balancing service should be
designed in such a way that different load balancing algorithms can be easily integrated
without extensive modification of the source code of the load balancing service, i.e.,
modular design pattern should be employed to develop the load balancing service.

• Minimal overhead: Network overhead caused by load balancing service should be
minimized. A load balancing service should be designed such that unnecessary message/
object exchanges between the load balancing service with other network components
should be avoided; otherwise, the overall system performance cannot be guaranteed.

Existing load balancing algorithms used in distributed object computing systems are
usually based on simple techniques such as round-robin or random, which may not give
optimized performance. Thus, in our study we propose, implement, and evaluate a new approach
for load balancing in a distributed object system. We incorporate our load balancing scheme in a
dynamic network service system called Jini [7]. Our proposed load balancing algorithm employs
fuzzy-decision control [8]. An effective load balancing scheme requires the knowledge of the
global system state (e.g., the workload distribution). However, in a distributed computing
system, the global state is swiftly and dynamically changing and it is very difficult to accurately
model the system analytically [4], [6]. Thus, in order to tackle the load balancing problem in
such an environment where state uncertainty is unavoidable, we employ a fuzzy-decision
approach to model those state variables that cause uncertainty in global states. Our approach is
novel in that it is seamlessly incorporated into the Jini middleware. Our fuzzy-decision control is
also effective and robust, as evident in the experimental results in a real Jini network, due to the
concise fuzzy rules set. There have been some recent attempts in using fuzzy-based approaches
for load balancing [2], [3], [5], [13], but those approaches are either too restrictive or not suitable
for a middleware based environment considered in our study.

This paper is organized as follows. In the next section, we describe our proposed fuzzy-
decision based approach. Section 3 contains the experimental results we obtained in our Jini-
based testbed built on a Pentium PCs network. The last section concludes this paper.

2 The Proposed Fuzzy-Decision Based Load Balancing Scheme
In this section, the design of the our proposed fuzzy-decision based load balancing service

is described. We first describe the fuzzy logic controller, which is the core part of the fuzzy load
balancing service. The dynamic interactions between the fuzzy load balancing service and other

184 Lap-Sun Cheung and Yu-Kwong Kwok

components are discussed in detailed in subsequent subsections.

To handle a complex system such as a high speed computer network where a lot of
uncertain parameters exist, a model with complex and nonlinear relationships between a lot of
variables have to be devised, making a conventional control theory based approach intractable.
To overcome this problem, fuzzy logic control theory [8] can be applied instead of the
conventional one. Fuzzy logic control attempts to capture intuition in the form of IF-THEN
rules, and conclusions are drawn from these rules [8]. Based on both intuitive and expert
knowledge, system parameters can be modeled as linguistic variables and their corresponding
membership functions can be designed. Thus, nonlinear system with great complexity and
uncertainty can be effectively controlled based on fuzzy rules without dealing with complex,
uncertain, and error-prone mathematical models [8]. The architecture of the fuzzy logic
controller shown in Figure 1 includes five components: Fuzzifier, Rule Base, Membership
functions, Fuzzy Inference Engine, and Defuzzifier. The fuzzifier is the input interface which
maps a numeric input to a fuzzy set so that it can be matched with the premises of the fuzzy rules
defined in the application-specific rule base. The rule base contains a set of fuzzy if-then
rules which define the actions of the controller in terms of linguistic variables and membership
functions of linguistic terms. The fuzzy inference engine applies the inference mechanism to the
set of rules in the fuzzy rule base to produce a fuzzy set output. This involves matching the input
fuzzy set with the premises of the rules, activation of the rules to deduce the conclusion of each
rule that is fired, and combination of all activated conclusions using fuzzy set union to generate
fuzzy set output. The defuzzifier is an output mapping which converts fuzzy set output to a crisp
output. Base on the crisp output, the fuzzy logic controller can drive the system under control.

The fuzzy rule base contains a set of linguistic rules. These linguistic rules are expressed
using linguistic values and linguistic variables. Different linguistic values can be assigned to a
linguistic variable. For instance, very_long or moderately_short can be used in the
variable remote_method_Invocation_time. These linguistic values are modeled as
fuzzy sets. Based on the linguistic values, their corresponding membership functions can be
expressed based on application requirements.

In the Jini computing model, client objects basically have no idea on which service they
should send requests to in order to achieve the best QoS (quality of service) or more specifically,
the shortest response time. Generally, a request router or load balancer can be implemented to
route client requests to the most appropriate service. The request router can make such decisions
based on the current state of server objects. However, such state information may not be updated
and reliable as client requests reach servers [11]. That is the state information cannot reflect the
state of servers accurately due to network delay. The request router needs to use approximate
reasoning to handle the fuzzy information so as to make the system efficient. In order to make a
correct routing decision, linguistic variables, server load, remote method invocation time, and
service rank, are used in the fuzzy logic algorithm and are defined as follows.

We define server load, denoted as SL, with the fuzzy set definition: {low (L), medium
(M), high (H)}. Accurate estimate of load is notoriously difficult to obtain [9], [10]. We
employ an indirect approach in determining SL. Instead of directly measuring each process
execution time, we measure the execution time of a benchmark program which consists of
several benchmark kernel loops. The benchmark program runs perpetually without stopping in

Figure 1: The architecture of the fuzzy logic controller.

185A Fuzzy Load Balancing Service for Network Computing Based on Jini

the system as a background process. By observing the running times of the benchmark program,
we can infer the instantaneous load level in the system. Figure 2 shows the membership graph
for SL.

In order to measure the responsiveness of servers to client requests as well as the overhead
introduced into the network by distributed processing (i.e., message/object exchanges), network
utilization needs to be determined. This is done by measuring the time for Remote Method
Invocation. We define a benchmark remote method which simply returns a primitive data type
from server to our fuzzy logic load balancing service to measure the RMI time:

int n; public int getNumber() {return n;}

The method System.currentTimeMillis() is used to measure the time elapsed
during remote method invocation in milliseconds. In our measurements, it is found that the time
needed to execute the remote method is about 2 to 3 ms when network utilization is low and
server is lightly loaded. The time becomes longer when the system load increases. Thus the
benchmark remote method can approximately reflect the network load and the responsiveness of
servers. The fuzzy set of remote method invocation time (RMIT) is defined as: {short(S),
medium (M), long (L)}. Figure 2 shows the membership graph for remote method
invocation time RMIT.

We use service rank (SR) to classify services into six different categories. The fuzzy set of
SR is: {very low (VL), low (L), medium low (ML), medium (M), medium
high (MH), high (H)}. The membership graph of service rank is shown in Figure 2. The
higher the rank that a service gets, the more appropriate that it can accept client requests. After
defining the above fuzzy variables, a set of inference rules is defined as shown in Figure 2. By
applying the fuzzy inference rules, a decision can be generated based on both antecedents. That
is, if RMIT is short and SL is low, then SR is high. Having these fuzzy inference rules and
membership graphs, the fuzzification and defuzzification processes can be carried out as
follows. First, the input values of RMIT and SL are mapped to their respective membership
degree values on their membership graphs. These degree values are compared and the minimum
of the two is then projected onto the membership function of their consequence graph. The
output graph, usually in the shape of a trapezium [8], then represents the output of one inference
rule. After the output graph is generated, defuzzification of the fuzzy output into a crisp or
numeric value can be carried out. We used the centroid method [8] to defuzzify the output. It has
been noted that the thundering herd effect [12] may occur if the load balancer immediately
forwards all requests to a server that is assigned to the highest service rank. It will lead to a
sudden degradation in the overall system performance. In order to minimize such effect, the
fuzzy logic load balancing service schedules client requests to servers based on a prioritized
round-robin algorithm [1]. In our implementation using the Jini platform, the system consists of
a lookup service, a fuzzy logic load balancing service, several server objects (providing services)

Figure 2: The membership graphs for server load (SL), RMI time (RMIT),
service rank (SR), and the fuzzy inference rules.

RMIT/SLL M H
S H MH ML
M MH M L
L M L VL

fuzzy inference rules

186 Lap-Sun Cheung and Yu-Kwong Kwok

and client objects. In the following, we discuss the structure and the function of each
component.

Each standard Jini service consists of basic functions such as finding lookup service and
registering to it. These actions can be accomplished by installing a JoinManager, which is a
standard Jini feature, into the service. Figure 3 shows the services residing in the server host. In
our implementation, there is a general service in which clients are interested. The service
consists of a JoinManager, Remote Service Object and Remote Service Admin
Object. Remote Service Object is a remote object which implements the remote
interface that is known to client. Client can invoke methods on service object based on the
remote interface. Remote Service Admin Object provides an interface so that the
service attributes can be modified by other administrative components in the network. We also
incorporate a load monitor service in the server host. Like other Jini services, load monitor
service registers itself with the lookup service with the help of JoinManager. The remote load
monitor service object is being used when the fuzzy logic load balancing service registers as a
listener for the remote event generated by load monitor service. The event consists of
information such as server location and server load.

Basically, a client locates lookup service and gets the services proxies available in the
lookup service. Then the client, based on the service interface, generates a request to fuzzy logic
load balancing service and gets the result after the service has finished the execution. The
structure of the client is shown in Figure 3. The client consists of a LookupCache which is
created by ServiceDiscoveryManager. Inside the cache, it stores the fuzzy logic load
balancing service proxy to which client can send request. ServiceDiscoveryManager is a
standard Jini feature of which the main use is to help clients to locate services and cache service
proxies. Fuzzy logic load balancing service is the core part of the system. Its main function is to
analyze information passed from the load monitor, and then make a decision to forward client
request to appropriate server. The structure of the fuzzy logic load balancing service is shown in
Figure 4. The fuzzy logic load balancing service performs actions such as registering itself to the
lookup service and obtaining service proxies available in the lookup service. Thus, it acts as both
a server and client as it consists of both the JoinManager and
ServiceDiscoveryManager. Our proposed fuzzy logic load balancing algorithm is
implemented in the fuzzy logic controller.

Figure 3: Structure of the server and client hosts.

Figure 4: Structure of the fuzzy logic based load balancing
service host and the overall load balancing system.

187A Fuzzy Load Balancing Service for Network Computing Based on Jini

With the above components, the load balancing mechanism can be summarized as follows
(illustrated in Figure 5).
1. A client obtains a fuzzy logic load balancing service proxy and sends request to the service.

2. Load monitor asynchronously sends information to fuzzy logic controller for analysis.

3. Fuzzy logic load balancing service periodically measures the remote method invocation
time from the load balancer to the server.

4. When a new piece of information such as remote method invocation time or server load
arrive at the fuzzy logic controller, the fuzzy inference engine will start to analyze and
assign ranks to different servers.

5. After determining which server is the appropriate candidate, the fuzzy logic controller
forwards the client request to that server.

3 Performance Results
To evaluate our approach, we have implemented a distributed object platform using Jini and

experiments were performed to analyze the client response time and throughput of different load
balancing schemes. In order to simulate real client access patterns, a request sequence was
generated by using a random number generator to place requests in a given time interval. The
request sequences consist of request bursts and intervals of silence. For comparison, we also
implemented a system with load balancing algorithm using random and round-robin load
distribution by incorporating these algorithms into our fuzzy logic load balancing service. We
have set up the testing environment as follows. Six machines are assigned as Jini services and
two others are assigned as Jini clients. All the machines are connected by an Ethernet hub with
bandwidth of 10Mbps. The configuration of six server machines are: (1) two 500MHz CPU Intel
Pentium III workstations, (2) two 667MHz CPU Intel Pentium III workstations, and (3) two
450MHz CPU Intel Pentium III workstations. All machines are equipped with 128MB memory.
We have another two machines, which are 600MHz CPU Intel Pentium III workstations with
128MB memory, holding lookup services and fuzzy logic load balancing service. The client
machines we used are all 200MHz CPU Pentium with 64MB memory. All machines are running
Red Hat Linux 7.0 as their operating systems. Java Development Kit version 1.3 and Jini
Technology Starter Kit 1.1 are used to develop all system components. A stateless service,
Fibonacci function, is chosen as our benchmark program to simulate consumption of CPU clock
cycle in the server machines. Fibonacci function provides a suitable workload for our load
balancing tests since each operation can run for a relatively long time. Due to space limitations,
only part of the experimental results are included in this paper. More detailed results and
analysis can be found in [1].

The average client response times of the three load balancing algorithms as a function of
the number of servers are shown in Figure 6, which illustrates that the fuzzy-based approach
outperforms the other algorithms consistently for different number of servers. The average client
response time of random load balancing algorithm is the highest under all the cases because

Figure 5: The fuzzy-decision based load balancing mechanism.

188 Lap-Sun Cheung and Yu-Kwong Kwok

Figure 6: Average response times of the clients.

Figure 7: Average throughput of the clients.

189A Fuzzy Load Balancing Service for Network Computing Based on Jini

uneven distribution of load exists in the random load balancing algorithm. A server with less
computing power causes a higher response time when it is suddenly overloaded. This effect
deteriorates the overall performance and causes the highest response time. Figure 7 shows how
the average throughput differs between each load balancing strategy. In this measurement, 5 to
20 clients were used and each client generated 50 requests. Each client request will generate a
computational task using Fibonacci function. The experiment is repeated 100 times for different
number of servers. As can be seen from Figure 7, throughput increases as the number of servers
increases. Again, the throughput of random load balancing algorithm is the worse among the
three algorithms due to the fact than an overloaded computing machines will lengthen the
completion time of a task and thus, reducing the overall throughput. For throughput-sensitive
application, random load balancing algorithm is not suitable. On the other hand, the throughput
of fuzzy-based approach performs the best among the three. The reason is that our approach
assigns more requests to the machines with better performance based on fuzzy analysis. This
significantly reduces the completion time of a task.

4 Conclusions
Load balancing is an old problem. But new solutions are required in modern distributed

object computing platforms, which are increasingly being used in developing many commercial
distributed applications. In this paper, we describe the design, implementation, and evaluation of
our proposed fuzzy-decision based load balancing algorithm incorporated in a distributed object
middleware based on the Jini platform. Our fuzzy-decision load balancer is motivated by the fact
that classical and recent load balancing algorithms are inadequate for use in the target platforms
considered in our study because there are a multitude of new requirements exist. Our fuzzy-
decision load balancing service, based on concise and rather easy to implement rules, is found to
be very effective in our extensive experimental studies using a real Jini-based testbed.

References
[1] L.-S. Cheung, Load Balancing in Distributed Object Computing Systems, M.Phil. Thesis,

Department of Electrical and Electronic Engineering, The University of Hong Kong, May 2001.
[2] C. W. Cheong and V. Ramachandran, “Genetic Based Web Cluster Dynamic Load Balancing in

Fuzzy Environment,” Proc. 4th Intl Conf. High Performance Computing in the Asia-Pacific Region,
vol. 2, pp. 714–719, 2000.

[3] E. Damiani, “An Intelligent Load Distribution System for CORBA-Compliant Distributed
Environments,” Proc. IEEE Int’l. Conf. Fuzzy Systems, vol. 1, pp. 331–336, 1999.

[4] M. V. Devarakonda and R. K. Iyer, “Predictability of Process Resource Usage: A Measurement-
Based Study on UNIX,” IEEE Trans. Software Engineering, vol. 15, no. 12, pp. 1579–1586, Dec.
1989.

[5] S. Dierkes, “Load Balancing with a Fuzzy-Decision Algorithm,” Information Sciences, vol. 97,
Issue 1-2, Mar. 1997.

[6] K. K. Goswami, M. Devarakonda, and R. K. Iyer, “Prediction-Based Dynamic Load-Sharing
Heuristics,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 6, pp. 638–648, June 1993.

[7] W. Keith, Core Jini, Prentice Hall, 1999.
[8] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine

Intelligence, Prentice Hall, New Jersey, 1992.
[9] T. Kunz, “The Influence of Different Workload Descriptions on a Heuristic Load Balancing

Scheme,” IEEE Trans. Software Engineering, vol. 17, no. 7, pp. 725–730, July 1991.
[10] P. Mehra and B. Wah, “Synthetic Workload Generation for Load-Balancing Experiments,” IEEE

Parallel and Distributed Technology, pp. 4–19, 1995.
[11] R. Mirchandaney, D. Towsley, and J. A. Stankovic, “Analysis of the Effects of Delays on Load

Sharing,” IEEE Trans. Computers, vol. 38, no. 11, pp. 1513–1525, Nov. 1989.
[12] M. Mitzenmacher, “How Useful Is Old Information?,” IEEE Trans. Parallel and Distributed

Systems, vol. 11, no. 1, pp. 6–20, Jan. 2000.
[13] A. Shaout and P. McAuliffe, “Job Scheduling Using Fuzzy Load Balancing in Distributed System,”

Electronics Letters, vol. 34, no. 20, pp. 1983–1985, Oct. 1998.
[14] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing for Locally Distributed Systems,”

Computer, vol. 25, no. 12, pp. 33–44, Dec. 1992.

190 Lap-Sun Cheung and Yu-Kwong Kwok

	Introduction
	The Proposed Fuzzy-Decision Based Load Balancing Scheme
	Performance Results
	Conclusions
	References

