
Approximation Algorithms for Scheduling

Independent Malleable Tasks�

J. B�lażewicz, M. Machowiak1, G. Mounié, and D. Trystram2

1 Instytut Informatyki Politechnika Poznanska
ul. Piotrowo 3a, 60 - 965 Poznan, Poland

2 ID-IMAG, 51 rue Jean Kuntzman
38330 Montbonnot Saint Martin, France

Abstract. Malleable tasks consist in considering the tasks of a parallel
program as large computational units that may be themselves paral-
lelized. In this paper we investigate the problem of scheduling a set of n
independent malleable tasks on a m processors system, starting from the
continuous version of the problem.

1 Introduction

The malleable task model is a recent model in parallel processing introduced in
order to solve efficiently some practical problems [5,6,7]. These problems have
complex behavior at the finest level of execution which brings classical methods
of scheduling to their limits, mainly due to the explicit management of the com-
munications. The idea of a malleable task (MT) results in solving the problem
at a different level of granularity in order to globally take into account commu-
nication costs and parallelization overheads with a simple penalty factor.

Malleable tasks can be distinguished from multiprocessor tasks, considered
for example in [1], where the number of processors allotted to each task is known.
The latter model has received a considerable attention in the literature. The
problem of scheduling independent MT without preemption (it means that each
task is computed on a constant number of processors from its start to completion)
is NP-hard [2], thus, an approximation algorithm with performance guarantee
has been looked for. While the problem has an approximation scheme for any
fixed value m, the number of processors, [4], no general practical polynomial
approximation better than 2 is known [5].

In this paper starting from the continuous version of the problem (i.e. where
the tasks may require a fractional part of the resources), we propose a different
approximation algorithm with a performance guarantee equal to 2. Then, some
improvements are derived.
� This work was realized when J. B.lażewicz was visiting ENSGI, Grenoble, in Spring
2000 and was partially supported by KBN Grant 8T11A01618

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 191–197, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

192 J. B.lażewicz et al.

2 Problem Formulation

We consider a set of m identical processors P = {P1, P2, . . . , Pm} used for exe-
cuting the set T = {T1, T2, ..., Tn} of n independent, non-preemptable malleable
tasks (MT). Each MT needs for its execution at least 1 processor. The number
of processors allotted to a task is unknown in advance. The processing speed of a
task depends on the number of processors allotted to it: namely, function fi re-
lates processing speed of task Ti to a number of processors allotted. The criterion
assumed is schedule length.

Now, the problem may be stated as the one of finding a schedule (a processor
allocation to tasks) of minimum length ω, provided that the processing speed
functions of the tasks are all concave. Let us note, that this is a realistic case,
more often appearing in practice. We will denote this minimum value as ω�

m.
As far as processors are concerned, functions fi are discrete. However, in

general, it would be also possible that these functions are continuous. In what
follows we will use the results of optimal continuous resource allocation to con-
struct good processor schedules. The reader will find the basic results from the
optimal continuous resource allocation theory in [10]. To distinguish it from a
discrete case, an optimal schedule length of a continuous case will be denoted
by C∗

cont. Basically, in the continuous case, all tasks are executed from time 0
to C∗

cont on a fraction of the available processors.

3 An Approximation Algorithm
and Its Worst Case Behavior

In this section we propose an algorithm to transform a schedule obtained from
the continuous version into a feasible schedule for the discrete MT model and
prove that it has a performance guarantee of 2.

Every task Ti with an allocation ri ≥ 1 in the continuous solution is scheduled
on r̃i = min(r, ti(r) ≤ 2 × C∗

cont) processors in the malleable scheduling. All
parallel tasks (allotment strictly larger than 1) start at time 0. Other tasks, for
which a continuous allotment ri < 1, receive one processor and are scheduled in
free time slots (cf Algorithm 1).

Algorithm 1 Generic transformation algorithm.

Compute C∗
cont and ∀i, ri

for i = 1 to n, r̃i = min(r, ti(r) ≤ 2× C∗
cont)

for i = 1 to n
if ri < 1 then r̃i = 1
else if r̃i > 1 then Start(i) = 0

for i = 1 to n
if r̃i = 1 then

Start(i) = MinimumDateAvailableProcessor()

Approximation Algorithms for Scheduling Independent Malleable Tasks 193

Note, that the complexity of the above transformation algorithm is
O(n log(m)), as it required to maintain a heap of processor load.

Theorem 1 Algorithm 1 has a performance guarantee of 2.

Proof The continuous solution consists in executing simultaneously all the tasks
on a fractional number of processors. This solution realizes the trade-off between
the total work (task duration by allotted processors) and the length of the tasks.
Thus C∗

cont, is a lower bound on ω∗
m.

For all the tasks which continuous allotment ri ≥ 1, by construction of the
Algorithm 1, their duration are less than 2 C∗

cont. Their work decreases. More-
over, the sum of the processors allotted to these tasks after the transformation
stays lower than m. Thus, these tasks, whose duration is between C∗

cont and
2 C∗

cont, can be executed on less than m processors starting at time 0, and their
work is smaller than mC∗

cont.
The tasks which continuous allotment ri < 1 are assigned on one processor.

Their execution times decrease but their work increases. This surface is still the
minimal one that these tasks can have in any discrete malleable schedule. Thus
these tasks have a duration lower than C∗

cont and their total surface is less than
m ω∗

m.
The sum of the surfaces of the tasks is lower thanm C∗

cont+m ω∗
m. An analysis

similar to Graham’s one can be now applied [3]. The last task that is allotted
starts at a time when all the processors are busy (otherwise, it could have been
started earlier). Thus, the schedule length of the malleable (discrete) schedule,
ωm is lower than max{2 C∗

cont,
m C∗

cont+m ω∗
m

m + C∗
cont}, that is 2 C∗

cont + ω∗
m. If

ω∗
m ≥ 2 C∗

cont, we obtain directly a guarantee of 2.
When ω∗

m ≤ 2 C∗
cont, as 2 C∗

cont is greater than ω∗
m, by construction, the

allotment chosen for all the tasks is lower than the allotment in the optimal
malleable schedule. The work of all the tasks is lower than mω∗

m. Using the
same analysis, we obtain ωm ≤ m ω∗

m

m + C∗
cont ≤ 2 ω∗

m

Thus Algorithm 1 has the worst case behavior bounded by 2.

4 An Improved Algorithm with Better Average Behavior

The 2-approximation presented in [5] is based on a clever reduction of MT
scheduling to the strip-packing problem, using the earliest result of [9]. It is
worth stressing that the algorithm of Ludwig [5], on average behaves similarly
to its worst case behavior.

Algorithm 1 has also a worst case bound equal to 2. In average it will be-
have similarly, most often approaching this bound. For this reason we propose
a slightly more sophisticated algorithm. Its main idea for refinement is to pack
more cautiously small tasks (requiring one processor only) and to use several
steps of rounding off. These changes allow an improved average behavior.

194 J. B.lażewicz et al.

Algorithm 2

procedure Algorithm2()
Compute C∗

cont and ∀i, ri

for i = 1 to n
if ri ≤ 1 then r̃i := 1
else if (ri > 2) or (ri < 1.5) then r̃i = 	ri

else r̃i = 2 {refinement when 1.5 ≤ ri ≤ 2}

m̃ =
∑n

i=1(r̃i).
find k, such that tk(rk) = max1≤i≤n{ti(ri)}
while m̃ < m

rk = rk + 1; m̃ = m̃+ 1
find k, such that tk(rk) = max1≤i≤n{ti(ri)}

Schedule1 =
find k, such that rk = max1≤i≤n{ri}
d = MinimumDateAvailableProcessor(rk)
while d+ tk(rk) < max(C∗

cont,
∑n

i=1 ti(1))
Start(k) = d; Scheduled(tk) = True
find k, such that rk = max1≤i≤n{ri}
d = MinimumDateAvailableProcessor(rk)

Algorithme2(T −Scheduled(T))
if m̃ > m then

Schedule2 =
do

find k, such that rk = max1≤i≤n{ri}
oldk = rk

if rk > 1 then rk = rk − 1
d = MinimumDateAvailableProcessor(rk)
while d+ tk(rk) < max1≤i≤n{ti(ri)}

Start(k) = d; Scheduled(tk) = True
find k, such that rk = max1≤i≤n{ri}

d = MinimumDateAvailableProcessor(rk)
until Scheduled(T) == T or oldk == 1

else
Schedule2 = +∞

Choose the better between Schedule1 and Schedule2

To evaluate the mean behavior of Algorithm 2 we use the following measure:

SAlg2 = min{ωm/C∗
cont, ωm/Carea)},

where: ωm - a schedule length obtained by Algorithm 2, C∗
cont - an optimal

schedule length of the continuous solution, Carea =
∑n

i=1 ti(1)/m - a schedule
length for the uniprocessor allocation for all the tasks. Clearly, the maximum
of the two values C∗

cont and Carea is the lower bound on the optimal schedule
length ω∗

m for malleable tasks (discrete case), thus, SAlg2 indicates properly a
behavior of Algorithm 2.

Approximation Algorithms for Scheduling Independent Malleable Tasks 195

5 Experiments

To test mean behavior of Algorithm 2, experiments have been conducted as
follows. Task processing times ti(1) have been generated from a uniform dis-
tribution in interval [1..100]. Processing speed functions is fi(r) = r1/a, a ≥ 1.
Values of parameter a have been generated from a uniform distribution in inter-
val [1..10]. The results of the experiments are gathered in Tables 1 through 2.
Each entry in these tables is a mean value for 10 instances randomly generated.

a - different for each task a = 4

Processors ωm/C∗
cont ωm/Carea Salg2 ωm/C∗

cont ωm/Carea Salg2

4 7.96 1.00 1.00 8.48 1.01 1.01
8 5.16 1.02 1.02 5.22 1.02 1.02
16 3.35 1.28 1.28 3.12 1.18 1.18
32 3.26 1.54 1.54 3.11 1.29 1.29
64 1.93 1.48 1.48 2.98 1.32 1.32
128 1.60 1.41 1.41 1.87 1.36 1.36
256 1.21 2.12 1.21 1.30 2.03 1.30
512 1.12 3.79 1.12 1.10 3.09 1.10

Table 1 (n = 100) illustrates an influence of a number of processors on the
average behavior of Algorithm 2. Table 2 (m = 64) shows the impact of the
number of tasks on the performance of Algorithm 2. Figure 1 illustrates an
impact on the behavior of Algorithm 2 by a number of tasks with varying speed
functions.

a - different for each task a = 4

Tasks ωm/C∗
cont ωm/C∗

area Salg2 ωm/C∗
cont ωm/Carea Salg2

20 1.09 4.26 1.09 1.07 3.19 1.07
40 1.11 2.60 1.11 1.33 3.05 1.33
60 1.19 1.62 1.19 1.15 1.83 1.15
80 1.17 1.68 1.17 1.28 1.52 1.28
100 1.51 1.47 1.47 1.30 1.42 1.30
120 1.48 1.41 1.41 1.43 1.18 1.18
140 1.61 1.40 1.40 1.45 1.19 1.19
160 1.78 1.25 1.25 1.57 1.18 1.18
180 2.23 1.26 1.26 1.85 1.09 1.09
200 2.05 1.10 1.10 6.01 1.00 1.00

From the experiments conducted we see that the mean behavior of the al-
gorithm (as obtained in the above computational experiments) does not exceed
value 1, 54 of the assumed lower bound of the optimal schedule length for the
discrete case. The experiments show that when a number of tasks greatly exceeds
a number of processors, the optimal continuous solution does not approximate
well the discrete malleable one.. On the other hand, for a number of tasks being

196 J. B.lażewicz et al.

Fig. 1. Impact of a number of tasks on behavior of Algorithm 2

close to a number of processors, the continuous solution may be a good start-
ing point for a construction of an optimal malleable schedule. Since the first
is constructed in polynomial time, the second (of a good quality) may be also
constructed in a short time.

6 Perspectives

Further investigations could take into account a construction of the proposed
algorithm with a better worst case performance guarantee, as well as an analysis
of some special (but practically important) cases, involving few parallel tasks in
the system only, each requiring many processors at the same time.

References

1. J. B.lażewicz, M. Drabowski, J. Wȩglarz: Scheduling multiprocessor tasks to mini-
mize schedule length, IEEE Transactions on Computers 35, 1986, 389–393. 191

2. J. Du, J. Y.-T. Leung: Complexity of scheduling parallel tasks systems. SIAM
Journal on Discrete Mathematics 2, 1989, 473–487. 191

3. R. L. Graham: Bounds for certain multiprocessing anomalies, Bell System Tech.
J., 45, 1966, 1563-1581. 193

4. K. Jansen, L. Porkolab: Linear-Time Approximation Schemes for Scheduling Mal-
leable Parallel Tasks, In Tenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (soda99), ACM-SIAM, 1999, 490–498. 191

5. W. T. Ludwig: Algorithms for scheduling malleable and non-malleable parallel
tasks, PhD thesis, University of Wisconsin - Madison, Department of Computer
Sciences, 1995. 191, 193

6. G. Mounié, C. Rapine, D. Trystram: Efficient approximation algorithms for
scheduling malleable tasks, In Eleventh ACM Symposium on Parallel Algorithms
and Architectures (SPAA’99), ACM, 1999, 23–32. 191

Approximation Algorithms for Scheduling Independent Malleable Tasks 197

7. G. N. S. Prasanna, B. R. Musicus: The optimal control approach to generalized
multiprocessor scheduling, Algorithmica, 1995. 191

8. A. Steinberg: A Strip-Packing Algorithm with Absolute Performance Bound 2,
SIAM Journal on Computing 26 (2), 1997, 401–409.

9. J. Turek, J. Wolf, P. Yu: Approximate algorithms for scheduling parallelizable
tasks, In 4th Annual ACM Symposium on Parallel Algorithms and Architectures,
1992, 323–332. 193

10. J. Wȩglarz: Modelling and control of dynamic resource allocation project schedul-
ing systems, In S. G. Tzafestas (ed.), Optimization and Control of Dynamic Oper-
ational Research Models,North-Holland, Amsterdam, 1982. 192

	Approximation Algorithms for Scheduling Independent Malleable Tasks
	Introduction
	Problem Formulation
	An Approximation Algorithm and Its Worst Case Behavior
	An Improved Algorithm with Better Average Behavior
	Experiments
	Perspectives

